SlideShare a Scribd company logo
11P.R.3
Analyze quadratic functions of
                        2
the form y = a (x – p) + q and
determine the
• vertex
• domain and range
• direction of opening
• axis of symmetry
· x - and y -intercepts
Vertex


y = 67(x-3)2-6            v: (3,-6)




y = -3 (x + 2) 2 + 10    v: (-2, 10)




y = (x + 67) 2 - 18
                        v: (-67, -18)
Domain and Range

          2
y = 3(x+4) + 6

      Domain = {        <x<          }
                   (     ,       )

      Range: {6        x <       }
                 [6,         )
Direction of Opening


          2
y = 3(x+4) + 6                up



           2+6
y = -3(x+4)
                             down
Axis of Symmetry



 y = 67(x-3)2-6



            x=3
x and y intercepts

x intercept is where the line crosses
the x axis, (y = 0)

y intercept is where the line crosses
the y axis, (x = 0)
x intercept
                 2 + 27
  y = -3 (x + 2)
y=0
0 = -3(x + 2) 2 + 27
             2
-27 = -3(x+2)
-27/-3 = (x+2)2

9 = (x+2) 2
9=x+2                  x intercept = 1 and -5
3 = x +2                    (1,0) & (-5,0)
x = 1 or -5
y intercept
                    2 + 27
     y = -3 (x + 2)
x=0
            2 + 27
y = -3(0+2)
y = -3(4) + 27
y = -12 + 27
y = 15
                             y intercept = 15
                                  (0,15)

More Related Content

PPTX
Factorización aplicando Ruffini o Método de Evaluación
PDF
Ejerciciosderivadasresueltos
DOC
Funciones1
PPT
4.1 implicit differentiation
PPT
Unit 4 Review
PDF
Identidades
PDF
Ch33 11
PPTX
Factorización aplicando Ruffini o Método de Evaluación
Factorización aplicando Ruffini o Método de Evaluación
Ejerciciosderivadasresueltos
Funciones1
4.1 implicit differentiation
Unit 4 Review
Identidades
Ch33 11
Factorización aplicando Ruffini o Método de Evaluación

What's hot (15)

PDF
Limites trigonometricos1
DOC
Math report
PPT
Ml lesson 4 4
DOCX
ระบบเลขฐานนี้ใช้ตัวเลข
PPTX
Inequalities quadratic, fractional & irrational form
PPTX
Alg2 lesson 8-7
PPT
CST 504 Standard and Function Form of a Line
PPT
CST 504 Graphing Inequalities
PPTX
Lecture 2.2 graphs ii - solving simult.eqns graphically
PPTX
Asymptotes | WORKING PRINCIPLE OF ASYMPTOTES
PDF
Formulas de taylor
DOCX
graficas matlab
PDF
Identidades trigonometricas fundamentales
PPTX
5.2 Solving Quadratic Equations by Factoring
PDF
Lesson 18: Geometric Representations of Functions
Limites trigonometricos1
Math report
Ml lesson 4 4
ระบบเลขฐานนี้ใช้ตัวเลข
Inequalities quadratic, fractional & irrational form
Alg2 lesson 8-7
CST 504 Standard and Function Form of a Line
CST 504 Graphing Inequalities
Lecture 2.2 graphs ii - solving simult.eqns graphically
Asymptotes | WORKING PRINCIPLE OF ASYMPTOTES
Formulas de taylor
graficas matlab
Identidades trigonometricas fundamentales
5.2 Solving Quadratic Equations by Factoring
Lesson 18: Geometric Representations of Functions
Ad

Viewers also liked (8)

PPT
CM30S - 1.12
PPTX
A19-3 graphing quadratics
PPT
Quadratic Equations Graphing
PPT
Parabola Lesson Powerpoint Presentation
PDF
Quadratic Function Presentation
PPTX
Quadratic equation
PPTX
Quadratic Equation
PPTX
Quadratic equations
 
CM30S - 1.12
A19-3 graphing quadratics
Quadratic Equations Graphing
Parabola Lesson Powerpoint Presentation
Quadratic Function Presentation
Quadratic equation
Quadratic Equation
Quadratic equations
 
Ad

Similar to Quadratic Function Graphs2 (20)

PPTX
Straight-Line-Graphs-Final -2.pptx
PDF
48 circle part 1 of 2
PPTX
Alg2 lesson 6-6
PPT
Bresenham's line algo.
PPT
pairs of linear equation in two variable
PPT
1475050 634780970474440000
PDF
X and Y Interceptsssssssssssssssssss.pdf
PPT
X and Y Interceptsssssssssssssssssss.ppt
PPT
How to graph the X and Y Intercepts..ppt
PPTX
Alg2 lesson 6-1
PPTX
PPTX
CIRCLES.pptx
PPT
Linear equation in two variable
PPT
Linear equations 2-2 a graphing and x-y intercepts
PPSX
Algeopordy
PPT
Conic Sections
PPTX
Factoring polynomials
PPT
1538 graphs &amp; linear equations
PPT
Linear function and slopes of a line
PPT
Circles
Straight-Line-Graphs-Final -2.pptx
48 circle part 1 of 2
Alg2 lesson 6-6
Bresenham's line algo.
pairs of linear equation in two variable
1475050 634780970474440000
X and Y Interceptsssssssssssssssssss.pdf
X and Y Interceptsssssssssssssssssss.ppt
How to graph the X and Y Intercepts..ppt
Alg2 lesson 6-1
CIRCLES.pptx
Linear equation in two variable
Linear equations 2-2 a graphing and x-y intercepts
Algeopordy
Conic Sections
Factoring polynomials
1538 graphs &amp; linear equations
Linear function and slopes of a line
Circles

More from ste ve (20)

PDF
March 19 Quadratic Test Review
PDF
March 19 Trig Review
PDF
March 19 Trig With 2 Triangles
PDF
March 17 Chequebook Recod
PDF
March 18 Reconciliation
PDF
March 18 Radicals
PDF
March 18 Withdrawal Slips
PDF
March 18 Compound Interest
PDF
March 17 Rule Of 72
PDF
March 16 Compound Interest 2
PDF
March 12 Forms Of Lines
PDF
March 12 Discriminant
PDF
March 11 Deposit Slips
PDF
March 9 Quadratic Formula
PDF
March 9 Determing Equations
PDF
March 9 Determing Equations
PDF
March 9 Quadratic Formula
PDF
March 9 Ex 12
PDF
March 8 Compound Interest
PDF
Ambiguous Case1
March 19 Quadratic Test Review
March 19 Trig Review
March 19 Trig With 2 Triangles
March 17 Chequebook Recod
March 18 Reconciliation
March 18 Radicals
March 18 Withdrawal Slips
March 18 Compound Interest
March 17 Rule Of 72
March 16 Compound Interest 2
March 12 Forms Of Lines
March 12 Discriminant
March 11 Deposit Slips
March 9 Quadratic Formula
March 9 Determing Equations
March 9 Determing Equations
March 9 Quadratic Formula
March 9 Ex 12
March 8 Compound Interest
Ambiguous Case1

Quadratic Function Graphs2

  • 1. 11P.R.3 Analyze quadratic functions of 2 the form y = a (x – p) + q and determine the • vertex • domain and range • direction of opening • axis of symmetry · x - and y -intercepts
  • 2. Vertex y = 67(x-3)2-6 v: (3,-6) y = -3 (x + 2) 2 + 10 v: (-2, 10) y = (x + 67) 2 - 18 v: (-67, -18)
  • 3. Domain and Range 2 y = 3(x+4) + 6 Domain = { <x< } ( , ) Range: {6 x < } [6, )
  • 4. Direction of Opening 2 y = 3(x+4) + 6 up 2+6 y = -3(x+4) down
  • 5. Axis of Symmetry y = 67(x-3)2-6 x=3
  • 6. x and y intercepts x intercept is where the line crosses the x axis, (y = 0) y intercept is where the line crosses the y axis, (x = 0)
  • 7. x intercept 2 + 27 y = -3 (x + 2) y=0 0 = -3(x + 2) 2 + 27 2 -27 = -3(x+2) -27/-3 = (x+2)2 9 = (x+2) 2 9=x+2 x intercept = 1 and -5 3 = x +2 (1,0) & (-5,0) x = 1 or -5
  • 8. y intercept 2 + 27 y = -3 (x + 2) x=0 2 + 27 y = -3(0+2) y = -3(4) + 27 y = -12 + 27 y = 15 y intercept = 15 (0,15)