This document provides an introduction to queueing theory. It discusses key concepts such as random variables, probability distributions, performance measures, Little's law and the PASTA property. It then examines several common queueing models including the M/M/1, M/M/c, M/Er/1, M/G/1 and G/M/1 queues. For each model it derives the equilibrium distribution and discusses measures like mean queue length and waiting time. The goal is to provide the fundamental mathematical techniques for analyzing queueing systems.