SlideShare a Scribd company logo
Mergesort and Quicksort
Chapter 8
Kruse and Ryba
Sorting algorithms
• Insertion, selection and bubble sort have
quadratic worst-case performance
• The faster comparison based algorithm ?
O(nlogn)
• Mergesort and Quicksort
Merge Sort
• Apply divide-and-conquer to sorting problem
• Problem: Given n elements, sort elements into
non-decreasing order
• Divide-and-Conquer:
– If n=1 terminate (every one-element list is already
sorted)
– If n>1, partition elements into two or more sub-
collections; sort each; combine into a single sorted list
• How do we partition?
Partitioning - Choice 1
• First n-1 elements into set A, last element set B
• Sort A using this partitioning scheme recursively
– B already sorted
• Combine A and B using method Insert() (= insertion
into sorted array)
• Leads to recursive version of InsertionSort()
– Number of comparisons: O(n2)
• Best case = n-1
• Worst case = 2
)
1
(
2




n
n
i
c
n
i
Partitioning - Choice 2
• Put element with largest key in B, remaining elements
in A
• Sort A recursively
• To combine sorted A and B, append B to sorted A
– Use Max() to find largest element  recursive
SelectionSort()
– Use bubbling process to find and move largest element to
right-most position  recursive BubbleSort()
• All O(n2)
Partitioning - Choice 3
• Let’s try to achieve balanced partitioning
• A gets n/2 elements, B gets rest half
• Sort A and B recursively
• Combine sorted A and B using a process
called merge, which combines two sorted
lists into one
– How? We will see soon
Example
• Partition into lists of size n/2
[10, 4, 6, 3]
[10, 4, 6, 3, 8, 2, 5, 7]
[8, 2, 5, 7]
[10, 4] [6, 3] [8, 2] [5, 7]
[4] [10] [3][6] [2][8] [5][7]
Example Cont’d
• Merge
[3, 4, 6, 10]
[2, 3, 4, 5, 6, 7, 8, 10 ]
[2, 5, 7, 8]
[4, 10] [3, 6] [2, 8] [5, 7]
[4] [10] [3][6] [2][8] [5][7]
Static Method mergeSort()
Public static void mergeSort(Comparable []a, int left,
int right)
{
// sort a[left:right]
if (left < right)
{// at least two elements
int mid = (left+right)/2; //midpoint
mergeSort(a, left, mid);
mergeSort(a, mid + 1, right);
merge(a, b, left, mid, right); //merge from a to b
copy(b, a, left, right); //copy result back to a
}
}
Merge Function
Evaluation
• Recurrence equation:
• Assume n is a power of 2
c1 if n=1
T(n) =
2T(n/2) + c2n if n>1, n=2k
Solution
By Substitution:
T(n) = 2T(n/2) + c2n
T(n/2) = 2T(n/4) + c2n/2
T(n) = 4T(n/4) + 2 c2n
T(n) = 8T(n/8) + 3 c2n
T(n) = 2iT(n/2i) + ic2n
Assuming n = 2k, expansion halts when we get T(1) on right side;
this happens when i=k T(n) = 2kT(1) + kc2n
Since 2k=n, we know k=logn; since T(1) = c1, we get
T(n) = c1n + c2nlogn;
thus an upper bound for TmergeSort(n) is O(nlogn)
Quicksort Algorithm
Given an array of n elements (e.g., integers):
• If array only contains one element, return
• Else
– pick one element to use as pivot.
– Partition elements into two sub-arrays:
• Elements less than or equal to pivot
• Elements greater than pivot
– Quicksort two sub-arrays
– Return results
Example
We are given array of n integers to sort:
40 20 10 80 60 50 7 30 100
Pick Pivot Element
There are a number of ways to pick the pivot element. In this
example, we will use the first element in the array:
40 20 10 80 60 50 7 30 100
Partitioning Array
Given a pivot, partition the elements of the array
such that the resulting array consists of:
1. One sub-array that contains elements >= pivot
2. Another sub-array that contains elements < pivot
The sub-arrays are stored in the original data array.
Partitioning loops through, swapping elements
below/above pivot.
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
40 20 10 80 60 50 7 30 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
40 20 10 30 7 50 60 80 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
7 20 10 30 40 50 60 80 100
pivot_index = 4
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
Partition Result
7 20 10 30 40 50 60 80 100
[0] [1] [2] [3] [4] [5] [6] [7] [8]
<= data[pivot] > data[pivot]
Recursion: Quicksort Sub-arrays
7 20 10 30 40 50 60 80 100
[0] [1] [2] [3] [4] [5] [6] [7] [8]
<= data[pivot] > data[pivot]
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
– Depth of recursion tree?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
– Depth of recursion tree? O(log2n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
– Depth of recursion tree? O(log2n)
– Number of accesses in partition?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• What is best case running time?
– Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
– Depth of recursion tree? O(log2n)
– Number of accesses in partition? O(n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
Quicksort: Worst Case
• Assume first element is chosen as pivot.
• Assume we get array that is already in
order:
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100
pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
> data[pivot]
<= data[pivot]
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
– Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
2. Quicksort each sub-array
– Depth of recursion tree?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
– Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
2. Quicksort each sub-array
– Depth of recursion tree? O(n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
– Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
2. Quicksort each sub-array
– Depth of recursion tree? O(n)
– Number of accesses per partition?
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time?
– Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
2. Quicksort each sub-array
– Depth of recursion tree? O(n)
– Number of accesses per partition? O(n)
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time: O(n2)!!!
Quicksort Analysis
• Assume that keys are random, uniformly
distributed.
• Best case running time: O(n log2n)
• Worst case running time: O(n2)!!!
• What can we do to avoid worst case?
Improved Pivot Selection
Pick median value of three elements from data array:
data[0], data[n/2], and data[n-1].
Use this median value as pivot.
Improving Performance of
Quicksort
• Improved selection of pivot.
• For sub-arrays of size 3 or less, apply brute
force search:
– Sub-array of size 1: trivial
– Sub-array of size 2:
• if(data[first] > data[second]) swap them
– Sub-array of size 3: left as an exercise.

More Related Content

PPT
3.8 quicksort 04
PPT
Quick Sort- Marge Sort.ppt
PPT
quick_sort.ppt
PPTX
Quicksort algorithm
PPT
Quicksort
PPTX
Sorting techniques
PPT
Quicksort
PPTX
Unit 5 internal sorting &amp; files
3.8 quicksort 04
Quick Sort- Marge Sort.ppt
quick_sort.ppt
Quicksort algorithm
Quicksort
Sorting techniques
Quicksort
Unit 5 internal sorting &amp; files

Similar to Quick & Merge Sort.ppt (20)

PPT
Merge sort and Quick sort
PPT
Quick sort
PPT
Array 2
PPTX
Array ADT(Abstract Data Type)|Data Structure
PPT
Sorting
PPTX
Data Structures_Searching and Sorting.pptx
PPTX
Arrays
PPT
Data Structure Sorting
PDF
Chapter 8 advanced sorting and hashing for print
PPT
Insert Sort & Merge Sort Using C Programming
PPT
search_sort_v1.pptgghghhhggggjjjjjjllllllllvbbbbbcfdsdfffg
PPT
search_sort search_sortsearch_sort search_sortsearch_sortsearch_sortsearch_sort
PPT
search_sort Search sortSearch sortSearch sortSearch sort
PPTX
07+08slide.pptx
PPTX
Introduction to Algorithms
PDF
Slides ads ia
PPT
Data Structure and Algorithms Arrays
PDF
IA-advanced-R
Merge sort and Quick sort
Quick sort
Array 2
Array ADT(Abstract Data Type)|Data Structure
Sorting
Data Structures_Searching and Sorting.pptx
Arrays
Data Structure Sorting
Chapter 8 advanced sorting and hashing for print
Insert Sort & Merge Sort Using C Programming
search_sort_v1.pptgghghhhggggjjjjjjllllllllvbbbbbcfdsdfffg
search_sort search_sortsearch_sort search_sortsearch_sortsearch_sortsearch_sort
search_sort Search sortSearch sortSearch sortSearch sort
07+08slide.pptx
Introduction to Algorithms
Slides ads ia
Data Structure and Algorithms Arrays
IA-advanced-R
Ad

More from MuhammadSheraz836877 (20)

PPT
Bubble Sort.ppt
PPTX
dynamic-programming
PPTX
CHAPTER 1 BASIC sql STATEMENTS.pptx
PPTX
Sortings .pptx
PPT
Lecture9_StackQueue.ppt
PPT
Articles Eng.ppt
PPTX
FORMS OF MATTER.pptx
PPTX
Bonds of solids.pptx
PPTX
Infinitives_by_M._Sheraz.PPT
PPT
articles.ppt
PDF
Speakingskills. Ppt
PDF
speakingskills. Ppt
PDF
voice-techniques. Ppt
PDF
body language. Ppt
PDF
latchesandflipflops.ppt
PDF
listeningskills.ppt
PDF
listeningskills.ppt
PDF
listeningskills.ppt
PPT
Business Econimics.ppt
PDF
latchesflip-flop DLD
Bubble Sort.ppt
dynamic-programming
CHAPTER 1 BASIC sql STATEMENTS.pptx
Sortings .pptx
Lecture9_StackQueue.ppt
Articles Eng.ppt
FORMS OF MATTER.pptx
Bonds of solids.pptx
Infinitives_by_M._Sheraz.PPT
articles.ppt
Speakingskills. Ppt
speakingskills. Ppt
voice-techniques. Ppt
body language. Ppt
latchesandflipflops.ppt
listeningskills.ppt
listeningskills.ppt
listeningskills.ppt
Business Econimics.ppt
latchesflip-flop DLD
Ad

Recently uploaded (20)

PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Pre independence Education in Inndia.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
GDM (1) (1).pptx small presentation for students
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
RMMM.pdf make it easy to upload and study
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Insiders guide to clinical Medicine.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Computing-Curriculum for Schools in Ghana
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
Basic Mud Logging Guide for educational purpose
O7-L3 Supply Chain Operations - ICLT Program
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
STATICS OF THE RIGID BODIES Hibbelers.pdf
Pre independence Education in Inndia.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
FourierSeries-QuestionsWithAnswers(Part-A).pdf
GDM (1) (1).pptx small presentation for students
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
RMMM.pdf make it easy to upload and study
O5-L3 Freight Transport Ops (International) V1.pdf
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Renaissance Architecture: A Journey from Faith to Humanism
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Insiders guide to clinical Medicine.pdf
Microbial diseases, their pathogenesis and prophylaxis
Computing-Curriculum for Schools in Ghana
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Cell Structure & Organelles in detailed.
Basic Mud Logging Guide for educational purpose

Quick & Merge Sort.ppt

  • 2. Sorting algorithms • Insertion, selection and bubble sort have quadratic worst-case performance • The faster comparison based algorithm ? O(nlogn) • Mergesort and Quicksort
  • 3. Merge Sort • Apply divide-and-conquer to sorting problem • Problem: Given n elements, sort elements into non-decreasing order • Divide-and-Conquer: – If n=1 terminate (every one-element list is already sorted) – If n>1, partition elements into two or more sub- collections; sort each; combine into a single sorted list • How do we partition?
  • 4. Partitioning - Choice 1 • First n-1 elements into set A, last element set B • Sort A using this partitioning scheme recursively – B already sorted • Combine A and B using method Insert() (= insertion into sorted array) • Leads to recursive version of InsertionSort() – Number of comparisons: O(n2) • Best case = n-1 • Worst case = 2 ) 1 ( 2     n n i c n i
  • 5. Partitioning - Choice 2 • Put element with largest key in B, remaining elements in A • Sort A recursively • To combine sorted A and B, append B to sorted A – Use Max() to find largest element  recursive SelectionSort() – Use bubbling process to find and move largest element to right-most position  recursive BubbleSort() • All O(n2)
  • 6. Partitioning - Choice 3 • Let’s try to achieve balanced partitioning • A gets n/2 elements, B gets rest half • Sort A and B recursively • Combine sorted A and B using a process called merge, which combines two sorted lists into one – How? We will see soon
  • 7. Example • Partition into lists of size n/2 [10, 4, 6, 3] [10, 4, 6, 3, 8, 2, 5, 7] [8, 2, 5, 7] [10, 4] [6, 3] [8, 2] [5, 7] [4] [10] [3][6] [2][8] [5][7]
  • 8. Example Cont’d • Merge [3, 4, 6, 10] [2, 3, 4, 5, 6, 7, 8, 10 ] [2, 5, 7, 8] [4, 10] [3, 6] [2, 8] [5, 7] [4] [10] [3][6] [2][8] [5][7]
  • 9. Static Method mergeSort() Public static void mergeSort(Comparable []a, int left, int right) { // sort a[left:right] if (left < right) {// at least two elements int mid = (left+right)/2; //midpoint mergeSort(a, left, mid); mergeSort(a, mid + 1, right); merge(a, b, left, mid, right); //merge from a to b copy(b, a, left, right); //copy result back to a } }
  • 11. Evaluation • Recurrence equation: • Assume n is a power of 2 c1 if n=1 T(n) = 2T(n/2) + c2n if n>1, n=2k
  • 12. Solution By Substitution: T(n) = 2T(n/2) + c2n T(n/2) = 2T(n/4) + c2n/2 T(n) = 4T(n/4) + 2 c2n T(n) = 8T(n/8) + 3 c2n T(n) = 2iT(n/2i) + ic2n Assuming n = 2k, expansion halts when we get T(1) on right side; this happens when i=k T(n) = 2kT(1) + kc2n Since 2k=n, we know k=logn; since T(1) = c1, we get T(n) = c1n + c2nlogn; thus an upper bound for TmergeSort(n) is O(nlogn)
  • 13. Quicksort Algorithm Given an array of n elements (e.g., integers): • If array only contains one element, return • Else – pick one element to use as pivot. – Partition elements into two sub-arrays: • Elements less than or equal to pivot • Elements greater than pivot – Quicksort two sub-arrays – Return results
  • 14. Example We are given array of n integers to sort: 40 20 10 80 60 50 7 30 100
  • 15. Pick Pivot Element There are a number of ways to pick the pivot element. In this example, we will use the first element in the array: 40 20 10 80 60 50 7 30 100
  • 16. Partitioning Array Given a pivot, partition the elements of the array such that the resulting array consists of: 1. One sub-array that contains elements >= pivot 2. Another sub-array that contains elements < pivot The sub-arrays are stored in the original data array. Partitioning loops through, swapping elements below/above pivot.
  • 17. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 18. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index
  • 19. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index
  • 20. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index
  • 21. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index
  • 22. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index
  • 23. 40 20 10 80 60 50 7 30 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
  • 24. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
  • 25. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 26. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 27. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 28. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 29. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 30. 40 20 10 30 60 50 7 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 31. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 32. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 33. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 34. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 35. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 36. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 37. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 38. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 39. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 40. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 40 20 10 30 7 50 60 80 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 41. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 7 20 10 30 40 50 60 80 100 pivot_index = 4 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 42. Partition Result 7 20 10 30 40 50 60 80 100 [0] [1] [2] [3] [4] [5] [6] [7] [8] <= data[pivot] > data[pivot]
  • 43. Recursion: Quicksort Sub-arrays 7 20 10 30 40 50 60 80 100 [0] [1] [2] [3] [4] [5] [6] [7] [8] <= data[pivot] > data[pivot]
  • 44. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time?
  • 45. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array
  • 46. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array – Depth of recursion tree?
  • 47. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array – Depth of recursion tree? O(log2n)
  • 48. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array – Depth of recursion tree? O(log2n) – Number of accesses in partition?
  • 49. Quicksort Analysis • Assume that keys are random, uniformly distributed. • What is best case running time? – Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array – Depth of recursion tree? O(log2n) – Number of accesses in partition? O(n)
  • 50. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n)
  • 51. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time?
  • 52. Quicksort: Worst Case • Assume first element is chosen as pivot. • Assume we get array that is already in order: 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 53. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 54. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 55. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 56. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 57. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 58. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 59. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100 pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] > data[pivot] <= data[pivot]
  • 60. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time? – Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 2. Quicksort each sub-array – Depth of recursion tree?
  • 61. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time? – Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 2. Quicksort each sub-array – Depth of recursion tree? O(n)
  • 62. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time? – Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 2. Quicksort each sub-array – Depth of recursion tree? O(n) – Number of accesses per partition?
  • 63. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time? – Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 2. Quicksort each sub-array – Depth of recursion tree? O(n) – Number of accesses per partition? O(n)
  • 64. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time: O(n2)!!!
  • 65. Quicksort Analysis • Assume that keys are random, uniformly distributed. • Best case running time: O(n log2n) • Worst case running time: O(n2)!!! • What can we do to avoid worst case?
  • 66. Improved Pivot Selection Pick median value of three elements from data array: data[0], data[n/2], and data[n-1]. Use this median value as pivot.
  • 67. Improving Performance of Quicksort • Improved selection of pivot. • For sub-arrays of size 3 or less, apply brute force search: – Sub-array of size 1: trivial – Sub-array of size 2: • if(data[first] > data[second]) swap them – Sub-array of size 3: left as an exercise.