This document summarizes research on quantum chaos, including the principle of uniform semiclassical condensation of Wigner functions, spectral statistics in mixed systems, and dynamical localization of chaotic eigenstates. It discusses how in the semiclassical limit, Wigner functions condense uniformly on classical invariant components. For mixed systems, the spectrum can be seen as a superposition of regular and chaotic level sequences. Localization effects can be observed if the Heisenberg time is shorter than the classical diffusion time. The document presents an analytical formula called BRB that describes the transition between Poisson and random matrix statistics. An example is given of applying this to analyze the level spacing distribution for a billiard system.