SlideShare a Scribd company logo
Querying Linked Geospatial Data with
Incomplete Information

Charalampos Nikolaou

Manolis Koubarakis

charnik@di.uoa.gr

koubarak@di.uoa.gr

Department of Informatics & Telecommunications
National and Kapodistrian, University of Athens
5th International Terra Cognita Workshop
In Conjunction with the 11th International Semantic Web Conference
Boston, USA, November 12, 2012
Outline
• Linked geospatial data (motivation)
• Querying complete geospatial information
(exact geometries)
• Querying qualitative geospatial information

• Querying incomplete geospatial information
• The RDFi framework
• Future work
2
Motivation
Linked geospatial data
1.

2.

GeoNames
http://www.geonames.org/
ontology/
LinkedGeoData
(OpenStreetMap)
http://linkedgeodata.org/

3.

Administrative geography
of Great Britain
(Ordnance Survey)
http://data.ordnancesurvey
.co.uk/.html

4.

6.

Global Administrative Areas
(GADM)
http://www.gadm.org/

7.

DBpedia
http://dbpedia.org/

Greek Administrative
Geography
http://linkedopendata.gr/

5.

Greece
http://linkedopendata.gr/

Corine Land Cover of
3
Motivation

over 9.5 million geometries
(points, linestrings, polygons)

4
Motivation (cont’d)
Exploitation
• Earth observation
– National Observatory of Athens (NOA)
• Fire monitoring and burnt scar mapping
• Risk assessment

5
Motivation (cont’d)

• Earth observation

– German Aerospace Center (DLR)
• Management of environmental disasters (oil spills, tsunamis, floods,
etc.)
• Land use and regional/urban planning

6
NOA’s representation of hotspots

(24.825668, 35.310643)

noa:hotspot1

7
NOA’s representation of hotspots (cont’d)
Representation using stRDF

noa:hotspot1 rdf:type noa:Hotspot .

noa:fire1 rdf:type noa:Fire .
noa:hotspot1 noa:correspondsTo Encoding of geometries using
noa:fire1 .
RDF literas in WKT format
(OGC standard)

noa:fire1 noa:occuredIn noa:region1 .
noa:region1 strdf:hasGeometry
"POINT(24.825668 35.310643)"^^strdf:WKT .
8
NOA’s representation of hotspots (cont’d)
Querying using stSPARQL

Find all fires and hotspots inside Rethymno
SELECT ?f ?h
WHERE {
?h rdf:type noa:Hotspot ;
noa:correspondsTo ?f .
?f rdf:type noa:Fire ;
noa:occuredIn ?r .

Greek Administrative
Geography

?r strdf:hasGeometry ?rgeo .

gag:Rethymno strdf:hasGeometry ?rethGeo .

Spatial filtering

FILTER (strdf:contains(?rethGeo, ?rgeo))
}
9
Extending the previous example
with topological information

gag:Rethymno

gag:Rethymno rdf:type gag:Perfecture .

10
Extending the previous example
with topological information

gag:Rethymno

gag:Mylopotamos

noa:region1

gag:Rethymno rdf:type gag:Perfecture .
Topology vocabulary
gag:Mylopotamos rdf:type gag:Municipalityextension of GeoSPARQL
.

gag:Rethymno geo:sfContains gag:Mylopotamos .
gag:Mylopotamos geo:sfContains noa:region1.
11
Extending the previous example with topological
information (cont’d)
Querying using GeoSPARQL

Find all fires and hotspots inside Rethymno

SELECT ?f ?h
WHERE {
?h rdf:type noa:Hotspot ;
noa:correspondsTo ?f .
?f rdf:type noa:Fire ;
noa:occuredIn ?r .

Topology vocabulary
extension of GeoSPARQL

gag:Rethymno geo:sfContains ?r .
}

12
NOA’s representation of hotspots (revisited)
Incomplete information

_region1

noa:hotspot1

noa:fire1

13
NOA’s representation of hotspots (revisited)
Representation using RDFi
noa:hotspot1 rdf:type noa:Hotspot .
noa:fire1 rdf:type noa:Fire .
noa:hotspot1 noa:correspondsTo noa:fire1 .

e-literal
noa:fire1 noa:occuredIn _region1 .

RCC-8
_region1 geo:sfWithin "POLYGON((24.81 35.32,
24.84 35.30, 24.81 35.30, 24.81
35.32));<http://spatialreference.
org/ref/epsg/4121/>"^^strdf:geometry

24.84 35.33,

Qualitative spatial constraint
14
Visualization of a certainty query

15
Certainty queries
• Find all fires that have certainly occurred inside the rectangle
defined in WKT as POLYGON((24.79 35.34, 24.85 35.34, 24.85
35.29, 24.79 35.29, 24.79 35.34))
New (modal) operator

CERTAIN SELECT ?F
WHERE {

New topological operator

?F rdf:type noa:Fire ;
noa:occuredIn ?R .
FILTER(geof:sfWithin(?R, "POLYGON((24.79 35.34, 24.85
35.34, 24.85 35.29, 24.79 35.29, 24.79 35.34))"))
}
16
Extending the previous example
with topological information
gag:Mylopotamos

gag:Rethymno

POLYGON((24.81 35.32 ...))

_region1

noa:fire1

gag:Rethymno rdf:type gag:Perfecture .

gag:Mylopotamos rdf:type gag:Municipality .
gag:Mylopotamos geo:sfWithin gag:Rethymno .
_region1 geo:sfWithin "POLYGON((24.81 35.32...))"^^strdf:WKT

17
Extending the previous example
with topological information
gag:Mylopotamos

gag:Rethymno

POLYGON((24.81 35.32 ...))

_region1

noa:fire1

Beyond stSPARQL and
the topology vocabulary
extension of GeoSPARQL

gag:Rethymno rdf:type gag:Perfecture .

gag:Mylopotamos rdf:type gag:Municipality .
gag:Mylopotamos geo:sfWithin gag:Rethymno .
_region1 geo:sfWithin "POLYGON((24.81 35.32...))"^^strdf:WKT

18
Certainty queries
Find all fires that have certainly occurred inside Rethymno

CERTAIN SELECT ?F
WHERE {
?F rdf:type noa:Fire ;

noa:occuredIn ?R .
FILTER(geof:sfWithin(?R, gag:Rethymno))
}

19
Computing the answer
gag:Mylopotamos geo:sfWithin gag:Rethymno .
gag:Mylopatamos strdf:hasGeometry "POLYGON((<M>))"^^strdf:WKT .
gag:Rethymno strdf:hasGeometry "POLYGON((<R>))"^^strdf:WKT .
_region1 geo:sfWithin "POLYGON((<H>))"^^strdf:WKT

D
A
T
A
B
A
S
E

strdf:Inside("POLYGON((<H>))", "POLYGON((<M>))")
"POLYGON((<H>))" geo:sfWithin "POLYGON((<M>))"

_region1 geo:sfWithin "POLYGON((<H>))"
_region1 geo:sfWithin gag:Mylopotamos

gag:Mylopotamos geo:sfWithin gag:Rethymno
_region1 geo:sfWithin gag:Rethymno

Geometry for
Mylopotamos
Geometry for
Rethymno
Geometry for
Hotspot
Vocabulary
translation

Qualitative
spatial reasoning

Combined
algorithm
20
Computing the answer
gag:Mylopotamos geo:sfWithin gag:Rethymno .
gag:Mylopatamos strdf:hasGeometry "POLYGON((<M>))"^^strdf:WKT .
gag:Rethymno strdf:hasGeometry "POLYGON((<R>))"^^strdf:WKT .
_region1 geo:sfWithin "POLYGON((<H>))"^^strdf:WKT

D
A
T
A
B
A
S
E

strdf:Inside("POLYGON((<H>))", "POLYGON((<M>))")
"POLYGON((<H>))" geo:sfWithin "POLYGON((<M>))"

_region1 geo:sfWithin "POLYGON((<H>))"
_region1 geo:sfWithin gag:Mylopotamos

gag:Mylopotamos geo:sfWithin gag:Rethymno
_region1 geo:sfWithin gag:Rethymno

Geometry for
Mylopotamos
Geometry for
Rethymno
Geometry for
Hotspot
Vocabulary
translation

Qualitative
spatial reasoning

Combined
algorithm
21
Computing the answer
gag:Mylopotamos geo:sfWithin gag:Rethymno .
gag:Mylopatamos strdf:hasGeometry "POLYGON((<M>))"^^strdf:WKT .
gag:Rethymno strdf:hasGeometry "POLYGON((<R>))"^^strdf:WKT .
_region1 geo:sfWithin "POLYGON((<H>))"^^strdf:WKT

D
A
T
A
B
A
S
E

strdf:Inside("POLYGON((<H>))", "POLYGON((<M>))")
"POLYGON((<H>))" geo:sfWithin "POLYGON((<M>))"

_region1 geo:sfWithin "POLYGON((<H>))"
_region1 geo:sfWithin gag:Mylopotamos

gag:Mylopotamos geo:sfWithin gag:Rethymno
_region1 geo:sfWithin gag:Rethymno

Geometry for
Mylopotamos
Geometry for
Rethymno
Geometry for
Hotspot
Vocabulary
translation

Qualitative
spatial reasoning

Combined
algorithm
22
Computing the answer
gag:Mylopotamos geo:sfWithin gag:Rethymno .
gag:Mylopatamos strdf:hasGeometry "POLYGON((<M>))"^^strdf:WKT .
gag:Rethymno strdf:hasGeometry "POLYGON((<R>))"^^strdf:WKT .
_region1 geo:sfWithin "POLYGON((<H>))"^^strdf:WKT

D
A
T
A
B
A
S
E

strdf:Inside("POLYGON((<H>))", "POLYGON((<M>))")
"POLYGON((<H>))" geo:sfWithin "POLYGON((<M>))"

_region1 geo:sfWithin "POLYGON((<H>))"
_region1 geo:sfWithin gag:Mylopotamos

gag:Mylopotamos geo:sfWithin gag:Rethymno
_region1 geo:sfWithin gag:Rethymno

Geometry for
Mylopotamos
Geometry for
Rethymno
Geometry for
Hotspot
Vocabulary
translation

Qualitative
spatial reasoning

Combined
algorithm
23
The Framework RDFi
• Extension of RDF with incomplete information
• New kind of literals (e-literals) for each datatype
– Property values that exist but are unknown or partially known

• Partial knowledge: captured by constraints
(appropriate constraint language L)

• RDF graphs extended to RDFi databases: pair (G, φ)
G: RDF graph with e-literals
φ: quantifier-free formula of L

Charalampos Nikolaou and Manolis Koubarakis
Incomplete Information in RDF
arXiv:1209.3756v2 [cs.DB] 18 Sep 2012
http://arxiv.org/pdf/1209.3756v2.pdf
RDFi Semantics
hotspot1 type Hotspot .
fire1 type Fire .
hotspot1 correspondsTo fire1 .
fire1 occuredIn _region1 .

_region1 geo:sfWithin "x≥6∧x≤23∧y≥8∧y≤19"

corresponds to
{ G1, G2 G3, G4, ... }
}
1
2, 3
hotspot1 type Hotspot .
fire1 type Fire .
hotspot1 correspondsTo fire1 .
"x≥8∧x≤14∧y≥10∧y≤18"
"x≥10∧x≤21∧y≥10∧y≤15"
"x≥9∧x≤14∧y≥10∧y≤18"
fire1 occuredIn "x≥7∧x≤13∧y≥9∧y≤18"

.

set of RDF graphs
(possible worlds)
Certain answers
CERTAIN SELECT ?F
WHERE {
?F rdf:type noa:Fire ;
noa:occuredIn ?R .

FILTER(geof:sfWithin(?R,
"x≥2∧x≤28∧y≥4∧y≤22"))
}

Cert(q) = q(G1) ⋂ q(G2) ⋂ q(G3) ⋂ q(G4) ⋂ ...
Certain answers
CERTAIN SELECT ?F
WHERE {
?F rdf:type noa:Fire ;
noa:occuredIn ?R .

FILTER(geof:sfWithin(?R,
"x≥2∧x≤28∧y≥4∧y≤22"))
}

How the certain answer
is computed?
Cert(q) = q(G1) ⋂ q(G2) ⋂ q(G3) ⋂ q(G4) ⋂ ...
The Framework RDFi (cont’d)
•

Formal semantics for RDFi and SPARQL query evaluation

•

Representation Systems:
– CONSTRUCT with AUF graph patterns
– CONSTRUCT with well-designed graph patterns

•

Certain Answer: semantics, algorithms, computational complexity
when L is a language of spatial topological constraints

•

Implementation in the system Strabon has started with L being PCL
(topological constraints between variables and polygon constants)
Future work
•

How do we implement querying with topological relations in RDF
stores for stSPARQL/GeoSPARQL?

•

How do we implement certainty queries for RDFi?

•

DL reasoners with RCC-8 support offer topological reasoning
already (implementing a path-consistency algorithm)

– RacerPro

[Möller et al.], [Wessel-Möller, JAPLL’09]

– PelletSpatial [Stocker-Sirin, OWLED’09]

•

RDFi goes beyond
– Reason about qualitative and quantitative geospatial information
– Can be used in other application domains (e.g., temporal)
Thank you for your attention!
Questions?
References
[Weiming Liu et al.]
Weiming Liu, Sheng-sheng Wang, Sanjiang Li, Dayou Liu: Solving
Qualitative Constraints Involving Landmarks. CP 2011:523-537

[Wessel-Möller, JAPLL’09]
Michael Wessel, Ralf Möller: Flexible software architectures for
ontology-based information systems. J. Applied Logic (JAPLL)
7(1):75-99 (2009)

[Stocker-Sirin, OWLED‘09]
Markus Stocker, Evren Sirin: PelletSpatial: A Hybrid RCC-8 and
RDF/OWL Reasoning and Query Engine. OWLED 2009

More Related Content

PDF
Learning Commonalities in RDF
PDF
Gradoop: Scalable Graph Analytics with Apache Flink @ Flink & Neo4j Meetup Be...
PDF
Report on the Crawl and Harvest of the Whole Australian Web ...
PDF
Interactive Knowledge Discovery over Web of Data.
PPTX
Opening and Integration of CASDD and Germplasm Data to AGRIS by Prof. Xuefu Z...
PDF
Distributed Graph Analytics with Gradoop
PDF
Framester: A Wide Coverage Linguistic Linked Data Hub
PDF
Gradoop: Scalable Graph Analytics with Apache Flink @ FOSDEM 2016
Learning Commonalities in RDF
Gradoop: Scalable Graph Analytics with Apache Flink @ Flink & Neo4j Meetup Be...
Report on the Crawl and Harvest of the Whole Australian Web ...
Interactive Knowledge Discovery over Web of Data.
Opening and Integration of CASDD and Germplasm Data to AGRIS by Prof. Xuefu Z...
Distributed Graph Analytics with Gradoop
Framester: A Wide Coverage Linguistic Linked Data Hub
Gradoop: Scalable Graph Analytics with Apache Flink @ FOSDEM 2016

What's hot (6)

PDF
Improving Authenticated Dynamic Dictionaries, with Application to Cryptocurre...
PDF
RSP-QL*: Querying Data-Level Annotations in RDF Streams
PPTX
Optimized index structures for querying rdf from the web
PDF
Creating Open Data with Open Source (beta2)
PDF
An Introduction to Mapping, GIS and Spatial Modelling in R (presentation)
PDF
Comparing Vocabularies for Representing Geographical Features and Their Geometry
Improving Authenticated Dynamic Dictionaries, with Application to Cryptocurre...
RSP-QL*: Querying Data-Level Annotations in RDF Streams
Optimized index structures for querying rdf from the web
Creating Open Data with Open Source (beta2)
An Introduction to Mapping, GIS and Spatial Modelling in R (presentation)
Comparing Vocabularies for Representing Geographical Features and Their Geometry
Ad

Viewers also liked (16)

PPTX
Studiu de caz Be Cool by Napoca Rally Academy
PPTX
Visualizing and Exploring Linked Spatiotemporal Data using Sextant
PPTX
Content Marketing by Sports Net Management 2015
PDF
R S Tour & Travel
PDF
Incomplete Information in RDF
PDF
Business flyer press kit (long)
PDF
Flyer_Veranderpraktijk_20152
PPTX
Viziune Sports Net Management
PPT
Conte Presentation (ppt)
PPT
PPTX
Prezentare Content Marketing by Sports Net Management 2016
PPTX
Querying Incomplete Geospatial Information in RDF
PPTX
Cpd presentation
PPTX
SQA - chapter 13 (Software Quality Infrastructure)
PPT
Хавтгайн дүрслэлийн элементүүд
PPTX
Allan schoenfeld resolución de problemas
Studiu de caz Be Cool by Napoca Rally Academy
Visualizing and Exploring Linked Spatiotemporal Data using Sextant
Content Marketing by Sports Net Management 2015
R S Tour & Travel
Incomplete Information in RDF
Business flyer press kit (long)
Flyer_Veranderpraktijk_20152
Viziune Sports Net Management
Conte Presentation (ppt)
Prezentare Content Marketing by Sports Net Management 2016
Querying Incomplete Geospatial Information in RDF
Cpd presentation
SQA - chapter 13 (Software Quality Infrastructure)
Хавтгайн дүрслэлийн элементүүд
Allan schoenfeld resolución de problemas
Ad

Similar to Querying Linked Geospatial Data with Incomplete Information (20)

PPTX
Geographica: A Benchmark for Geospatial RDF Stores
PDF
BigDataEurope 1st SC5 Workshop, Project Teleios & LEO, by M. Koubarakis, Univ...
PPTX
SexTant: Visualizing Time-Evolving Linked Geospatial Data
PDF
publishing-ign-data
PDF
Geographica: A Benchmark for Geospatial RDF Stores - ISWC 2013
PPTX
Wi2015 - Clustering of Linked Open Data - the LODeX tool
PPTX
The agINFRA Linked Data layer
PPTX
The agINFRA Linked Data layer by Valeria Pesce, Giovanni l'Abate, Luca Mattei...
PDF
Representing and Querying Geospatial Information in the Semantic Web
PDF
RDF4U: RDF Graph Visualization by Interpreting Linked Data as Knowledge
PDF
RDF4U: RDF Graph Visualization by Interpreting Linked Data as Knowledge
PDF
Challenge@RuleML2015 Modeling Object-Relational Geolocation Knowledge in PSOA...
PPTX
Connecting Stream Reasoners on the Web
PDF
Mapping Lo Dto Proton Revised [Compatibility Mode]
PDF
Linked Data, Ontologies and Inference
PPTX
Big linked geospatial data tools in ExtremeEarth-phiweek19
PDF
Toward Next Generation of Gazetteer: Utilizing GeoSPARQL For Developing Link...
PDF
Revisiting the Representation of and Need for Raw Geometries on the Linked Da...
PPTX
LiveLinkedData - TransWebData - Nantes 2013
PPTX
Furore devdays 2017- rdf1(solbrig)
Geographica: A Benchmark for Geospatial RDF Stores
BigDataEurope 1st SC5 Workshop, Project Teleios & LEO, by M. Koubarakis, Univ...
SexTant: Visualizing Time-Evolving Linked Geospatial Data
publishing-ign-data
Geographica: A Benchmark for Geospatial RDF Stores - ISWC 2013
Wi2015 - Clustering of Linked Open Data - the LODeX tool
The agINFRA Linked Data layer
The agINFRA Linked Data layer by Valeria Pesce, Giovanni l'Abate, Luca Mattei...
Representing and Querying Geospatial Information in the Semantic Web
RDF4U: RDF Graph Visualization by Interpreting Linked Data as Knowledge
RDF4U: RDF Graph Visualization by Interpreting Linked Data as Knowledge
Challenge@RuleML2015 Modeling Object-Relational Geolocation Knowledge in PSOA...
Connecting Stream Reasoners on the Web
Mapping Lo Dto Proton Revised [Compatibility Mode]
Linked Data, Ontologies and Inference
Big linked geospatial data tools in ExtremeEarth-phiweek19
Toward Next Generation of Gazetteer: Utilizing GeoSPARQL For Developing Link...
Revisiting the Representation of and Need for Raw Geometries on the Linked Da...
LiveLinkedData - TransWebData - Nantes 2013
Furore devdays 2017- rdf1(solbrig)

Recently uploaded (20)

PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
Computing-Curriculum for Schools in Ghana
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Presentation on HIE in infants and its manifestations
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Institutional Correction lecture only . . .
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Lesson notes of climatology university.
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Computing-Curriculum for Schools in Ghana
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Presentation on HIE in infants and its manifestations
Chinmaya Tiranga quiz Grand Finale.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Cell Structure & Organelles in detailed.
O7-L3 Supply Chain Operations - ICLT Program
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
VCE English Exam - Section C Student Revision Booklet
Anesthesia in Laparoscopic Surgery in India
Institutional Correction lecture only . . .
STATICS OF THE RIGID BODIES Hibbelers.pdf
Lesson notes of climatology university.
A systematic review of self-coping strategies used by university students to ...
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
human mycosis Human fungal infections are called human mycosis..pptx

Querying Linked Geospatial Data with Incomplete Information

  • 1. Querying Linked Geospatial Data with Incomplete Information Charalampos Nikolaou Manolis Koubarakis charnik@di.uoa.gr koubarak@di.uoa.gr Department of Informatics & Telecommunications National and Kapodistrian, University of Athens 5th International Terra Cognita Workshop In Conjunction with the 11th International Semantic Web Conference Boston, USA, November 12, 2012
  • 2. Outline • Linked geospatial data (motivation) • Querying complete geospatial information (exact geometries) • Querying qualitative geospatial information • Querying incomplete geospatial information • The RDFi framework • Future work 2
  • 3. Motivation Linked geospatial data 1. 2. GeoNames http://www.geonames.org/ ontology/ LinkedGeoData (OpenStreetMap) http://linkedgeodata.org/ 3. Administrative geography of Great Britain (Ordnance Survey) http://data.ordnancesurvey .co.uk/.html 4. 6. Global Administrative Areas (GADM) http://www.gadm.org/ 7. DBpedia http://dbpedia.org/ Greek Administrative Geography http://linkedopendata.gr/ 5. Greece http://linkedopendata.gr/ Corine Land Cover of 3
  • 4. Motivation over 9.5 million geometries (points, linestrings, polygons) 4
  • 5. Motivation (cont’d) Exploitation • Earth observation – National Observatory of Athens (NOA) • Fire monitoring and burnt scar mapping • Risk assessment 5
  • 6. Motivation (cont’d) • Earth observation – German Aerospace Center (DLR) • Management of environmental disasters (oil spills, tsunamis, floods, etc.) • Land use and regional/urban planning 6
  • 7. NOA’s representation of hotspots (24.825668, 35.310643) noa:hotspot1 7
  • 8. NOA’s representation of hotspots (cont’d) Representation using stRDF noa:hotspot1 rdf:type noa:Hotspot . noa:fire1 rdf:type noa:Fire . noa:hotspot1 noa:correspondsTo Encoding of geometries using noa:fire1 . RDF literas in WKT format (OGC standard) noa:fire1 noa:occuredIn noa:region1 . noa:region1 strdf:hasGeometry "POINT(24.825668 35.310643)"^^strdf:WKT . 8
  • 9. NOA’s representation of hotspots (cont’d) Querying using stSPARQL Find all fires and hotspots inside Rethymno SELECT ?f ?h WHERE { ?h rdf:type noa:Hotspot ; noa:correspondsTo ?f . ?f rdf:type noa:Fire ; noa:occuredIn ?r . Greek Administrative Geography ?r strdf:hasGeometry ?rgeo . gag:Rethymno strdf:hasGeometry ?rethGeo . Spatial filtering FILTER (strdf:contains(?rethGeo, ?rgeo)) } 9
  • 10. Extending the previous example with topological information gag:Rethymno gag:Rethymno rdf:type gag:Perfecture . 10
  • 11. Extending the previous example with topological information gag:Rethymno gag:Mylopotamos noa:region1 gag:Rethymno rdf:type gag:Perfecture . Topology vocabulary gag:Mylopotamos rdf:type gag:Municipalityextension of GeoSPARQL . gag:Rethymno geo:sfContains gag:Mylopotamos . gag:Mylopotamos geo:sfContains noa:region1. 11
  • 12. Extending the previous example with topological information (cont’d) Querying using GeoSPARQL Find all fires and hotspots inside Rethymno SELECT ?f ?h WHERE { ?h rdf:type noa:Hotspot ; noa:correspondsTo ?f . ?f rdf:type noa:Fire ; noa:occuredIn ?r . Topology vocabulary extension of GeoSPARQL gag:Rethymno geo:sfContains ?r . } 12
  • 13. NOA’s representation of hotspots (revisited) Incomplete information _region1 noa:hotspot1 noa:fire1 13
  • 14. NOA’s representation of hotspots (revisited) Representation using RDFi noa:hotspot1 rdf:type noa:Hotspot . noa:fire1 rdf:type noa:Fire . noa:hotspot1 noa:correspondsTo noa:fire1 . e-literal noa:fire1 noa:occuredIn _region1 . RCC-8 _region1 geo:sfWithin "POLYGON((24.81 35.32, 24.84 35.30, 24.81 35.30, 24.81 35.32));<http://spatialreference. org/ref/epsg/4121/>"^^strdf:geometry 24.84 35.33, Qualitative spatial constraint 14
  • 15. Visualization of a certainty query 15
  • 16. Certainty queries • Find all fires that have certainly occurred inside the rectangle defined in WKT as POLYGON((24.79 35.34, 24.85 35.34, 24.85 35.29, 24.79 35.29, 24.79 35.34)) New (modal) operator CERTAIN SELECT ?F WHERE { New topological operator ?F rdf:type noa:Fire ; noa:occuredIn ?R . FILTER(geof:sfWithin(?R, "POLYGON((24.79 35.34, 24.85 35.34, 24.85 35.29, 24.79 35.29, 24.79 35.34))")) } 16
  • 17. Extending the previous example with topological information gag:Mylopotamos gag:Rethymno POLYGON((24.81 35.32 ...)) _region1 noa:fire1 gag:Rethymno rdf:type gag:Perfecture . gag:Mylopotamos rdf:type gag:Municipality . gag:Mylopotamos geo:sfWithin gag:Rethymno . _region1 geo:sfWithin "POLYGON((24.81 35.32...))"^^strdf:WKT 17
  • 18. Extending the previous example with topological information gag:Mylopotamos gag:Rethymno POLYGON((24.81 35.32 ...)) _region1 noa:fire1 Beyond stSPARQL and the topology vocabulary extension of GeoSPARQL gag:Rethymno rdf:type gag:Perfecture . gag:Mylopotamos rdf:type gag:Municipality . gag:Mylopotamos geo:sfWithin gag:Rethymno . _region1 geo:sfWithin "POLYGON((24.81 35.32...))"^^strdf:WKT 18
  • 19. Certainty queries Find all fires that have certainly occurred inside Rethymno CERTAIN SELECT ?F WHERE { ?F rdf:type noa:Fire ; noa:occuredIn ?R . FILTER(geof:sfWithin(?R, gag:Rethymno)) } 19
  • 20. Computing the answer gag:Mylopotamos geo:sfWithin gag:Rethymno . gag:Mylopatamos strdf:hasGeometry "POLYGON((<M>))"^^strdf:WKT . gag:Rethymno strdf:hasGeometry "POLYGON((<R>))"^^strdf:WKT . _region1 geo:sfWithin "POLYGON((<H>))"^^strdf:WKT D A T A B A S E strdf:Inside("POLYGON((<H>))", "POLYGON((<M>))") "POLYGON((<H>))" geo:sfWithin "POLYGON((<M>))" _region1 geo:sfWithin "POLYGON((<H>))" _region1 geo:sfWithin gag:Mylopotamos gag:Mylopotamos geo:sfWithin gag:Rethymno _region1 geo:sfWithin gag:Rethymno Geometry for Mylopotamos Geometry for Rethymno Geometry for Hotspot Vocabulary translation Qualitative spatial reasoning Combined algorithm 20
  • 21. Computing the answer gag:Mylopotamos geo:sfWithin gag:Rethymno . gag:Mylopatamos strdf:hasGeometry "POLYGON((<M>))"^^strdf:WKT . gag:Rethymno strdf:hasGeometry "POLYGON((<R>))"^^strdf:WKT . _region1 geo:sfWithin "POLYGON((<H>))"^^strdf:WKT D A T A B A S E strdf:Inside("POLYGON((<H>))", "POLYGON((<M>))") "POLYGON((<H>))" geo:sfWithin "POLYGON((<M>))" _region1 geo:sfWithin "POLYGON((<H>))" _region1 geo:sfWithin gag:Mylopotamos gag:Mylopotamos geo:sfWithin gag:Rethymno _region1 geo:sfWithin gag:Rethymno Geometry for Mylopotamos Geometry for Rethymno Geometry for Hotspot Vocabulary translation Qualitative spatial reasoning Combined algorithm 21
  • 22. Computing the answer gag:Mylopotamos geo:sfWithin gag:Rethymno . gag:Mylopatamos strdf:hasGeometry "POLYGON((<M>))"^^strdf:WKT . gag:Rethymno strdf:hasGeometry "POLYGON((<R>))"^^strdf:WKT . _region1 geo:sfWithin "POLYGON((<H>))"^^strdf:WKT D A T A B A S E strdf:Inside("POLYGON((<H>))", "POLYGON((<M>))") "POLYGON((<H>))" geo:sfWithin "POLYGON((<M>))" _region1 geo:sfWithin "POLYGON((<H>))" _region1 geo:sfWithin gag:Mylopotamos gag:Mylopotamos geo:sfWithin gag:Rethymno _region1 geo:sfWithin gag:Rethymno Geometry for Mylopotamos Geometry for Rethymno Geometry for Hotspot Vocabulary translation Qualitative spatial reasoning Combined algorithm 22
  • 23. Computing the answer gag:Mylopotamos geo:sfWithin gag:Rethymno . gag:Mylopatamos strdf:hasGeometry "POLYGON((<M>))"^^strdf:WKT . gag:Rethymno strdf:hasGeometry "POLYGON((<R>))"^^strdf:WKT . _region1 geo:sfWithin "POLYGON((<H>))"^^strdf:WKT D A T A B A S E strdf:Inside("POLYGON((<H>))", "POLYGON((<M>))") "POLYGON((<H>))" geo:sfWithin "POLYGON((<M>))" _region1 geo:sfWithin "POLYGON((<H>))" _region1 geo:sfWithin gag:Mylopotamos gag:Mylopotamos geo:sfWithin gag:Rethymno _region1 geo:sfWithin gag:Rethymno Geometry for Mylopotamos Geometry for Rethymno Geometry for Hotspot Vocabulary translation Qualitative spatial reasoning Combined algorithm 23
  • 24. The Framework RDFi • Extension of RDF with incomplete information • New kind of literals (e-literals) for each datatype – Property values that exist but are unknown or partially known • Partial knowledge: captured by constraints (appropriate constraint language L) • RDF graphs extended to RDFi databases: pair (G, φ) G: RDF graph with e-literals φ: quantifier-free formula of L Charalampos Nikolaou and Manolis Koubarakis Incomplete Information in RDF arXiv:1209.3756v2 [cs.DB] 18 Sep 2012 http://arxiv.org/pdf/1209.3756v2.pdf
  • 25. RDFi Semantics hotspot1 type Hotspot . fire1 type Fire . hotspot1 correspondsTo fire1 . fire1 occuredIn _region1 . _region1 geo:sfWithin "x≥6∧x≤23∧y≥8∧y≤19" corresponds to { G1, G2 G3, G4, ... } } 1 2, 3 hotspot1 type Hotspot . fire1 type Fire . hotspot1 correspondsTo fire1 . "x≥8∧x≤14∧y≥10∧y≤18" "x≥10∧x≤21∧y≥10∧y≤15" "x≥9∧x≤14∧y≥10∧y≤18" fire1 occuredIn "x≥7∧x≤13∧y≥9∧y≤18" . set of RDF graphs (possible worlds)
  • 26. Certain answers CERTAIN SELECT ?F WHERE { ?F rdf:type noa:Fire ; noa:occuredIn ?R . FILTER(geof:sfWithin(?R, "x≥2∧x≤28∧y≥4∧y≤22")) } Cert(q) = q(G1) ⋂ q(G2) ⋂ q(G3) ⋂ q(G4) ⋂ ...
  • 27. Certain answers CERTAIN SELECT ?F WHERE { ?F rdf:type noa:Fire ; noa:occuredIn ?R . FILTER(geof:sfWithin(?R, "x≥2∧x≤28∧y≥4∧y≤22")) } How the certain answer is computed? Cert(q) = q(G1) ⋂ q(G2) ⋂ q(G3) ⋂ q(G4) ⋂ ...
  • 28. The Framework RDFi (cont’d) • Formal semantics for RDFi and SPARQL query evaluation • Representation Systems: – CONSTRUCT with AUF graph patterns – CONSTRUCT with well-designed graph patterns • Certain Answer: semantics, algorithms, computational complexity when L is a language of spatial topological constraints • Implementation in the system Strabon has started with L being PCL (topological constraints between variables and polygon constants)
  • 29. Future work • How do we implement querying with topological relations in RDF stores for stSPARQL/GeoSPARQL? • How do we implement certainty queries for RDFi? • DL reasoners with RCC-8 support offer topological reasoning already (implementing a path-consistency algorithm) – RacerPro [Möller et al.], [Wessel-Möller, JAPLL’09] – PelletSpatial [Stocker-Sirin, OWLED’09] • RDFi goes beyond – Reason about qualitative and quantitative geospatial information – Can be used in other application domains (e.g., temporal)
  • 30. Thank you for your attention! Questions?
  • 31. References [Weiming Liu et al.] Weiming Liu, Sheng-sheng Wang, Sanjiang Li, Dayou Liu: Solving Qualitative Constraints Involving Landmarks. CP 2011:523-537 [Wessel-Möller, JAPLL’09] Michael Wessel, Ralf Möller: Flexible software architectures for ontology-based information systems. J. Applied Logic (JAPLL) 7(1):75-99 (2009) [Stocker-Sirin, OWLED‘09] Markus Stocker, Evren Sirin: PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and Query Engine. OWLED 2009