 Intro: We already know the
standard form of a quadratic
equation is:
y = ax2 + bx + c
 The coefficients are: a , b, c
 The variables are: y, x
 The ROOTS (or
solutions) of a
polynomial are
its x-intercepts
 The x-intercepts
occur where y =
0.
Roots
 Example: Find the
roots: y = x2 + x - 6
 Solution: Factoring:
y = (x + 3)(x - 2)
 0 = (x + 3)(x - 2)
 The roots are:
 x = -3; x = 2
Roots
 After centuries of
work,
mathematicians
realized that as long
as you know the
coefficients, you can
find the roots of the
quadratic. Even if it
doesn’t factor!
y  ax2
 bx  c, a  0
x 
b  b2
 4ac
2a
Solve: y = 5x2
 8x  3
x 
b  b2
 4ac
2a
a  5, b  8, c  3
x 
(8)  (8)2
 4(5)(3)
2(5)
x 
8  64  60
10
x 
8  4
10
x 
8  2
10
x 
8  2
10
x 
8  2
10

10
10
 1
x 
8  2
10

6
10

3
5
Roots
y  5(1)2
 8(1)  3
y  5 8  3
y  0
y  5 3
5
 
2
 8 3
5
  3
y  5 9
25
  24
5
 3
y  45
25
  24
5
  3
y  9
5
  24
5
  15
5
 
y  0
Plug in your
answers for x.
If you’re right,
you’ll get y = 0.
Solve : y  2x2
 7x  4
a  2, b  7, c  4
x 
b  b2
 4ac
2a
x 
(7)  (7)2
 4(2)(4)
2(2)
x 
7  49  32
4
x 
7  81
4
x 
7  9
4
x 
2
4

1
2
x 
16
4
 4
Remember: All the terms must be on one
side BEFORE you use the quadratic
formula.
•Example: Solve 3m2 - 8 = 10m
•Solution: 3m2 - 10m - 8 = 0
•a = 3, b = -10, c = -8
 Solve: 3x2 = 7 - 2x
 Solution: 3x2 + 2x - 7 =
0
 a = 3, b = 2, c = -7
x 
b  b2
 4ac
2a
x 
(2)  (2)2
 4(3)(7)
2(3)
x 
2  4  84
6
x 
2  88
6
x 
2  4• 22
6
x 
2  2 22
6
x 
1 22
3
 Watch this:
http://www.youtube.com/watch?v=jGJrH49Z2ZA
THANKS!!!

More Related Content

PDF
Gr-11-Maths-3-in-1-extract.pdf.study.com
PPT
Business Math Chapter 3
PPT
Solving Quadratic by Completing the Square.ppt
PDF
Form 4 add maths note
PPT
Bonus math project
PDF
Pembahasan Soal Matematika Kelas 10 Semester 1
PPTX
Straight-Line-Graphs-Final -2.pptx
DOCX
Chapter 2
Gr-11-Maths-3-in-1-extract.pdf.study.com
Business Math Chapter 3
Solving Quadratic by Completing the Square.ppt
Form 4 add maths note
Bonus math project
Pembahasan Soal Matematika Kelas 10 Semester 1
Straight-Line-Graphs-Final -2.pptx
Chapter 2

Similar to Quadratic Formula Demo.ppt (20)

PDF
Unit2.polynomials.algebraicfractions
PDF
Algebra 2 Section 3-6
PPT
Solving quadratic inequations
PPT
Math AB Chapter 8 Polynomials
PDF
Metrix[1]
PPT
Algebra unit 8.7
PDF
C2 st lecture 2 handout
PDF
Algebra 2 Section 3-7
PDF
Matrices Questions & Answers
PPTX
Completing the square if a
PPT
Quadratic And Roots
PPTX
March 27, 2015
PDF
Module of vary important topic that can not be deleted
PPTX
Factoring.pptx...........................
DOC
Answers for 4th period exam (review)
PPTX
Q1-W1-Factoring Polynomials.pptx
PDF
Em01 ba
PDF
Form 4 Add Maths Note
PDF
Form 4-add-maths-note
PPTX
1.3 solving equations t
Unit2.polynomials.algebraicfractions
Algebra 2 Section 3-6
Solving quadratic inequations
Math AB Chapter 8 Polynomials
Metrix[1]
Algebra unit 8.7
C2 st lecture 2 handout
Algebra 2 Section 3-7
Matrices Questions & Answers
Completing the square if a
Quadratic And Roots
March 27, 2015
Module of vary important topic that can not be deleted
Factoring.pptx...........................
Answers for 4th period exam (review)
Q1-W1-Factoring Polynomials.pptx
Em01 ba
Form 4 Add Maths Note
Form 4-add-maths-note
1.3 solving equations t
Ad

Recently uploaded (20)

PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
Empowerment Technology for Senior High School Guide
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Computer Architecture Input Output Memory.pptx
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Paper A Mock Exam 9_ Attempt review.pdf.
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
FORM 1 BIOLOGY MIND MAPS and their schemes
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Unit 4 Computer Architecture Multicore Processor.pptx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
Introduction to pro and eukaryotes and differences.pptx
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Empowerment Technology for Senior High School Guide
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Computer Architecture Input Output Memory.pptx
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Ad

Quadratic Formula Demo.ppt

  • 1.  Intro: We already know the standard form of a quadratic equation is: y = ax2 + bx + c  The coefficients are: a , b, c  The variables are: y, x
  • 2.  The ROOTS (or solutions) of a polynomial are its x-intercepts  The x-intercepts occur where y = 0. Roots
  • 3.  Example: Find the roots: y = x2 + x - 6  Solution: Factoring: y = (x + 3)(x - 2)  0 = (x + 3)(x - 2)  The roots are:  x = -3; x = 2 Roots
  • 4.  After centuries of work, mathematicians realized that as long as you know the coefficients, you can find the roots of the quadratic. Even if it doesn’t factor! y  ax2  bx  c, a  0 x  b  b2  4ac 2a
  • 5. Solve: y = 5x2  8x  3 x  b  b2  4ac 2a a  5, b  8, c  3 x  (8)  (8)2  4(5)(3) 2(5) x  8  64  60 10 x  8  4 10 x  8  2 10
  • 6. x  8  2 10 x  8  2 10  10 10  1 x  8  2 10  6 10  3 5 Roots
  • 7. y  5(1)2  8(1)  3 y  5 8  3 y  0 y  5 3 5   2  8 3 5   3 y  5 9 25   24 5  3 y  45 25   24 5   3 y  9 5   24 5   15 5   y  0 Plug in your answers for x. If you’re right, you’ll get y = 0.
  • 8. Solve : y  2x2  7x  4 a  2, b  7, c  4 x  b  b2  4ac 2a x  (7)  (7)2  4(2)(4) 2(2) x  7  49  32 4 x  7  81 4 x  7  9 4 x  2 4  1 2 x  16 4  4
  • 9. Remember: All the terms must be on one side BEFORE you use the quadratic formula. •Example: Solve 3m2 - 8 = 10m •Solution: 3m2 - 10m - 8 = 0 •a = 3, b = -10, c = -8
  • 10.  Solve: 3x2 = 7 - 2x  Solution: 3x2 + 2x - 7 = 0  a = 3, b = 2, c = -7 x  b  b2  4ac 2a x  (2)  (2)2  4(3)(7) 2(3) x  2  4  84 6 x  2  88 6 x  2  4• 22 6 x  2  2 22 6 x  1 22 3