SlideShare a Scribd company logo
7.1 – Radicals
Radical Expressions
Finding a root of a number is the inverse operation of raising
a number to a power.
This symbol is the radical or the radical sign
n
a
index radical sign
radicand
The expression under the radical sign is the radicand.
The index defines the root to be taken.
Radical Expressions
The symbol represents the negative root of a number.
The above symbol represents the positive or principal
root of a number.

7.1 – Radicals
Square Roots
If a is a positive number, then
a is the positive square root of a and
100 
a
 is the negative square root of a.
A square root of any positive number has two roots – one is
positive and the other is negative.
Examples:
10
25
49

5
7
0.81 0.9
36
  6

9
  non-real #

8
x 4
x
7.1 – Radicals
Rdicals
Cube Roots
3
27 
A cube root of any positive number is positive.
Examples:
3
5
4
3
125
64

3
8
  2

A cube root of any negative number is negative.
3
a

3 3
x x 
3 12
x
4
x
7.1 – Radicals
nth
Roots
An nth
root of any number a is a number whose nth
power is a.
Examples:
2
4
81  3
4
16 
5
32
  2

4
3  81
4
2 16
 
5
2
  32

7.1 – Radicals
nth
Roots
4
16
 
An nth
root of any number a is a number whose nth
power is a.
Examples:
1

5
1
 
Non-real number
6
1
  Non-real number
3
27
  3

7.1 – Radicals
7.2 – Rational Exponents
The value of the numerator represents the power of the
radicand.
Examples:
:
n
m
a
of
Definition
The value of the denominator represents the index or root of
the expression.
n m
a or  m
n
a
3
1
27
25
2
1
25 3
5 3
27
  7
2
1
2 
x
3
4
2
3
4 64
 
7 2
1
2 
x
8
7.2 – Rational Exponents
More Examples:
:
n
m
a
of
Definition n m
a or  m
n
a
3
2
3
2
27
1
3
2
27
1






3 2
3 2
27
1
9
1
3
3
729
1
3
2
3
2
27
1
3
2
27
1





  
 2
3
2
3
27
1
9
1
 
 2
2
3
1
or
7.2 – Rational Exponents
Examples:
:
n
m
a
of
Definition

n m
a
1
 m
n
a
1
2
1
25
1
2
1
25

25
1
5
1
3
2
1
x
3
2

x 3 2
1
x  2
3
1
x
n
m
a
1
or or
or
7.2 – Rational Exponents
Use the properties of exponents to simplify each expression
3
5
3
4
x
x  3
9
x
3
x
10
1
5
3 
x
10
1
5
3
x
x
10
1
10
6 
x 10
5
x
4
2
3x
4 2
81x 2
1
3x
3
5
3
4 
x
2
1
x
3 2
12
x
x  12
8
12
1 
x 12
9
x 4
3
x
3
2
12
1
x
x
40 
Examples:
4 10
 
If and are real numbers, then a b
a b a b
  
Product Rule for Square Roots
2 10
7 75  7 25 3
  7 5 3
  35 3
7.3 – Simplifying Rational Expressions

17
16x 
x
x16
16 x
x8
4

3 17
16x 

3 2
15
2
8 x
x 3 2
5
2
2 x
x

10
4

3
25
7
16
81

Examples:
2
5
4
9
45
49

a
If and are real numbers and 0,then
b
a
a b b
b
 
Quotient Rule for Square Roots
2
25

9 5
7


3 5
7
16
81

2
25

45
49

7.3 – Simplifying Rational Expressions
15
3

90
2

a
If and are real numbers and 0,then
b
a
a b b
b
 
3 5
3


3 5
3

 5
9 10
2


9 2 5
2
 

9 2 5
2
 
 3 5
7.3 – Simplifying Rational Expressions
11
x 
Examples:
7
7
25
y

8
27
x

6
7
25
y y


3
7
5
y y
10
x x
 
5
x x
4
18x  4
9 2x
  2
3 2
x
8
9 3
x

 4
3 3
x
8
27
x

7.3 – Simplifying Rational Expressions
3
88 
Examples:
3
81
8

3
10
27

3
3
81
8

3
27 3
2


3
8 11
  3
2 11
3
10
3
3
3
10
27

3
3 3
2
7.3 – Simplifying Rational Expressions
3 3 7
27m n  3 3 6
3 m n n  2 3
3mn n
One Big Final Example
12 4 18
5
64x y z 
10 2 4 15 3
5
32 2x x y z z
 
2 3 2 4 3
5
2 2
x z x y z
7.3 – Simplifying Rational Expressions
5 3
x x
 
Review and Examples:
6 11 9 11
 
8x
15 11
12 7
y y
  5y
7 3 7
  2 7

7.4 – Adding, Subtracting, Multiplying Radical
Expressions
27 75
 
Simplifying Radicals Prior to Adding or Subtracting
3 20 7 45
 
9 3 25 3
   
3 4 5 7 9 5
   
3 3 5 3
  8 3
3 2 5 7 3 5
   
6 5 21 5
  15 5

36 48 4 3 9
    6 16 3 4 3 3
    
6 4 3 4 3 3
    3 8 3

7.4 – Adding, Subtracting, Multiplying Radical
Expressions
4 3 3
9 36
x x x
  
Simplifying Radicals Prior to Adding or Subtracting
6 6
3 3
10 81 24
p p
 
2 2 2
3 6
x x x x x
  
2
3 6
x x x x x
  
2
3 5
x x x

6 6
3 3
10 27 3 8 3
p p
   
2 2
3 3
10 3 3 2 3
p p
  
2 3
28 3
p
2 2
3 3
30 3 2 3
p p
 
7.4 – Adding, Subtracting, Multiplying Radical
Expressions
5 2
 
7 7
 
10 2
x x
 
If and are real numbers, then a b
a b a b
  
10
49  7
6 3
  18  9 2
  3 2
2
20x  2
4 5x
  2 5
x
7.4 – Adding, Subtracting, Multiplying Radical
Expressions
 
7 7 3
  7 7 7 3
    49 21
 
 
5 3 5
x x  
  
5 3
x x
  
7 21

2
5 3 25
x x
  5 3 5
x x
  
5 15
x x

2
3 5 15
x x x
   
2
3 5 15
x x x
  
7.4 – Adding, Subtracting, Multiplying Radical
Expressions
  
3 6 3 6
  
 
2
5 4
x  
9 6 3 6 3 36
    3 36
 
33

  
5 4 5 4
x x
  
2
25 4 5 4 5 16
x x x
   
5 8 5 16
x x
 
7.4 – Adding, Subtracting, Multiplying Radical
Expressions

More Related Content

PPTX
Radical and Rational exponents PPT (1).pptx
PPT
Notes-Radicals-and-Rational-Exponents-vz2zoy.ppt
PPT
radicals.ppt
PPT
radicals.ppt
PPT
Radicals (Introduction and Simplifying).ppt
PDF
0.7 Radical Expressions
PPTX
radicalsradicalsradicalsradicalsradicalsradicals
DOCX
ROOTS AND RADICALS - ELEMENTARY ALGEBRA
Radical and Rational exponents PPT (1).pptx
Notes-Radicals-and-Rational-Exponents-vz2zoy.ppt
radicals.ppt
radicals.ppt
Radicals (Introduction and Simplifying).ppt
0.7 Radical Expressions
radicalsradicalsradicalsradicalsradicalsradicals
ROOTS AND RADICALS - ELEMENTARY ALGEBRA

Similar to Radical and Rational exponents11 PPT.ppt (20)

PPTX
Exponential Form - Radicals
DOCX
PDF
1.3 Radicals and Rational Exponents
PPT
Simplifying radical expressions, rational exponents, radical equations
DOCX
Chapter 1 review topic in algebra 1
PDF
classNotes_m110_2018F.pdf
PPTX
Roots and Radicals
PPT
math 7 translating mathematical expressions
DOCX
Chapterdug84356_ch09a.qxd 91410 211.docx
DOCX
Chapter 1
DOC
Mathematics 9 Radical expressions (4)
PPT
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
PPT
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
PPTX
Lecture 05 a radicals
DOC
Mathematics 9 Radical Expressions (3)
PPTX
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
PPT
EXPONENTS AND RADICALS
PPTX
My own exp nd radi
PPTX
20-21-Gr-9-2nd-Qr-Lesson-4-Square-roots-and-other-roots.pptx
PPTX
Lecture 05 b radicals multiplication and division
Exponential Form - Radicals
1.3 Radicals and Rational Exponents
Simplifying radical expressions, rational exponents, radical equations
Chapter 1 review topic in algebra 1
classNotes_m110_2018F.pdf
Roots and Radicals
math 7 translating mathematical expressions
Chapterdug84356_ch09a.qxd 91410 211.docx
Chapter 1
Mathematics 9 Radical expressions (4)
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
PPT _Composite_ Week 29 dated 03-13-2023 Rational Exponents_.ppt
Lecture 05 a radicals
Mathematics 9 Radical Expressions (3)
MIT Math Syllabus 10-3 Lesson 4: Rational exponents and radicals
EXPONENTS AND RADICALS
My own exp nd radi
20-21-Gr-9-2nd-Qr-Lesson-4-Square-roots-and-other-roots.pptx
Lecture 05 b radicals multiplication and division
Ad

More from enasabdulrahman (20)

PPT
Chemistry 3.1 Notes (Accuracy, precision, error and sig figs).ppt
PPT
15.3 Back-to-back stem-and-leaf diagrams..ppt
PPT
15.4 Calculating statistics for grouped data.ppt
PPT
5th_NS_1.3_add_and_subtract_integers (3).ppt
PPT
Order of Operations (55555555555555555555).ppt
PPT
enlargement_1111111111111111111111111.ppt
PPT
7spr2lesson101111111111111111111111111.ppt
PPTX
Introduction to enlargement PixiPPt.pptx
PPTX
8.4.4f-Combined-enlargements---clicker---TES.pptx
PPTX
8.4.4h-Combined-enlargements---clicker---TES.pptx
PPT
dist- midpt - pythag PP111111111111.ppt
PPT
8-1Points-LineSeg-Rays22222222222222.ppt
PPT
proportion111111111111111111111111111.ppt
PPTX
Spotlight on Direct- Inverse Proportion Problems.pptx
PPTX
Read-and-Interpret-Line-Graphs11111.pptx
PPT
168823888888888888888888888888888888888888888888888.ppt
PPTX
10.111111111111111111111111 Functions.pptx
PPT
168855555555555555555555555555552388.ppt
PPT
Section 88888888888888888888888.6 MA.ppt
PPTX
9-2-independent-vs-dependent-events.pptx
Chemistry 3.1 Notes (Accuracy, precision, error and sig figs).ppt
15.3 Back-to-back stem-and-leaf diagrams..ppt
15.4 Calculating statistics for grouped data.ppt
5th_NS_1.3_add_and_subtract_integers (3).ppt
Order of Operations (55555555555555555555).ppt
enlargement_1111111111111111111111111.ppt
7spr2lesson101111111111111111111111111.ppt
Introduction to enlargement PixiPPt.pptx
8.4.4f-Combined-enlargements---clicker---TES.pptx
8.4.4h-Combined-enlargements---clicker---TES.pptx
dist- midpt - pythag PP111111111111.ppt
8-1Points-LineSeg-Rays22222222222222.ppt
proportion111111111111111111111111111.ppt
Spotlight on Direct- Inverse Proportion Problems.pptx
Read-and-Interpret-Line-Graphs11111.pptx
168823888888888888888888888888888888888888888888888.ppt
10.111111111111111111111111 Functions.pptx
168855555555555555555555555555552388.ppt
Section 88888888888888888888888.6 MA.ppt
9-2-independent-vs-dependent-events.pptx
Ad

Recently uploaded (20)

PPTX
20th Century Theater, Methods, History.pptx
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
1_English_Language_Set_2.pdf probationary
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
Virtual and Augmented Reality in Current Scenario
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
IGGE1 Understanding the Self1234567891011
PDF
HVAC Specification 2024 according to central public works department
PDF
My India Quiz Book_20210205121199924.pdf
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Empowerment Technology for Senior High School Guide
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
20th Century Theater, Methods, History.pptx
LDMMIA Reiki Yoga Finals Review Spring Summer
Practical Manual AGRO-233 Principles and Practices of Natural Farming
1_English_Language_Set_2.pdf probationary
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Virtual and Augmented Reality in Current Scenario
TNA_Presentation-1-Final(SAVE)) (1).pptx
History, Philosophy and sociology of education (1).pptx
Paper A Mock Exam 9_ Attempt review.pdf.
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
IGGE1 Understanding the Self1234567891011
HVAC Specification 2024 according to central public works department
My India Quiz Book_20210205121199924.pdf
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Introduction to pro and eukaryotes and differences.pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Empowerment Technology for Senior High School Guide
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
FORM 1 BIOLOGY MIND MAPS and their schemes

Radical and Rational exponents11 PPT.ppt

  • 1. 7.1 – Radicals Radical Expressions Finding a root of a number is the inverse operation of raising a number to a power. This symbol is the radical or the radical sign n a index radical sign radicand The expression under the radical sign is the radicand. The index defines the root to be taken.
  • 2. Radical Expressions The symbol represents the negative root of a number. The above symbol represents the positive or principal root of a number.  7.1 – Radicals
  • 3. Square Roots If a is a positive number, then a is the positive square root of a and 100  a  is the negative square root of a. A square root of any positive number has two roots – one is positive and the other is negative. Examples: 10 25 49  5 7 0.81 0.9 36   6  9   non-real #  8 x 4 x 7.1 – Radicals
  • 4. Rdicals Cube Roots 3 27  A cube root of any positive number is positive. Examples: 3 5 4 3 125 64  3 8   2  A cube root of any negative number is negative. 3 a  3 3 x x  3 12 x 4 x 7.1 – Radicals
  • 5. nth Roots An nth root of any number a is a number whose nth power is a. Examples: 2 4 81  3 4 16  5 32   2  4 3  81 4 2 16   5 2   32  7.1 – Radicals
  • 6. nth Roots 4 16   An nth root of any number a is a number whose nth power is a. Examples: 1  5 1   Non-real number 6 1   Non-real number 3 27   3  7.1 – Radicals
  • 7. 7.2 – Rational Exponents The value of the numerator represents the power of the radicand. Examples: : n m a of Definition The value of the denominator represents the index or root of the expression. n m a or  m n a 3 1 27 25 2 1 25 3 5 3 27   7 2 1 2  x 3 4 2 3 4 64   7 2 1 2  x 8
  • 8. 7.2 – Rational Exponents More Examples: : n m a of Definition n m a or  m n a 3 2 3 2 27 1 3 2 27 1       3 2 3 2 27 1 9 1 3 3 729 1 3 2 3 2 27 1 3 2 27 1          2 3 2 3 27 1 9 1    2 2 3 1 or
  • 9. 7.2 – Rational Exponents Examples: : n m a of Definition  n m a 1  m n a 1 2 1 25 1 2 1 25  25 1 5 1 3 2 1 x 3 2  x 3 2 1 x  2 3 1 x n m a 1 or or or
  • 10. 7.2 – Rational Exponents Use the properties of exponents to simplify each expression 3 5 3 4 x x  3 9 x 3 x 10 1 5 3  x 10 1 5 3 x x 10 1 10 6  x 10 5 x 4 2 3x 4 2 81x 2 1 3x 3 5 3 4  x 2 1 x 3 2 12 x x  12 8 12 1  x 12 9 x 4 3 x 3 2 12 1 x x
  • 11. 40  Examples: 4 10   If and are real numbers, then a b a b a b    Product Rule for Square Roots 2 10 7 75  7 25 3   7 5 3   35 3 7.3 – Simplifying Rational Expressions  17 16x  x x16 16 x x8 4  3 17 16x   3 2 15 2 8 x x 3 2 5 2 2 x x  10 4  3 25 7
  • 12. 16 81  Examples: 2 5 4 9 45 49  a If and are real numbers and 0,then b a a b b b   Quotient Rule for Square Roots 2 25  9 5 7   3 5 7 16 81  2 25  45 49  7.3 – Simplifying Rational Expressions
  • 13. 15 3  90 2  a If and are real numbers and 0,then b a a b b b   3 5 3   3 5 3   5 9 10 2   9 2 5 2    9 2 5 2    3 5 7.3 – Simplifying Rational Expressions
  • 14. 11 x  Examples: 7 7 25 y  8 27 x  6 7 25 y y   3 7 5 y y 10 x x   5 x x 4 18x  4 9 2x   2 3 2 x 8 9 3 x   4 3 3 x 8 27 x  7.3 – Simplifying Rational Expressions
  • 15. 3 88  Examples: 3 81 8  3 10 27  3 3 81 8  3 27 3 2   3 8 11   3 2 11 3 10 3 3 3 10 27  3 3 3 2 7.3 – Simplifying Rational Expressions 3 3 7 27m n  3 3 6 3 m n n  2 3 3mn n
  • 16. One Big Final Example 12 4 18 5 64x y z  10 2 4 15 3 5 32 2x x y z z   2 3 2 4 3 5 2 2 x z x y z 7.3 – Simplifying Rational Expressions
  • 17. 5 3 x x   Review and Examples: 6 11 9 11   8x 15 11 12 7 y y   5y 7 3 7   2 7  7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 18. 27 75   Simplifying Radicals Prior to Adding or Subtracting 3 20 7 45   9 3 25 3     3 4 5 7 9 5     3 3 5 3   8 3 3 2 5 7 3 5     6 5 21 5   15 5  36 48 4 3 9     6 16 3 4 3 3      6 4 3 4 3 3     3 8 3  7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 19. 4 3 3 9 36 x x x    Simplifying Radicals Prior to Adding or Subtracting 6 6 3 3 10 81 24 p p   2 2 2 3 6 x x x x x    2 3 6 x x x x x    2 3 5 x x x  6 6 3 3 10 27 3 8 3 p p     2 2 3 3 10 3 3 2 3 p p    2 3 28 3 p 2 2 3 3 30 3 2 3 p p   7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 20. 5 2   7 7   10 2 x x   If and are real numbers, then a b a b a b    10 49  7 6 3   18  9 2   3 2 2 20x  2 4 5x   2 5 x 7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 21.   7 7 3   7 7 7 3     49 21     5 3 5 x x      5 3 x x    7 21  2 5 3 25 x x   5 3 5 x x    5 15 x x  2 3 5 15 x x x     2 3 5 15 x x x    7.4 – Adding, Subtracting, Multiplying Radical Expressions
  • 22.    3 6 3 6      2 5 4 x   9 6 3 6 3 36     3 36   33     5 4 5 4 x x    2 25 4 5 4 5 16 x x x     5 8 5 16 x x   7.4 – Adding, Subtracting, Multiplying Radical Expressions