SlideShare a Scribd company logo
Introduction Backgrounds ROA DAPHNE Results Conclusion
Austrian-Slovenian HPC Meeting 2024
Grundlsee, 10–13 June 2024
ASHPC24 Session 5
Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024
Randomised
Optimisation Algorithms
in
DAPHNE
Aleš Zamuda
University of Maribor <ales.zamuda@um.si>
Acknowledgement. This work is supported by project DAPHNE (Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC and Machine Learning) funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957407and ARIS (Slovenian Research And Innovation Agency) programme P2-0041 (Computer Systems, Methodologies, and Intelligent Services).
-50
-40
-30
-20
-10
0
10
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
-50
-40
-30
-20
-10
0
10
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
-50
-40
-30
-20
-10
0
10
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Austrian-Slovenian HPC Meeting 2024
Grundlsee, 10–13 June 2024
ASHPC24 Session 5
Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024
Randomised
Optimisation
Algorithms
in DAPHNE
—
Introduction & Outline
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Introduction & Outline: Aims of this Talk
1 (5 minutes) Part I: Background — Randomised
Optimisation Algorithms (ROA)
2 (3 minutes) Part II: DAPHNE
3 (3 minutes) Part III: ASHPC24: ROA in DAPHNE
4 (1 minutes) Part IV: Conclusion with Takeaways
5 (1 minute) Questions, Misc
6 (Appendix) Business, Marketing
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Warmup Highlights on (Generative) AI
w/ ChatGPT+Synthesia: visiting Canaries, ASHPC
Photo/video: 1) HPC generated introduction (ASHPC23); 2) with underwater glider at
ULPGC SIANI; 3) infront SIANI; 4) with autonomous sailboat at SIANI; 5) rebooting in
March 2023 (digital green); 6) generative animation
If 2023 was about Generative AI, is 2024 on CI omnia Robotics?
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Introduction: ASHPC21 — Supercomputing and HPC
— Vectorized Benchmarking Opportunities
A closer observation of execution times
for workloads processed in [2] is
provided in Fig. 1, where it is seen that
the execution time (color of the patches)
changes for different benchmark
executions.
Fig. 1: Execution time of full benchmarks
for different instances of optimization
algorithms. Each patch presents one full
benchmark execution to evaluate an
optimization algorithm.
• Therefore, it is useful to consider speeding up of
benchmarking through vectorization of the tasks that a
benchmark is comprised of.
• These include e.g.,
• parallell data cleaning part of an individual
ML tile [1] or
• synchronization between tasks when
executing parallell geospatial processing [3].
• To enable the possibilities of data cleaning (preprocessing) as
well as geospatial processing in parallell, such opportunities
first need to be found or designed, if none yet exist for a
problem tackled.
• Therefore, this contribution will highlight some experiences
with finding and designing parallell ML pipelines for
vectorization and observe speedup gained from that.
• The speeding up focus will be on optimization
algorithms within such ML pipelines, but some more
future work possibilities will also be provided.
[2] Zamuda, A, Brest, J., Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm and
Evolutionary Computation 25C, 72-99 (2015).
[3] Zamuda, A., Hernández Sosa, J. D., Success history applied to expert system for underwater glider path planning using differential
evolution. Expert Systems with Applications 119, 155-170 (2019).
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Austrian-Slovenian HPC Meeting 2024
Grundlsee, 10–13 June 2024
ASHPC24 Session 5
Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024
Randomised
Optimisation
Algorithms
in DAPHNE
—
Background — Randomised
Optimisation Algorithms (ROA)
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Differential Evolution (DE)
• A floating point encoding EA for global optimization over
continuous spaces,
• through generations,
the evolution process improves population of vectors,
• iteratively by combining a parent individual and
several other individuals of the same population,
using evolutionary operators.
• We choose the strategy jDE/rand/1/bin
• mutation: vi,G+1 = xr1,G + F × (xr2,G − xr3,G),
• crossover:
ui,j,G+1 =
(
vi,j,G+1 if rand(0, 1) ≤ CR or j = jrand
xi,j,G otherwise
,
• selection: xi,G+1 =
(
ui,G+1 if f(ui,G+1) < f(xi,G)
xi,G otherwise
,
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Background: ROA in DAPHNE & ASHPCs
• June 2021, ASHPC211
; June 2022, ASHPC22
• extended abstract submitted (DAPHNE vision on Integrated pipelines), lightning talk page, and
printed poster presented (listing syntax where communication between nodes is abstracted)
• June 2023, ASHPC232
: 2 extended abstract submitted (ROA are sought in DAPHNE; ROA role in GenAI3
),
lightning talk page, printed poster presented, and a talk with slides
• August 2023, Euro-Par 20234
: initial demo created for ROA, confirming that ROA can run in DAPHNE
(Apple M1)
• September 2023, seminars at Alicante (UA — in Ada Lovelace room, Conferencia Invitada) and Barcelona
(BSC — SORS: Severo Ochoa Research Seminar): role of ROA in NLP (incl. GenAI), ROA deployment
preparations base start for Mare Nostrum 5 (not opened yet at that time)
• January 2024, HiPEAC 2024: presentation of the initial benchmarking of ROA in DAPHNE (Apple M3)
1
A. Zamuda. “Parallelization of benchmarking using HPC: text summarization in natural language processing
(NLP), glider piloting in deep-sea missions, and search algorithms in computational intelligence (CI)”. In:
Austrian-Slovenian HPC Meeting 2021 - ASHPC21. 2021, p. 35.
2
Aleš Zamuda. “Generative AI Using HPC in Text Summarization and Energy Plants”. In: Austrian-Slovenian
HPC Meeting 2023–ASHPC23. 2023, p. 5.
3
Zamuda, “Generative AI Using HPC in Text Summarization and Energy Plants”.
4
A. Vontzalidis et al. “DAPHNE Runtime: Harnessing Parallelism for Integrated Data Analysis Pipelines”. In:
Euro-Par 2023: Parallel Processing Workshops. Ed. by Demetris Zeinalipour et al. Lecture Notes in Computer
Science, vol. 14352. Cham: Springer, 2024, pp. 242–246.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Austrian-Slovenian HPC Meeting 2024
Grundlsee, 10–13 June 2024
ASHPC24 Session 5
Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024
Randomised
Optimisation
Algorithms
in DAPHNE
—
DAPHNE
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
DAPHNE Partners
https://daphne-eu.eu
Project Consortium
13 partner institutions
from 7 countries
• DM, ML, HPC
• Academia & industry
• Different application
domains
14
• Technical University Berlin
University of Maribor (UM): UM FERI research team I lead (DAPHNE), SLING connection (EuroHPC Vega).
https://feri.um.si/en/research/international-and-structural-funds-projects/
integrated-data-analysis-pipelines-for-large-scale-data-management-hpc-and-machine-learning/
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
DAPHNE: Overview
Overview: Generic Aspect of the Project
• Deployment Challenges
• Hardware Challenges
• DM+ML+HPC share compilation
and runtime techniques /
converging cluster hardware
• End of Dennard scaling:
P = α CFV2 (power density 1)
• End of Moore’s law
• Amdahl’s law: sp = 1/s
 Increasing Specialization
#1 Data
Representations
Sparsity Exploitation
from Algorithms to HW
dense
graph
sparse
compressed
#2 Data
Placement
Local vs distributed
CPUs/
NUMA
GPUs
FPGAs/
ASICs
#3 Data
(Value) Types
FP32, FP64, INT8,
INT32, INT64, UINT8,
BF16, TF32, FlexPoint
[NVIDIA
A100]
 DAPHNE Overall Objective:
Open and extensible system infrastructure
Different
Systems/
Libraries
Dev Teams Programming Models
Resource
Managers
Cluster
Under-
utilization
Data/File
Exchange
3 lessons learnt so far
choices made, methodology
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
DAPHNE: Functionalities
y
Functionality Introduction: from Language Abstractions to
Distributed Vectorized Execution and Use Cases
• Federated matrices/frames + distribution primitives
• Hierarchical vectorized pipelines and scheduling
• Coordinator
(spawns distributed fused pipeline)
• #1 Prepare Inputs
(N/A, repartition, broadcasts,
slices broadcasts as necessary)
• #2 Coarse-grained Tasks
(tasks run vectorized pipeline)
• #3 Combine Outputs
(N/A, all-reduce, rbind/cbind)
Node 1
X
[1:
100M]
Node 2
X
[100M:
200M]
colmu
colsd
y
y
(X)
XTX
XTy
dc = DaphneContext()
G = dc.from_numpy(npG)
G = (G != 0)
c = components(G, 100, True).compute()
Python API DaphneLib
def components(G, maxi, verbose) {
n = nrow(G); // get the number of vertexes
maxi = 100;
c = seq(1, n); // init vertex IDs
diff = inf; // init diff to +Infinity
iter = 1;
// iterative computation of connected components
while(diff>0 & iter<=maxi) {
u = max(rowMaxs(G * t(c)), c); // neighbor prop
diff = sum(u != c); // # of changed vertexes
c = u; // update assignment
iter = iter + 1;
}
}
Domain-specific Language DaphneDSL
Multiple dispatch of functions/kernels
Example Use Cases
• DLR Earth Observation
• ESA Sentinel-1/2 datasets  4PB/year
• Training of local climate zone classifiers on So2Sat LCZ42
(15 experts, 400K instances, 10 labels each, ~55GB HDF5)
• ML pipeline: preprocessing,
ResNet-20, climate models
• IFAT Semiconductor Ion Beam Tuning
• KAI Semiconductor Material Degradation
• AVL Vehicle Development Process (ejector geometries, KPIs)
• ML-assisted simulations, data cleaning, augmentation
• Cleaning during exploratory query processing
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
HPC Sites & Visits
Demo at Euro-PAR 20235, also on EuroHPC Vega6 & OpenStack
ASHPC23: EuroHPC Vega tour
Ales Zamuda
@a�eszamuda
While visiting today I had the honor visiting the spectacular
MareNostrum supercomputers and their installation. From observing
afar in ‘06 as v1&v2 were deployed w/ 42&94 Tflops and v3 passing the
>Pflop, this tour ‘23 to v4 and v5 was sourcely. Thanks
#sors
�BSC_CNS
@rosabadia
Ales Zamuda ·
@a�eszamuda Sep 12
Show this thread
Today I am delighted to present a Severo Ochoa Research Seminar (SORS) at
Barcelona Supercomputing Center #BSC, titled: "EuroHPC AI in DAPHNE"
(host: Rosa Badia @rosabadia, Workflows and Distributed Computing Group
Manager, CS, BSC) bsc.es/research-and-d… #presenting @daphne_eu
4:20 PM · Sep 12, 2023 · Views
165
View post engagements
5
Post your reply Reply
Post
Ales Zamuda on X: "While visiting @BSC_CNS today I had the hono... https://twitter.com/aleszamuda/status/17016017
5
Vontzalidis et al., “DAPHNE Runtime: Harnessing Parallelism for Integrated Data Analysis Pipelines”.
6
Aleš Zamuda and et al. “Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking
Randomised Optimisation Algorithms”. In: International Conference on Broadband Communications for Next
Generation Networks and Multimedia Applications (CoBCom). 2024, (to appear).
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Austrian-Slovenian HPC Meeting 2024
Grundlsee, 10–13 June 2024
ASHPC24 Session 5
Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024
Randomised
Optimisation
Algorithms
in DAPHNE
—
ASHPC24: ROA in DAPHNE —
Contribution, Results & Discussion
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
ASHPC24: Contribution
• Deploying Randomised Optimisation Algorithms (ROA) in
DAPHNE [1] on EuroHPC Vega [2] allows
• benchmarking and research in novel and innovative
models for Artificial Intelligece (AI) [3].
• The methods that are supported in DAPHNE allow
seamless distribution of AI memory
• that is required when an AI algorithm run requires a
large memory that can be distributed across different
HPC nodes.
• Using DAPHNE, the benchmarking can be not only run in
• the Runtime Environment [2] on an HPC that is much
larger than a regular laptop computer,
• but also gather monitoring data of the workload while the
algorithm is running,
• to obtain a benchmarking profile, allowing an informed
scientific observation of a novel algorithm under test.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
ASHPC24: Results — ROA in DAPHNE Benchmarked
Testing: convergence of a ML system
ROAR: Randomised Optimisation Algorithm
-50
-40
-30
-20
-10
0
10
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
-350
-300
-250
-200
-150
-100
-50
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
0
1
2
3
4
5
6
7
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
ASHPC24: Discussion — ROA in DAPHNE
As seen from the plots, the fitness values are convergent, optimizing.
-50
-40
-30
-20
-10
0
10
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
-350
-300
-250
-200
-150
-100
-50
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
Figure 1 (left) shows an example ROA run, with convergence plot for the HappyCat
function, f1 =
 P
x2, 0

− 10
2
0.125
+
P
x2, 0

/2 +
P
(x)

/10 + 0.5 on a
sample of different independent runs.
Figure 2 (right) shows a convergence plot for the function
f2 =
P
x5 + 1 + max(x, 0), 0

, also on different independent runs.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Austrian-Slovenian HPC Meeting 2024
Grundlsee, 10–13 June 2024
ASHPC24 Session 5
Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024
Randomised
Optimisation
Algorithms
in DAPHNE
—
IV: Conclusion
with Takeaways
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
ASHPC24: Conclusion  Takeaways
• The results show an early demonstration of feasibility to compute
ROA in DAPHNE.
• This initial implementation was run within DAPHNE v0.2.
• At the moment (June 2024): v0.3 release preparations.
• A linear time increase was observed with an increasing problem
dimension size.
• The linear time increase is a good candidate for scaling and parallel
execution of this workload,
• because the implementation uses matrix operations which are scalable
in DAPHNE language over tiles of rows.
• Also, by changing the fitness evaluation function of the ROA:
• the system is applicable to various AI challenges
• like standard evolutionary computation (EC) test functions, or
• other more elaborated AI scenarios (see Appendix) .
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57
Introduction Backgrounds ROA DAPHNE Results Conclusion
Further Research — After ASHPC24
• Further research can include:
• running on EuroHPC Vega with larger workloads7
,
• applying optimization algorithms to larger problems,
• with larger and distributed memory and storage,
• benefitting from distributed processing with row-wise data
in DAPHNE (distributed kernels execution).
• Examples of these include vehicle navigation
• e.g. Underwater Glider Path Planning — UGPP) and
• production (e.g. engineering design optimization,
• ROA algorithms self-design (e.g. through whole
benchmark autoconfigurations), and
• more generative AI integration (such as Human
Language Technologies — HLT).
7
CoBCom 2024 Graz.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Thank you. Questions?
Thanks!
Acknowledgement: this work is supported by DAPHNE, funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957407.
10000
1x106
1x108
1x1010
1x1012
0 1 2 3 4 5 6 7 8 9
FES
Digits
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
-50
-40
-30
-20
-10
0
10
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
0 1 2 3 4 5 6 7 8 9
Combined power from 110 MW to 975 MW, step 0.01 MW#104
0
100
200
300
400
500
600
700
Individual
output
(power
[MW]
or
unit
total
cost
[$])
Cost, TC / 3
Powerplant P1 power
Powerplant P2 power
Powerplant P3 power
150
200
250
300
350
400
450
500
550
16 32 48 64 80
Seconds
to
compute
a
workload
Number of tasks (equals 16 times the SLURM --nodes parameter)
Summarizer workload
Real examples: science and HPC
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Austrian-Slovenian HPC Meeting 2024
Grundlsee, 10–13 June 2024
ASHPC24 Session 5
Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024
Randomised
Optimisation
Algorithms
in DAPHNE
—
Appendix Part I: Backgrounds
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Background A:
HPC Workloads and
Cloud Computing
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Conclusion
(Vega supercomputer in TOP500)
— A Multimedia Tour —
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
TOP500: EuroHPC Vega (tour at ASHPC23)
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
TOP500: EuroHPC Vega (tour at ASHPC23)
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
TOP500: EuroHPC Vega (tour at ASHPC23)
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
TOP500: EuroHPC Vega (tour at ASHPC23)
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
AI Challenges Shortlist
(Part II: First subpart)
Faced 5 types of challenges, leading to the needs to apply HPC
architectures for benchmarking state-of-the-art topics in
1 text summarization,
2 forest ecosystem modeling, simulation, and
visualization,
3 underwater robotic mission planning,
4 energy production scheduling for hydro-thermal power
plants, and
5 understanding evolutionary algorithms.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 1: Text Summarization (Language)
For NLP (Natural Language Processing),
part of ”Big Data”.
Terms across sentences are determined
using a semantic analysis using both:
• coreference resolution (using WordNet) and
• a Concept Matrix (from Freeling).
INPUT
CORPUS
NATURAL
LANGUAGE
PROCESSING
ANALYSIS
CONCEPTS
DISTRIBUTION
PER
SENTENCES
MATRIX OF
CONCEPTS
PROCESSING
CORPUS
PREPROCESSING
PHASE
OPTIMIZATION
TASKS
EXECUTION
PHASE
ASSEMBLE
TASK
DESCRIPTION
SUBMIT
TASKS
TO PARALLEL
EXECUTION
OPTIMIZER
+
TASK DATA
ROUGE
EVALUATION
The detailed new method called
CaBiSDETS is developed in the HPC
approach comprising of:
• a version of evolutionary algorithm
(Differential Evolution, DE),
• self-adaptation, binarization,
constraint adjusting, and some more
pre-computation,
• optimizing the inputs to define the
summarization optimization model.
Aleš Zamuda, Elena Lloret. Optimizing Data-Driven
Models for Summarization as Parallel Tasks. Journal
of Computational Science, 2020, vol. 42, pp. 101101.
DOI: 10.1016/j.jocs.2020.101101
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 2: Forest Ecosystem Modeling,
Simulation, and Visualization (Real World / Video)
• HPC need to process spatial data and add procedural
content, generating real-world items for producing a
video of 3D space.
Videos: https://www.youtube.com/watch?list=PL7pmTW8neV7tZf2qx1wV5zbD74sUyHL3Bv=V9YJgYO_sIA
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 3: Underwater Robotic Mission Planning
• Computational Fluid Dynamics (CFD) spatio-temporal model of the
ocean currents for autonomous vehicle navigation path planning.
• Constrained Differential Evolution Optimization
for Underwater Glider Path Planning
in Sub-mesoscale Eddy Sampling.
• Corridor-constrained optimization: eddy
border region sampling — new challenge
for UGPP  DE.
• Feasible path area is constrained —
trajectory in corridor around the border of
an ocean eddy.
The objective of the glider here is to sample the
oceanographic variables more efficiently,
while keeping a bounded trajectory.
HPC: develop new methods and evaluate them.
Video: https://www.youtube.com/watch?v=4kCsXAehAmU
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 4: Energy Production Scheduling for
Hydro-thermal Power Plants
A. Glotić, A. Zamuda. Short-term combined economic and emission
hydrothermal optimization by surrogate differential evolution.
Applied Energy, 1 March 2015, vol. 141, pp. 42-56.
DOI: 10.1016/j.apenergy.2014.12.020
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 5: Understanding Evolutionary Algorithms
• Evolutionary algorithms benchmarking to
understand computational intelligence of
these algorithms (→ storage requirement!),
• aim: Machine Learning to design
an optimization algorithm
(learning to learn).
• Example CI Algorithm Mechanism Design:
Control Parameters Self-Adaptation (in DE).
Video: https://www.youtube.com/watch?v=R244LZpZSG0
Application stacks for real code:
inspired by previous computational
optimization competitions in
continuous settings that used
test functions for
optimization application domains:
• single-objective: CEC 2005,
2013, 2014, 2015
• constrained: CEC 2006, CEC 2007, CEC 2010
• multi-modal: CEC 2010, SWEVO 2016
• black-box (target value): BBOB 2009, COCO
2016
• noisy optimization: BBOB 2009
• large-scale: CEC 2008, CEC 2010
• dynamic: CEC 2009, CEC 2014
• real-world: CEC 2011
• computationally expensive: CEC 2013, CEC
2015
• learning-based: CEC 2015
• 100-digit (50% targets): 2019 joined CEC,
SEMCCO, GECCO
• multi-objective: CEC 2002, CEC 2007, CEC
2009, CEC 2014
• bi-objective: CEC 2008
• many objective: CEC 2018
Tuning/ranking/hyperheuristics use. → DEs as usual
winner algorithms.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 6: new DAPHNE Use Cases
Example Use Cases
• DLR Earth Observation
• ESA Sentinel-1/2 datasets  4PB/year
• Training of local climate zone classifiers on So2Sat LCZ42
(15 experts, 400K instances, 10 labels each, ~55GB HDF5)
• ML pipeline: preprocessing,
ResNet-20, climate models
• IFAT Semiconductor Ion Beam Tuning
• KAI Semiconductor Material Degradation
• AVL Vehicle Development Process (ejector geometries, KPIs)
• ML-assisted simulations, data cleaning, augmentation
• Cleaning during exploratory query processing
[So2Sat LC42: https://mediatum.ub.tum.de/1454690]
[Xiao Xiang Zhu et al: So2Sat LCZ42: A
Benchmark Dataset for the Classification of
Global Local Climate Zones. GRSM 8(3) 2020]
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
HPC Initiatives
(Part II: Second subpart)
Timeline (as member) of recent impactful HPC initiatives including Slovenia:
• SLING: Slovenian national supercomputing network, 2010-05-03–,
• SIHPC: Slovenian High-Performance Computing Centre, 2016-03-04–
• ImAppNIO: Improving Applicability of Nature-Inspired Optimisation
by Joining Theory and Practice, 2016-03-09–2020-10-31
• cHiPSet: High-Performance Modelling and Simulation for Big Data
Applications, 2015-04-08–2019-04-07,
• HPC RIVR: UPGRADING OF NATIONAL RESEARCH INFRASTRUCTURES,
Investment Program, 2018-03-01–2020-09-15,
• TFoB: IEEE CIS Task Force on Benchmarking, January 2020–,
• EuroCC: National Competence Centres in the framework of EuroHPC,
2020-09-01–(2022-08-31),
• DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data
Management, HPC, and Machine Learning, 2020-12-01–(2024-11-30).
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Initiatives: SLING, SIHPC, HPC RIVR, EuroCC
• There is a federated and orchestrated aim
towards HPC infrastructure in Slovenia,
especially through:
• SLING: Slovenian national supercomputing network
→ has federated the initiative push towards
orchestration of HPC resources across the country.
• SIHPC: Slovenian High-Performance Computing Centre
→ has orchestrated the first EU funds application
towards HPC Teaming in the country
(and Participation of Slovenia in PRACE 2).
• HPC RIVR: UPGRADING OF NATIONAL RESEARCH
INFRASTRUCTURES, Investment Program
→ has provided an investment in experimental HPC
infrastructure.
• EuroCC: National Competence Centres in the framework of
EuroHPC
→ has secured a National Competence Centre (EuroHPC).
Vega supercomputer online
Consortium Slovenian High-Performance Computing Centre
Aškerčeva ulica 6
SI-1000 Ljubljana
Slovenia
Ljubljana, 22. 2. 2017
prof. dr. Anwar Osseyran
PRACE Council Chair
Subject: Participation of Slovenia in PRACE 2
Dear professor Osseyran,
In March 2016 a consortium Slovenski superračunalniški center (Slovenian High-Performance
Computing Centre - SIHPC) was established with a founding act (Attachment 1) where article 6
claims that the consortium will join PRACE and that University of Ljubljana, Faculty of
mechanical engineering (ULFME) will represent the consortium in the PRACE. The legal
representative of ULFME in the consortium and therefore, also in the PRACE (i.e., the delegate
in PRACE Council with full authorization) is prof. dr. Jožef Duhovnik, as follows from
appointment of the dean of ULFME (Attachment 2).
The consortium has also agreed that it joins PRACE 2 optional programme as contributing GP.
With best regards,
assist. prof. dr. Aleš Zamuda, vice-president of SIHPC
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Initiatives: ImAppNIO, cHiPSet, TFoB, DAPHNE
Aim towards software to run HPC and improve capabilities:
• ImAppNIO: Improving Applicability of Nature-Inspired Optimisation
by Joining Theory and Practice,
→ improve capabilities through benchmarking (to understand (and to
learn to learn)) CI algorithms
• cHiPSet: High-Performance Modelling and Simulation for Big Data
Applications,
→ include HPC in Modelling and Simulation (of the process to be
learned)
• TFoB: IEEE CIS Task Force on Benchmarking,
→ includes CI benchmarking opportunities, where HPC would enable
new capabilities.
• DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data
Management, HPC, and Machine Learning.
→ to define and build an open and extensible system infrastructure
for integrated data analysis pipelines, including data management and
processing, high-performance computing (HPC), and machine learning
(ML) training and scoring https://daphne-eu.github.io/
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
EuroHPC Vega 
Deploying DAPHNE
(Part II: Third subpart)
MODA (Monitoring and Operational Data Analytics) tools for
• collecting, analyzing, and visualizing
• rich system and application data, and
• my opinion on how one can make sense of the data for
actionable insights.
• Explained through previous examples:
from a HPC User Perspective.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
MODA Actionable Insights, Explained From a HPC
User Perspective, Through the Example of
Summarization
Most interesting findings of summarization on HPC example
are
• the fitness of the NLP model keeps increasing with prolonging
the dedicated HPC resources (see below) and that
• the fitness improvement correlates with ROUGE evaluation in
the benchmark, i.e. better summaries.
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
1 10 100 1000 10000
ROUGE-1R
ROUGE-2R
ROUGE-LR
ROUGE-SU4R
Fitness (scaled)
Hence, the use of HPC
significantly
contributes to
capability of this NLP
challenge.
However, the MODA insight also provided the
useful task running times and resource
usage.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Running the Tasks on HPC: ARC Job Preparation
Parallel summarization tasks on grid through ARC.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Running the Tasks on HPC: ARC Job Submission,
Results Retrieval  Merging [JoCS2020]
Through an HPC
approach and by
parallelization of tasks,
a data-driven
summarization model
optimization yields
improved benchmark
metric results (drawn
using gnuplot merge).
MODA is needed
to run again and
improve upon, to
forecast how to
set required task
running time and
resources
(predicting system
response).
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Monitoring and Operational Data Analytics
• Monitor used (jobs, CPU/wall time, etc.):
Smirnova, Oxana. The Grid Monitor. Usage manual,
Tech. Rep. NORDUGRID-MANUAL-5, The NorduGrid
Collaboration, 2003.
http://www.nordugrid.org/documents/
http://www.nordugrid.org/manuals.html
http://www.nordugrid.org/documents/monitor.pdf
• Deployed at:
www.nordugrid.org/monitor/
• NorduGrid Grid Monitor
Sampled: 2021-06-28 at 17-57-08
• Nation-wide in Slovenia:
https://www.sling.si/gridmonitor/loadmon.php
http://www.nordugrid.org/monitor/index.php?
display=vo=Slovenia
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
MODA Example From: ARC at Jost
Example experiments from DOI: 10.1016/j.swevo.2015.10.007 (SPSRDEMMS)
– job YYULDmGOXpmnmmR0Xox1SiGmABFKDmABFKDmrtMKDmABFKDm66faPo.
Sample ARC file gridlog/diag (2–3 day Wall Times).
runtimeenvironments=APPS/ARNES/MPI−1.6−R ;
CPUUsage=99%
MaxResidentMemory=5824kB
AverageUnsharedMemory=0kB
AverageUnsharedStack=0kB
AverageSharedMemory=0kB
PageSize=4096B
MajorPageFaults=4
MinorPageFaults=1213758
Swaps=0
ForcedSwitches=36371494
WaitSwitches=170435
Inputs=45608
Outputs=477168
SocketReceived=0
SocketSent=0
Signals =0
nodename=wn003 . arnes . s i
WallTime=148332s
Processors=16
UserTime=147921.14s
KernelTime =2.54 s
AverageTotalMemory=0kB
AverageResidentMemory=0kB
LRMSStartTime=20150906104626Z
LRMSEndTime=20150908035838Z
exitcode=0
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
EuroCC HPC: Vega (TOP500 #106, HPCG #56 — June 2021)
• Researchers apply to EuroHPC JU calls for access.
• Regular calls opened in 2021 fall (Benchmark  Development).
• https://prace-ri.eu/benchmark-and-development-access-information-for-applicants/
• 60% capacities for national share (70% OA, 20% commercial, 10% host (community, urgent
priority of national importance, maintenance)) + 35% EuroHPC JU share (approved applications)
• Has a SLURM dev partition for SSH login (SLURM partitions w/ CPUs: login[0001-0004]=128;
login[0005-0008]=64; cn[0001-384,0577-0960]=256; cn[0385-0576]=256; gn[01-60]=256).
Listing 1: Setting up at Vega — slurm dev partition access (login).
1 [ ales . zamuda@vglogin0007 ˜]$ s i n g u l a r i t y pull qmake . s i f docker : / / ak352 /qmake−opencv
2 [ ales . zamuda@vglogin0007 ˜]$ s i n g u l a r i t y run qmake . s i f bash
3 cd sum; qmake ; make clean ; make
4
5 [ ales . zamuda@vglogin0007 ˜]$ cat runme . sh
6 # ! / bin / bash
7 cd sum  time mpirun 
8 −
−mca btl openib warn no device params found 0 
9 . / summarizer 
10 −
−useBinaryDEMPI −
−i n p u t f i l e mRNA−1273−t x t 
11 −
−withoutStatementMarkersInput 
12 −
−printPreprocessProgress calcInverseTermFrequencyndTermWeights 
13 −
−printOptimizationBestInGeneration 
14 −
−summarylength 600 −
−NP 200 
15 −
−GMAX 400 
16  summarizer . out . $SLURM PROCID 
17 2 summarizer . err . $SLURM PROCID
Text summarization/generation systems
are getting more and more useful
and accessible on deployed systems
(e.g. OpenAI’s ChatGPT, Microsoft’s Bing AI part,
NVIDIA’s (Fin)Megatron, BLOOM,
LaMDA, BERT, VALL-E, Point-E, etc.). -0.65
-0.6
-0.55
-0.5
-0.45
-0.4
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
1 10 100
Evaluation
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
MODA at First EuroCC HPC Vega Supercomputer
Listing 2: Runnig at Vega  MODA.
1 ===================================================================== GMAX=200 =====
2 [ ales . zamuda@vglogin0002 ˜]$ srun −
−cpu−bind=cores −
−nodes=1 −
−ntasks−per−node=101 
3 −
−cpus−per−task=2 −
−
mem=180G s i n g u l a r i t y run qmake . s i f bash
4 srun : job 4531374 queued and waiting for resources
5 srun : job 4531374 has been allocated resources
6 [ ”$SLURM PROCID” = 0 ]  . / runme . sh
7 real 5m22.475 s
8 user 484m42.262 s
9 sys 1m38.304 s
10 ===================================================================== NODES=51 =====
11 [ ales . zamuda@vglogin0002 ˜]$ srun −
−cpu−bind=cores −
−nodes=1 −
−ntasks−per−node=51 
12 −
−cpus−per−task=2 −
−
mem=180G s i n g u l a r i t y run qmake . s i f bash
13 srun : job 4531746 queued and waiting for resources
14 srun : job 4531746 has been allocated resources
15 [ ”$SLURM PROCID” = 0 ]  . / runme . sh
16 real 13m57.851 s
17 user 431m25.833 s
18 sys 0m29.272 s
19 ===================================================================== GMAX=400 =====
20 [ ales . zamuda@vglogin0002 ˜]$ srun −
−cpu−bind=cores −
−nodes=1 −
−ntasks−per−node=101 
21 −
−cpus−per−task=2 −
−
mem=180G s i n g u l a r i t y run qmake . s i f bash
22 srun : job 4532697 queued and waiting for resources
23 srun : job 4532697 has been allocated resources
24 [ ”$SLURM PROCID” = 0 ]  . / runme . sh
25 real 6m14.687 s
26 user 590m45.641 s
27 sys 1m40.930 s
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
More Output: SLURM accounting
Listing 3: Example accounting tool at Vega: sacct.
[ ales . zamuda@vglogin0002 ˜]$ sacct
4531374. ext+ extern vega−users 202 COMPLETED 0:0
4531746. ext+ extern vega−users 102 COMPLETED 0:0
4532697. ext+ extern vega−users 202 COMPLETED 0:0
[ ales . zamuda@vglogin0002 ˜]$ sacct −j 4531374 −j 4531746 −j 4532697 
−o MaxRSS , MaxVMSize , AvePages
MaxRSS MaxVMSize AvePages
−
−
−
−
−
−
−
−
−
− −
−
−
−
−
−
−
−
−
− −
−
−
−
−
−
−
−
−
−
0 217052K 0
26403828K 1264384K 22
0 217052K 0
13325268K 1264380K 0
0 217052K 0
26404356K 1264384K 30
Future MODA testings:
• testing the web interface for job analysis (as available from HPC RIVR);
• profiling MPI inter-node communication;
• use profilers and monitoring tools available
— in the context of heterogeneous setups, like e.g.
• TAU Performance System — http://www.cs.uoregon.edu/research/tau/home.php,
• LIKWID Performance Tools — https://hpc.fau.de/research/tools/likwid/.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Deploying DAPHNE on Vega
Main documentation file:
Deploy.md
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
SLURM
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
More HPC User Perspective Nation-wide in Slovenia
More: at University of Maribor, Bologna study courses for
teaching (training) of Computer Science at cycles — click URL:
• level 1 (BSc)
• year 1: Programming I – e.g. C++ syntax
• year 2: Computer Architectures – e.g. assembly, microcode, ILP
• year 3: Parallell and Distributed Computing – e.g. OpenMP, MPI, CUDA
• level 2 (MSc)
• year 1: Cloud Computing Deployment and Management – e.g. arc, slurm,
Hadoop, containers (docker, singularity) through
virtualization
• level 3 (PhD)
• EU and other national projects research:
HPC RIVR, EuroCC, DAPHNE, ... – e.g. scaling new systems
of CI  Operational Research of ... over HPC
• IEEE Computational Intelligence Task Force on Benchmarking
• Scientific Journals (e.g. SWEVO, TEVC, JoCS, ASOC, INS)
These contribute towards Sustainable Development of HPC.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Biography and References: Organizations
• Associate Professor at University of Maribor, Slovenia
• Continuous research programme funded by Slovenian Research Agency, P2-0041: Computer
Systems, Methodologies, and Intelligent Services
• EU H2020 Research and Innovation project, holder for UM part: Integrated
Data Analysis Pipelines for Large-Scale Data Management, HPC, and
Machine Learning (DAPHNE), https://cordis.europa.eu/project/id/957407
• IEEE (Institute of Electrical and Electronics Engineers) SM
• IEEE Computational Intelligence Society (CIS), senior member
• IEEE CIS ISATC (Intelligent Systems Applications Technical Committee) —
Vice Chair Conferences; IEEE CIS ECTC (Evolutionary Computation TC)
• IEEE CIS Task Force on Benchmarking, chair Website link
• IEEE CIS, Slovenia Section Chapter (CH08873), founding chair
• IEEE Slovenia Section, 2018–2021 vice chair, 2018-21
• IEEE Young Professionals Slovenia, 2016-19 chair
• ACM SIGEVO (Special Interest Group on Genetic and Evolutionary Computation); EurAI; SLAIS
• Associate Editor: Swarm and Evolutionary Computation (2016-’22), Human-centric Computing and
Information Sciences, Frontiers in robotics and AI (section Robot Learning and Evolution)
• Co-operation in Science and Techology (COST) Association Management Committee, member:
• CA COST Action CA22137: Randomised Optimisation Algorithms Research
Network (ROAR-NET), 2.10.2023–1.10.1027
• CA COST Action CA15140: Improving Applicability of Nature-Inspired Optimisation by Joining
Theory and Practice (ImAppNIO), WG3 VC
• ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications
(cHiPSet);
• More: SI-HPC vice-chair; HPC-RIVR user; EuroHPC Vega user; SLAIS Honorary Tribunal; SLING CB member;
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Biography and References: Top Publications
• Aleš Zamuda, Elena Lloret. Optimizing Data-Driven Models for Summarization as Parallel Tasks.
Journal of Computational Science, 2020, vol. 42, pp. 101101. DOI 10.1016/j.jocs.2020.101101.
• A. Zamuda, J. D. Hernández Sosa. Success history applied to expert system for underwater glider path
planning using differential evolution. Expert Systems with Applications, 2019, vol. 119, pp. 155-170. DOI
10.1016/j.eswa.2018.10.048
• C. Lucas, D. Hernández-Sosa, D. Greiner, A. Zamuda, R. Caldeira. An Approach to Multi-Objective Path
Planning Optimization for Underwater Gliders. Sensors, 2019, vol. 19, no. 24, pp. 5506. DOI
10.3390/s19245506.
• A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, A. Zamuda. Distance Based Parameter Adaptation for
Success-History based Differential Evolution. Swarm and Evolutionary Computation, 2019, vol. 50, pp.
100462. DOI 10.1016/j.swevo.2018.10.013.
• A. Zamuda, J. Brest. Self-adaptive control parameters’ randomization frequency and propagations
in differential evolution. Swarm and Evolutionary Computation, 2015, vol. 25C, pp. 72-99.
DOI 10.1016/j.swevo.2015.10.007.
• A. Zamuda, J. D. Hernández Sosa, L. Adler. Constrained Differential Evolution Optimization for
Underwater Glider Path Planning in Sub-mesoscale Eddy Sampling. Applied Soft Computing, 2016,
vol. 42, pp. 93-118. DOI 10.1016/j.asoc.2016.01.038.
• A. Zamuda, J. D. Hernández Sosa. Differential Evolution and Underwater Glider Path Planning
Applied to the Short-Term Opportunistic Sampling of Dynamic Mesoscale Ocean Structures.
Applied Soft Computing, vol. 24, November 2014, pp. 95-108. DOI 10.1016/j.asoc.2014.06.048.
• A. Zamuda, J. Brest. Vectorized Procedural Models for Animated Trees Reconstruction using
Differential Evolution. Information Sciences, vol. 278, pp. 1-21, 2014. DOI 10.1016/j.ins.2014.04.037.
• A. Zamuda, J. Brest. Environmental Framework to Visualize Emergent Artificial Forest Ecosystems.
Information Sciences, vol. 220, pp. 522-540, 2013. DOI 10.1016/j.ins.2012.07.031.
• A. Glotić, A. Zamuda. Short-term combined economic and emission hydrothermal optimization by
surrogate differential evolution. Applied Energy, 1 March 2015, vol. 141, pp. 42-56.
DOI 10.1016/j.apenergy.2014.12.020.
• H. Hamann, Y. Khaluf, J. Botev, M. Divband Soorati, E. Ferrante, O. Kosak, J.-M. Montanier, S. Mostaghim,
R. Redpath, J. Timmis, F. Veenstra, M. Wahby and A. Zamuda. Hybrid Societies: Challenges and
Perspectives in the Design of Collective Behavior in Self-organizing Systems. Frontiers in Robotics
and AI, 2016, vol. 3, no. 14. DOI 10.3389/frobt.2016.00014.
• J. Šilc, A. Zamuda. Special Issue on ”Bioinspired Optimization” (guest editors). Informatica - An
International Journal of Computing and Informatics, 2015, vol. 39, no. 2, pp. 1-122.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Biography and References: Bound Specific to HPC
PROJECTS:
• DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and Machine Learning
• ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications
• SLING: Slovenian national supercomputing network
• SI-HPC: Slovenian corsortium for High-Performance Computing
• UM HPC-RIVR: Supercomputer at UM, https://www.hpc-rivr.si/
• SmartVillages: Smart digital transformation of villages in the Alpine Space
• Interreg Alpine Space, https://www.alpine-space.eu/projects/smartvillages/en/home
• Interactive multimedia digital signage (PKP, Adin DS)
EDITOR:
• Associate Editor in journals:
• Swarm and Evolutionary Computation (2016-2022),
• Human-centric Computing and Information Sciences (2020-2023),
• Frontiers in robotics and AI, section Robot Learning and Evolution (2021-2023),
• etc.
• Mathematics-MDPI, Special Issue Guest Editor: ”Innovations in High-Performance Computing”
• Mathematics-MDPI, Special Issue Guest Editor: ”Evolutionary Algorithms in Engineering Design
Optimization”
• Journal of advanced engineering and computation (member of editorial board since 2019). Viet Nam: Ton
Duc Thang University, 2017-. ISSN 2588-123X.
• Cloud Computing and Data Science (Associate Editor, since 2019). Universal Wiser Publisher Pte.Ltd.
• D. Gleich, P. Planinšič, A. Zamuda. 2018 25th International Conference on Systems, Signals and Image
Processing (IWSSIP). IEEE Xplore, Maribor, 20-22 June 2018.
• General Chair: 7-th Joint International Conferences on Swarm, Evolutionary and Memetic Computing
Conference (SEMCCO 2019)  Fuzzy And Neural Computing Conference (FANCCO 2019), Maribor, Slovenia,
EU, 10-12 July 2019; co-editors: Aleš Zamuda, Swagatam Das, Ponnuthurai Nagaratnam Suganthan, Bijaya
Ketan Panigrahi.
• Organizers member: GECCO 2022, GECCO 2023
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Biography and References: More Publications on HPC
• Aleš Zamuda, Elena Lloret. Optimizing Data-Driven Models for Summarization as Parallel Tasks.
Journal of Computational Science, 2020, vol. 42, pp. 101101. DOI 10.1016/j.jocs.2020.101101.
• Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm, Philippe Bonnet, Florina
Ciorba, Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy, Christian Faerber, Georgios Goumas, Dirk Habich,
Niclas Hedam, Marlies Hofer, Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman Kern, Tomaž
Kosar, Alexander Krause, Daniel Krems, Andreas Laber, Wolfgang Lehner, Eric Mier, Marcus Paradies,
Bernhard Peischl, Gabrielle Poerwawinata, Stratos Psomadakis, Tilmann Rabl, Piotr Ratuszniak, Pedro
Silva, Nikolai Skuppin, Andreas Starzacher, Benjamin Steinwender, Ilin Tolovski, Pınar Tözün, Wojciech
Ulatowski, Yuanyuan Wang, Izajasz Wrosz, Aleš Zamuda, Ce Zhang, Xiao Xiang Zhu. DAPHNE: An Open
and Extensible System Infrastructure for Integrated Data Analysis Pipelines. 12th Conference on
Innovative Data Systems Research, CIDR 2022, Chaminade, CA, January 9-12, 2022.
• Aleš Zamuda, Vincenzo Crescimanna, Juan C. Burguillo, Joana Matos Dias, Katarzyna Wegrzyn-Wolska,
Imen Rached, Horacio González-Vélez, Roman Senkerik, Claudia Pop, Tudor Cioara, Ioan Salomie, Andrea
Bracciali. Forecasting Cryptocurrency Value by Sentiment Analysis: An HPC-Oriented Survey of the
State-of-the-Art in the Cloud Era. Kołodziej J., González-Vélez H. (eds) High-Performance Modelling and
Simulation for Big Data Applications. Lecture Notes in Computer Science, vol 11400, 2019, pp. 325-349.
DOI 10.1007/978-3-030-16272-6 12.
• Nenad Karolija, Aleš Zamuda. On cloud-supported web-based integrated development environment
for programming dataflow architectures. MILUTINOVIĆ, Veljko (ur.), KOTLAR, Milos (ur.). Exploring the
DataFlow supercomputing paradigm: example algorithms for selected applications, (Computer
communications and networks (Internet), ISSN 2197-8433), 2019, pp. 41-51. DOI
10.1007/978-3-030-13803-5 2.
• Simone Spolaor, Marco Gribaudo, Mauro Iacono, Tomas Kadavy, Zuzana Komı́nková Oplatková, Giancarlo
Mauri, Sabri Pllana, Roman Senkerik, Natalija Stojanovic, Esko Turunen, Adam Viktorin, Salvatore Vitabile,
Aleš Zamuda, Marco S. Nobile. Towards Human Cell Simulation. Kołodziej J., González-Vélez H. (eds)
High-Performance Modelling and Simulation for Big Data Applications. Lecture Notes in Computer
Science, vol 11400, 2019, pp. 221-249. DOI 10.1007/978-3-030-16272-6 8.
• A. Zamuda, J. D. Hernandez Sosa, L. Adler. Improving Constrained Glider Trajectories for Ocean Eddy
Border Sampling within Extended Mission Planning Time. IEEE Congress on Evolutionary Computation
(CEC) 2016, 2016, pp. 1727-1734.
• A. Zamuda. Function evaluations upto 1e+12 and large population sizes assessed in distance-based
success history differential evolution for 100-digit challenge and numerical optimization scenarios
(DISHchain 1e+12): a competition entry for ”100-digit challenge, and four other numerical optimization
competitions” at the genetic and evolutionary computation conference (GECCO) 2019. Proceedings of the
Genetic and Evolutionary Computation Conference Companion (GECCO 2019), 2019, pp. 11-12.
• ... several more experiments for papers run using HPCs.
• ... also, pedagogic materials in Slovenian and English — see Conclusion .
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57
AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Promo materials: Calls for Papers, Websites
CS FERI WWW
CIS TFoB
CFPs WWW LI Twitter
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57
Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57

More Related Content

PDF
Randomised Optimisation Algorithms @ DAPHNE GAM 2024
PDF
Randomised Optimisation Algorithms Pipelines @ DAPHNE FRM 2025
PDF
Very Large Scale Global Optimization with Randomised Optimisation Algorithms ...
PDF
Modelling, Simulation, and Computer-aided Design in Computational, Evolutiona...
PDF
Deployment of Randomised Optimisation Algorithms Benchmarking in DAPHNE
PDF
Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking ...
PDF
Speeding Up Vectorized Benchmarking of Optimization Algorithms
PDF
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...
Randomised Optimisation Algorithms @ DAPHNE GAM 2024
Randomised Optimisation Algorithms Pipelines @ DAPHNE FRM 2025
Very Large Scale Global Optimization with Randomised Optimisation Algorithms ...
Modelling, Simulation, and Computer-aided Design in Computational, Evolutiona...
Deployment of Randomised Optimisation Algorithms Benchmarking in DAPHNE
Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking ...
Speeding Up Vectorized Benchmarking of Optimization Algorithms
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...

Similar to Randomised Optimisation Algorithms in DAPHNE (20)

PDF
Evolutionary Optimization Algorithms & Large-Scale Machine Learning
PDF
ULPGC2023-Erasmus+lectures_Ales_Zamuda_SystemsTheory+IntelligentAutonomousSys...
ODP
Parallel Problem Solving from Nature session-4
PDF
Load balancing energy power plants with high-performance data analytics (HPDA...
PPTX
Energy management system
PDF
Evolutionary Computation Wellington Pinheiro Dos Santos Editor
PDF
Sca a sine cosine algorithm for solving optimization problems
PPTX
kvjhvhjvhjhjhjghjghjgjhgjhgjhgjhgjhgjhgjhgjh
PDF
PPTX
PSO__AndryPinto_InesDomingues_LuisRocha_HugoAlves_SusanaCruz.pptx
PDF
Evolutionary Optimization Using Big Data from Engineering Simulations and Apa...
PDF
Ja3615721579
PDF
Differential evolution optimization technique
PPTX
NIPS 2016. BayesOpt workshop invited talk.
PDF
Developing Four Metaheuristic Algorithms for Multiple-Objective Management of...
PDF
A Hybrid Pareto Based Multi Objective Evolutionary Algorithm for a Partial Fl...
PPSX
2009 MSc Presentation for Parallel-MEGA
PDF
Optimization, Learning Algorithms and Applications.pdf
PDF
Solving 100-Digit Challenge with Score 100 by Extended Running Time and Paral...
PDF
Ijsea04031014
Evolutionary Optimization Algorithms & Large-Scale Machine Learning
ULPGC2023-Erasmus+lectures_Ales_Zamuda_SystemsTheory+IntelligentAutonomousSys...
Parallel Problem Solving from Nature session-4
Load balancing energy power plants with high-performance data analytics (HPDA...
Energy management system
Evolutionary Computation Wellington Pinheiro Dos Santos Editor
Sca a sine cosine algorithm for solving optimization problems
kvjhvhjvhjhjhjghjghjgjhgjhgjhgjhgjhgjhgjhgjh
PSO__AndryPinto_InesDomingues_LuisRocha_HugoAlves_SusanaCruz.pptx
Evolutionary Optimization Using Big Data from Engineering Simulations and Apa...
Ja3615721579
Differential evolution optimization technique
NIPS 2016. BayesOpt workshop invited talk.
Developing Four Metaheuristic Algorithms for Multiple-Objective Management of...
A Hybrid Pareto Based Multi Objective Evolutionary Algorithm for a Partial Fl...
2009 MSc Presentation for Parallel-MEGA
Optimization, Learning Algorithms and Applications.pdf
Solving 100-Digit Challenge with Score 100 by Extended Running Time and Paral...
Ijsea04031014
Ad

More from University of Maribor (18)

PDF
Digital Strategic Communication: the Case of the 1st DAPHNE Symposium
PDF
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
PDF
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
PDF
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
PDF
Poročilo odbora CIS (CH08873) za leto 2023 na letni skupščini IEEE Slovenija ...
PDF
EuroHPC AI in DAPHNE and Text Summarization
PDF
EuroHPC AI in DAPHNE
PDF
Generative AI Using HPC in Text Summarization and Energy Plants
PDF
Poročilo ODBORA CIS (CH08873) za leto 2020
PDF
Poročilo ODBORA CIS (CH08873) za leto 2019
PDF
Poročilo ODBORA CIS (CH08873) za leto 2022
PDF
Delo vodje odbora IEEE: naloge, dobre prakse, poročanje
PDF
IEEE Slovenia: Introduction (in Slovene), with details in English
PDF
IEEE Slovenia CIS in 2021 (a report in Slovene language)
PDF
Superračunalništvo v Mariboru (2021, CIS11, ZID)
PDF
Monitoring and Operational Data Analytics from a User Perspective at First Eu...
PDF
Parallelization of Benchmarking using HPC: Text Summarization in Natural Lang...
PDF
Examples Implementing Black-Box Discrete Optimization Benchmarking Survey for...
Digital Strategic Communication: the Case of the 1st DAPHNE Symposium
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Poročilo odbora CIS (CH08873) za leto 2023 na letni skupščini IEEE Slovenija ...
EuroHPC AI in DAPHNE and Text Summarization
EuroHPC AI in DAPHNE
Generative AI Using HPC in Text Summarization and Energy Plants
Poročilo ODBORA CIS (CH08873) za leto 2020
Poročilo ODBORA CIS (CH08873) za leto 2019
Poročilo ODBORA CIS (CH08873) za leto 2022
Delo vodje odbora IEEE: naloge, dobre prakse, poročanje
IEEE Slovenia: Introduction (in Slovene), with details in English
IEEE Slovenia CIS in 2021 (a report in Slovene language)
Superračunalništvo v Mariboru (2021, CIS11, ZID)
Monitoring and Operational Data Analytics from a User Perspective at First Eu...
Parallelization of Benchmarking using HPC: Text Summarization in Natural Lang...
Examples Implementing Black-Box Discrete Optimization Benchmarking Survey for...
Ad

Recently uploaded (20)

PPTX
INTRODUCTION TO EVS | Concept of sustainability
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
Microbiology with diagram medical studies .pptx
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PDF
HPLC-PPT.docx high performance liquid chromatography
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
INTRODUCTION TO EVS | Concept of sustainability
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
Microbiology with diagram medical studies .pptx
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Comparative Structure of Integument in Vertebrates.pptx
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
Cell Membrane: Structure, Composition & Functions
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
2Systematics of Living Organisms t-.pptx
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
AlphaEarth Foundations and the Satellite Embedding dataset
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
POSITIONING IN OPERATION THEATRE ROOM.ppt
The KM-GBF monitoring framework – status & key messages.pptx
HPLC-PPT.docx high performance liquid chromatography
Placing the Near-Earth Object Impact Probability in Context
Introduction to Fisheries Biotechnology_Lesson 1.pptx
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.

Randomised Optimisation Algorithms in DAPHNE

  • 1. Introduction Backgrounds ROA DAPHNE Results Conclusion Austrian-Slovenian HPC Meeting 2024 Grundlsee, 10–13 June 2024 ASHPC24 Session 5 Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024 Randomised Optimisation Algorithms in DAPHNE Aleš Zamuda University of Maribor <ales.zamuda@um.si> Acknowledgement. This work is supported by project DAPHNE (Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC and Machine Learning) funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957407and ARIS (Slovenian Research And Innovation Agency) programme P2-0041 (Computer Systems, Methodologies, and Intelligent Services). -50 -40 -30 -20 -10 0 10 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 -50 -40 -30 -20 -10 0 10 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 -50 -40 -30 -20 -10 0 10 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 1/57
  • 2. Introduction Backgrounds ROA DAPHNE Results Conclusion Austrian-Slovenian HPC Meeting 2024 Grundlsee, 10–13 June 2024 ASHPC24 Session 5 Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024 Randomised Optimisation Algorithms in DAPHNE — Introduction & Outline — Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 2/57
  • 3. Introduction Backgrounds ROA DAPHNE Results Conclusion Introduction & Outline: Aims of this Talk 1 (5 minutes) Part I: Background — Randomised Optimisation Algorithms (ROA) 2 (3 minutes) Part II: DAPHNE 3 (3 minutes) Part III: ASHPC24: ROA in DAPHNE 4 (1 minutes) Part IV: Conclusion with Takeaways 5 (1 minute) Questions, Misc 6 (Appendix) Business, Marketing Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 3/57
  • 4. Introduction Backgrounds ROA DAPHNE Results Conclusion Warmup Highlights on (Generative) AI w/ ChatGPT+Synthesia: visiting Canaries, ASHPC Photo/video: 1) HPC generated introduction (ASHPC23); 2) with underwater glider at ULPGC SIANI; 3) infront SIANI; 4) with autonomous sailboat at SIANI; 5) rebooting in March 2023 (digital green); 6) generative animation If 2023 was about Generative AI, is 2024 on CI omnia Robotics? Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 4/57
  • 5. Introduction Backgrounds ROA DAPHNE Results Conclusion Introduction: ASHPC21 — Supercomputing and HPC — Vectorized Benchmarking Opportunities A closer observation of execution times for workloads processed in [2] is provided in Fig. 1, where it is seen that the execution time (color of the patches) changes for different benchmark executions. Fig. 1: Execution time of full benchmarks for different instances of optimization algorithms. Each patch presents one full benchmark execution to evaluate an optimization algorithm. • Therefore, it is useful to consider speeding up of benchmarking through vectorization of the tasks that a benchmark is comprised of. • These include e.g., • parallell data cleaning part of an individual ML tile [1] or • synchronization between tasks when executing parallell geospatial processing [3]. • To enable the possibilities of data cleaning (preprocessing) as well as geospatial processing in parallell, such opportunities first need to be found or designed, if none yet exist for a problem tackled. • Therefore, this contribution will highlight some experiences with finding and designing parallell ML pipelines for vectorization and observe speedup gained from that. • The speeding up focus will be on optimization algorithms within such ML pipelines, but some more future work possibilities will also be provided. [2] Zamuda, A, Brest, J., Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm and Evolutionary Computation 25C, 72-99 (2015). [3] Zamuda, A., Hernández Sosa, J. D., Success history applied to expert system for underwater glider path planning using differential evolution. Expert Systems with Applications 119, 155-170 (2019). Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 5/57
  • 6. Introduction Backgrounds ROA DAPHNE Results Conclusion Austrian-Slovenian HPC Meeting 2024 Grundlsee, 10–13 June 2024 ASHPC24 Session 5 Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024 Randomised Optimisation Algorithms in DAPHNE — Background — Randomised Optimisation Algorithms (ROA) — Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 6/57
  • 7. Introduction Backgrounds ROA DAPHNE Results Conclusion Differential Evolution (DE) • A floating point encoding EA for global optimization over continuous spaces, • through generations, the evolution process improves population of vectors, • iteratively by combining a parent individual and several other individuals of the same population, using evolutionary operators. • We choose the strategy jDE/rand/1/bin • mutation: vi,G+1 = xr1,G + F × (xr2,G − xr3,G), • crossover: ui,j,G+1 = ( vi,j,G+1 if rand(0, 1) ≤ CR or j = jrand xi,j,G otherwise , • selection: xi,G+1 = ( ui,G+1 if f(ui,G+1) < f(xi,G) xi,G otherwise , Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 7/57
  • 8. Introduction Backgrounds ROA DAPHNE Results Conclusion Background: ROA in DAPHNE & ASHPCs • June 2021, ASHPC211 ; June 2022, ASHPC22 • extended abstract submitted (DAPHNE vision on Integrated pipelines), lightning talk page, and printed poster presented (listing syntax where communication between nodes is abstracted) • June 2023, ASHPC232 : 2 extended abstract submitted (ROA are sought in DAPHNE; ROA role in GenAI3 ), lightning talk page, printed poster presented, and a talk with slides • August 2023, Euro-Par 20234 : initial demo created for ROA, confirming that ROA can run in DAPHNE (Apple M1) • September 2023, seminars at Alicante (UA — in Ada Lovelace room, Conferencia Invitada) and Barcelona (BSC — SORS: Severo Ochoa Research Seminar): role of ROA in NLP (incl. GenAI), ROA deployment preparations base start for Mare Nostrum 5 (not opened yet at that time) • January 2024, HiPEAC 2024: presentation of the initial benchmarking of ROA in DAPHNE (Apple M3) 1 A. Zamuda. “Parallelization of benchmarking using HPC: text summarization in natural language processing (NLP), glider piloting in deep-sea missions, and search algorithms in computational intelligence (CI)”. In: Austrian-Slovenian HPC Meeting 2021 - ASHPC21. 2021, p. 35. 2 Aleš Zamuda. “Generative AI Using HPC in Text Summarization and Energy Plants”. In: Austrian-Slovenian HPC Meeting 2023–ASHPC23. 2023, p. 5. 3 Zamuda, “Generative AI Using HPC in Text Summarization and Energy Plants”. 4 A. Vontzalidis et al. “DAPHNE Runtime: Harnessing Parallelism for Integrated Data Analysis Pipelines”. In: Euro-Par 2023: Parallel Processing Workshops. Ed. by Demetris Zeinalipour et al. Lecture Notes in Computer Science, vol. 14352. Cham: Springer, 2024, pp. 242–246. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 8/57
  • 9. Introduction Backgrounds ROA DAPHNE Results Conclusion Austrian-Slovenian HPC Meeting 2024 Grundlsee, 10–13 June 2024 ASHPC24 Session 5 Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024 Randomised Optimisation Algorithms in DAPHNE — DAPHNE — Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 9/57
  • 10. Introduction Backgrounds ROA DAPHNE Results Conclusion DAPHNE Partners https://daphne-eu.eu Project Consortium 13 partner institutions from 7 countries • DM, ML, HPC • Academia & industry • Different application domains 14 • Technical University Berlin University of Maribor (UM): UM FERI research team I lead (DAPHNE), SLING connection (EuroHPC Vega). https://feri.um.si/en/research/international-and-structural-funds-projects/ integrated-data-analysis-pipelines-for-large-scale-data-management-hpc-and-machine-learning/ Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 10/57
  • 11. Introduction Backgrounds ROA DAPHNE Results Conclusion DAPHNE: Overview Overview: Generic Aspect of the Project • Deployment Challenges • Hardware Challenges • DM+ML+HPC share compilation and runtime techniques / converging cluster hardware • End of Dennard scaling: P = α CFV2 (power density 1) • End of Moore’s law • Amdahl’s law: sp = 1/s  Increasing Specialization #1 Data Representations Sparsity Exploitation from Algorithms to HW dense graph sparse compressed #2 Data Placement Local vs distributed CPUs/ NUMA GPUs FPGAs/ ASICs #3 Data (Value) Types FP32, FP64, INT8, INT32, INT64, UINT8, BF16, TF32, FlexPoint [NVIDIA A100]  DAPHNE Overall Objective: Open and extensible system infrastructure Different Systems/ Libraries Dev Teams Programming Models Resource Managers Cluster Under- utilization Data/File Exchange 3 lessons learnt so far choices made, methodology Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 11/57
  • 12. Introduction Backgrounds ROA DAPHNE Results Conclusion DAPHNE: Functionalities y Functionality Introduction: from Language Abstractions to Distributed Vectorized Execution and Use Cases • Federated matrices/frames + distribution primitives • Hierarchical vectorized pipelines and scheduling • Coordinator (spawns distributed fused pipeline) • #1 Prepare Inputs (N/A, repartition, broadcasts, slices broadcasts as necessary) • #2 Coarse-grained Tasks (tasks run vectorized pipeline) • #3 Combine Outputs (N/A, all-reduce, rbind/cbind) Node 1 X [1: 100M] Node 2 X [100M: 200M] colmu colsd y y (X) XTX XTy dc = DaphneContext() G = dc.from_numpy(npG) G = (G != 0) c = components(G, 100, True).compute() Python API DaphneLib def components(G, maxi, verbose) { n = nrow(G); // get the number of vertexes maxi = 100; c = seq(1, n); // init vertex IDs diff = inf; // init diff to +Infinity iter = 1; // iterative computation of connected components while(diff>0 & iter<=maxi) { u = max(rowMaxs(G * t(c)), c); // neighbor prop diff = sum(u != c); // # of changed vertexes c = u; // update assignment iter = iter + 1; } } Domain-specific Language DaphneDSL Multiple dispatch of functions/kernels Example Use Cases • DLR Earth Observation • ESA Sentinel-1/2 datasets  4PB/year • Training of local climate zone classifiers on So2Sat LCZ42 (15 experts, 400K instances, 10 labels each, ~55GB HDF5) • ML pipeline: preprocessing, ResNet-20, climate models • IFAT Semiconductor Ion Beam Tuning • KAI Semiconductor Material Degradation • AVL Vehicle Development Process (ejector geometries, KPIs) • ML-assisted simulations, data cleaning, augmentation • Cleaning during exploratory query processing Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 12/57
  • 13. Introduction Backgrounds ROA DAPHNE Results Conclusion HPC Sites & Visits Demo at Euro-PAR 20235, also on EuroHPC Vega6 & OpenStack ASHPC23: EuroHPC Vega tour Ales Zamuda @a�eszamuda While visiting today I had the honor visiting the spectacular MareNostrum supercomputers and their installation. From observing afar in ‘06 as v1&v2 were deployed w/ 42&94 Tflops and v3 passing the >Pflop, this tour ‘23 to v4 and v5 was sourcely. Thanks #sors �BSC_CNS @rosabadia Ales Zamuda · @a�eszamuda Sep 12 Show this thread Today I am delighted to present a Severo Ochoa Research Seminar (SORS) at Barcelona Supercomputing Center #BSC, titled: "EuroHPC AI in DAPHNE" (host: Rosa Badia @rosabadia, Workflows and Distributed Computing Group Manager, CS, BSC) bsc.es/research-and-d… #presenting @daphne_eu 4:20 PM · Sep 12, 2023 · Views 165 View post engagements 5 Post your reply Reply Post Ales Zamuda on X: "While visiting @BSC_CNS today I had the hono... https://twitter.com/aleszamuda/status/17016017 5 Vontzalidis et al., “DAPHNE Runtime: Harnessing Parallelism for Integrated Data Analysis Pipelines”. 6 Aleš Zamuda and et al. “Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking Randomised Optimisation Algorithms”. In: International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom). 2024, (to appear). Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 13/57
  • 14. Introduction Backgrounds ROA DAPHNE Results Conclusion Austrian-Slovenian HPC Meeting 2024 Grundlsee, 10–13 June 2024 ASHPC24 Session 5 Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024 Randomised Optimisation Algorithms in DAPHNE — ASHPC24: ROA in DAPHNE — Contribution, Results & Discussion — Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 14/57
  • 15. Introduction Backgrounds ROA DAPHNE Results Conclusion ASHPC24: Contribution • Deploying Randomised Optimisation Algorithms (ROA) in DAPHNE [1] on EuroHPC Vega [2] allows • benchmarking and research in novel and innovative models for Artificial Intelligece (AI) [3]. • The methods that are supported in DAPHNE allow seamless distribution of AI memory • that is required when an AI algorithm run requires a large memory that can be distributed across different HPC nodes. • Using DAPHNE, the benchmarking can be not only run in • the Runtime Environment [2] on an HPC that is much larger than a regular laptop computer, • but also gather monitoring data of the workload while the algorithm is running, • to obtain a benchmarking profile, allowing an informed scientific observation of a novel algorithm under test. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 15/57
  • 16. Introduction Backgrounds ROA DAPHNE Results Conclusion ASHPC24: Results — ROA in DAPHNE Benchmarked Testing: convergence of a ML system ROAR: Randomised Optimisation Algorithm -50 -40 -30 -20 -10 0 10 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 0 1 2 3 4 5 6 7 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 16/57
  • 17. Introduction Backgrounds ROA DAPHNE Results Conclusion ASHPC24: Discussion — ROA in DAPHNE As seen from the plots, the fitness values are convergent, optimizing. -50 -40 -30 -20 -10 0 10 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 Figure 1 (left) shows an example ROA run, with convergence plot for the HappyCat function, f1 = P x2, 0 − 10 2 0.125 + P x2, 0 /2 + P (x) /10 + 0.5 on a sample of different independent runs. Figure 2 (right) shows a convergence plot for the function f2 = P x5 + 1 + max(x, 0), 0 , also on different independent runs. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 17/57
  • 18. Introduction Backgrounds ROA DAPHNE Results Conclusion Austrian-Slovenian HPC Meeting 2024 Grundlsee, 10–13 June 2024 ASHPC24 Session 5 Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024 Randomised Optimisation Algorithms in DAPHNE — IV: Conclusion with Takeaways — Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 18/57
  • 19. Introduction Backgrounds ROA DAPHNE Results Conclusion ASHPC24: Conclusion Takeaways • The results show an early demonstration of feasibility to compute ROA in DAPHNE. • This initial implementation was run within DAPHNE v0.2. • At the moment (June 2024): v0.3 release preparations. • A linear time increase was observed with an increasing problem dimension size. • The linear time increase is a good candidate for scaling and parallel execution of this workload, • because the implementation uses matrix operations which are scalable in DAPHNE language over tiles of rows. • Also, by changing the fitness evaluation function of the ROA: • the system is applicable to various AI challenges • like standard evolutionary computation (EC) test functions, or • other more elaborated AI scenarios (see Appendix) . Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 19/57
  • 20. Introduction Backgrounds ROA DAPHNE Results Conclusion Further Research — After ASHPC24 • Further research can include: • running on EuroHPC Vega with larger workloads7 , • applying optimization algorithms to larger problems, • with larger and distributed memory and storage, • benefitting from distributed processing with row-wise data in DAPHNE (distributed kernels execution). • Examples of these include vehicle navigation • e.g. Underwater Glider Path Planning — UGPP) and • production (e.g. engineering design optimization, • ROA algorithms self-design (e.g. through whole benchmark autoconfigurations), and • more generative AI integration (such as Human Language Technologies — HLT). 7 CoBCom 2024 Graz. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 20/57
  • 21. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Thank you. Questions? Thanks! Acknowledgement: this work is supported by DAPHNE, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957407. 10000 1x106 1x108 1x1010 1x1012 0 1 2 3 4 5 6 7 8 9 FES Digits f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 -50 -40 -30 -20 -10 0 10 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 0 1 2 3 4 5 6 7 8 9 Combined power from 110 MW to 975 MW, step 0.01 MW#104 0 100 200 300 400 500 600 700 Individual output (power [MW] or unit total cost [$]) Cost, TC / 3 Powerplant P1 power Powerplant P2 power Powerplant P3 power 150 200 250 300 350 400 450 500 550 16 32 48 64 80 Seconds to compute a workload Number of tasks (equals 16 times the SLURM --nodes parameter) Summarizer workload Real examples: science and HPC Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 21/57
  • 22. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Austrian-Slovenian HPC Meeting 2024 Grundlsee, 10–13 June 2024 ASHPC24 Session 5 Eugenia-Schwarzwald-Saal 9:45–10:00 Wednesday, 6 June 2024 Randomised Optimisation Algorithms in DAPHNE — Appendix Part I: Backgrounds — Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 22/57
  • 23. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Background A: HPC Workloads and Cloud Computing Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 23/57
  • 24. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Conclusion (Vega supercomputer in TOP500) — A Multimedia Tour — Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 24/57
  • 25. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References TOP500: EuroHPC Vega (tour at ASHPC23) Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 25/57
  • 26. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References TOP500: EuroHPC Vega (tour at ASHPC23) Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 26/57
  • 27. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References TOP500: EuroHPC Vega (tour at ASHPC23) Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 27/57
  • 28. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References TOP500: EuroHPC Vega (tour at ASHPC23) Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 28/57
  • 29. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References AI Challenges Shortlist (Part II: First subpart) Faced 5 types of challenges, leading to the needs to apply HPC architectures for benchmarking state-of-the-art topics in 1 text summarization, 2 forest ecosystem modeling, simulation, and visualization, 3 underwater robotic mission planning, 4 energy production scheduling for hydro-thermal power plants, and 5 understanding evolutionary algorithms. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 29/57
  • 30. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Challenges 1: Text Summarization (Language) For NLP (Natural Language Processing), part of ”Big Data”. Terms across sentences are determined using a semantic analysis using both: • coreference resolution (using WordNet) and • a Concept Matrix (from Freeling). INPUT CORPUS NATURAL LANGUAGE PROCESSING ANALYSIS CONCEPTS DISTRIBUTION PER SENTENCES MATRIX OF CONCEPTS PROCESSING CORPUS PREPROCESSING PHASE OPTIMIZATION TASKS EXECUTION PHASE ASSEMBLE TASK DESCRIPTION SUBMIT TASKS TO PARALLEL EXECUTION OPTIMIZER + TASK DATA ROUGE EVALUATION The detailed new method called CaBiSDETS is developed in the HPC approach comprising of: • a version of evolutionary algorithm (Differential Evolution, DE), • self-adaptation, binarization, constraint adjusting, and some more pre-computation, • optimizing the inputs to define the summarization optimization model. Aleš Zamuda, Elena Lloret. Optimizing Data-Driven Models for Summarization as Parallel Tasks. Journal of Computational Science, 2020, vol. 42, pp. 101101. DOI: 10.1016/j.jocs.2020.101101 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 30/57
  • 31. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Challenges 2: Forest Ecosystem Modeling, Simulation, and Visualization (Real World / Video) • HPC need to process spatial data and add procedural content, generating real-world items for producing a video of 3D space. Videos: https://www.youtube.com/watch?list=PL7pmTW8neV7tZf2qx1wV5zbD74sUyHL3Bv=V9YJgYO_sIA Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 31/57
  • 32. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Challenges 3: Underwater Robotic Mission Planning • Computational Fluid Dynamics (CFD) spatio-temporal model of the ocean currents for autonomous vehicle navigation path planning. • Constrained Differential Evolution Optimization for Underwater Glider Path Planning in Sub-mesoscale Eddy Sampling. • Corridor-constrained optimization: eddy border region sampling — new challenge for UGPP DE. • Feasible path area is constrained — trajectory in corridor around the border of an ocean eddy. The objective of the glider here is to sample the oceanographic variables more efficiently, while keeping a bounded trajectory. HPC: develop new methods and evaluate them. Video: https://www.youtube.com/watch?v=4kCsXAehAmU Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 32/57
  • 33. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Challenges 4: Energy Production Scheduling for Hydro-thermal Power Plants A. Glotić, A. Zamuda. Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution. Applied Energy, 1 March 2015, vol. 141, pp. 42-56. DOI: 10.1016/j.apenergy.2014.12.020 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 33/57
  • 34. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Challenges 5: Understanding Evolutionary Algorithms • Evolutionary algorithms benchmarking to understand computational intelligence of these algorithms (→ storage requirement!), • aim: Machine Learning to design an optimization algorithm (learning to learn). • Example CI Algorithm Mechanism Design: Control Parameters Self-Adaptation (in DE). Video: https://www.youtube.com/watch?v=R244LZpZSG0 Application stacks for real code: inspired by previous computational optimization competitions in continuous settings that used test functions for optimization application domains: • single-objective: CEC 2005, 2013, 2014, 2015 • constrained: CEC 2006, CEC 2007, CEC 2010 • multi-modal: CEC 2010, SWEVO 2016 • black-box (target value): BBOB 2009, COCO 2016 • noisy optimization: BBOB 2009 • large-scale: CEC 2008, CEC 2010 • dynamic: CEC 2009, CEC 2014 • real-world: CEC 2011 • computationally expensive: CEC 2013, CEC 2015 • learning-based: CEC 2015 • 100-digit (50% targets): 2019 joined CEC, SEMCCO, GECCO • multi-objective: CEC 2002, CEC 2007, CEC 2009, CEC 2014 • bi-objective: CEC 2008 • many objective: CEC 2018 Tuning/ranking/hyperheuristics use. → DEs as usual winner algorithms. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 34/57
  • 35. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Challenges 6: new DAPHNE Use Cases Example Use Cases • DLR Earth Observation • ESA Sentinel-1/2 datasets  4PB/year • Training of local climate zone classifiers on So2Sat LCZ42 (15 experts, 400K instances, 10 labels each, ~55GB HDF5) • ML pipeline: preprocessing, ResNet-20, climate models • IFAT Semiconductor Ion Beam Tuning • KAI Semiconductor Material Degradation • AVL Vehicle Development Process (ejector geometries, KPIs) • ML-assisted simulations, data cleaning, augmentation • Cleaning during exploratory query processing [So2Sat LC42: https://mediatum.ub.tum.de/1454690] [Xiao Xiang Zhu et al: So2Sat LCZ42: A Benchmark Dataset for the Classification of Global Local Climate Zones. GRSM 8(3) 2020] Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 35/57
  • 36. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References HPC Initiatives (Part II: Second subpart) Timeline (as member) of recent impactful HPC initiatives including Slovenia: • SLING: Slovenian national supercomputing network, 2010-05-03–, • SIHPC: Slovenian High-Performance Computing Centre, 2016-03-04– • ImAppNIO: Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice, 2016-03-09–2020-10-31 • cHiPSet: High-Performance Modelling and Simulation for Big Data Applications, 2015-04-08–2019-04-07, • HPC RIVR: UPGRADING OF NATIONAL RESEARCH INFRASTRUCTURES, Investment Program, 2018-03-01–2020-09-15, • TFoB: IEEE CIS Task Force on Benchmarking, January 2020–, • EuroCC: National Competence Centres in the framework of EuroHPC, 2020-09-01–(2022-08-31), • DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and Machine Learning, 2020-12-01–(2024-11-30). Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 36/57
  • 37. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Initiatives: SLING, SIHPC, HPC RIVR, EuroCC • There is a federated and orchestrated aim towards HPC infrastructure in Slovenia, especially through: • SLING: Slovenian national supercomputing network → has federated the initiative push towards orchestration of HPC resources across the country. • SIHPC: Slovenian High-Performance Computing Centre → has orchestrated the first EU funds application towards HPC Teaming in the country (and Participation of Slovenia in PRACE 2). • HPC RIVR: UPGRADING OF NATIONAL RESEARCH INFRASTRUCTURES, Investment Program → has provided an investment in experimental HPC infrastructure. • EuroCC: National Competence Centres in the framework of EuroHPC → has secured a National Competence Centre (EuroHPC). Vega supercomputer online Consortium Slovenian High-Performance Computing Centre Aškerčeva ulica 6 SI-1000 Ljubljana Slovenia Ljubljana, 22. 2. 2017 prof. dr. Anwar Osseyran PRACE Council Chair Subject: Participation of Slovenia in PRACE 2 Dear professor Osseyran, In March 2016 a consortium Slovenski superračunalniški center (Slovenian High-Performance Computing Centre - SIHPC) was established with a founding act (Attachment 1) where article 6 claims that the consortium will join PRACE and that University of Ljubljana, Faculty of mechanical engineering (ULFME) will represent the consortium in the PRACE. The legal representative of ULFME in the consortium and therefore, also in the PRACE (i.e., the delegate in PRACE Council with full authorization) is prof. dr. Jožef Duhovnik, as follows from appointment of the dean of ULFME (Attachment 2). The consortium has also agreed that it joins PRACE 2 optional programme as contributing GP. With best regards, assist. prof. dr. Aleš Zamuda, vice-president of SIHPC Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 37/57
  • 38. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Initiatives: ImAppNIO, cHiPSet, TFoB, DAPHNE Aim towards software to run HPC and improve capabilities: • ImAppNIO: Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice, → improve capabilities through benchmarking (to understand (and to learn to learn)) CI algorithms • cHiPSet: High-Performance Modelling and Simulation for Big Data Applications, → include HPC in Modelling and Simulation (of the process to be learned) • TFoB: IEEE CIS Task Force on Benchmarking, → includes CI benchmarking opportunities, where HPC would enable new capabilities. • DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and Machine Learning. → to define and build an open and extensible system infrastructure for integrated data analysis pipelines, including data management and processing, high-performance computing (HPC), and machine learning (ML) training and scoring https://daphne-eu.github.io/ Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 38/57
  • 39. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References EuroHPC Vega Deploying DAPHNE (Part II: Third subpart) MODA (Monitoring and Operational Data Analytics) tools for • collecting, analyzing, and visualizing • rich system and application data, and • my opinion on how one can make sense of the data for actionable insights. • Explained through previous examples: from a HPC User Perspective. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 39/57
  • 40. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References MODA Actionable Insights, Explained From a HPC User Perspective, Through the Example of Summarization Most interesting findings of summarization on HPC example are • the fitness of the NLP model keeps increasing with prolonging the dedicated HPC resources (see below) and that • the fitness improvement correlates with ROUGE evaluation in the benchmark, i.e. better summaries. -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 1 10 100 1000 10000 ROUGE-1R ROUGE-2R ROUGE-LR ROUGE-SU4R Fitness (scaled) Hence, the use of HPC significantly contributes to capability of this NLP challenge. However, the MODA insight also provided the useful task running times and resource usage. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 40/57
  • 41. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Running the Tasks on HPC: ARC Job Preparation Parallel summarization tasks on grid through ARC. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 41/57
  • 42. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Running the Tasks on HPC: ARC Job Submission, Results Retrieval Merging [JoCS2020] Through an HPC approach and by parallelization of tasks, a data-driven summarization model optimization yields improved benchmark metric results (drawn using gnuplot merge). MODA is needed to run again and improve upon, to forecast how to set required task running time and resources (predicting system response). Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 42/57
  • 43. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Monitoring and Operational Data Analytics • Monitor used (jobs, CPU/wall time, etc.): Smirnova, Oxana. The Grid Monitor. Usage manual, Tech. Rep. NORDUGRID-MANUAL-5, The NorduGrid Collaboration, 2003. http://www.nordugrid.org/documents/ http://www.nordugrid.org/manuals.html http://www.nordugrid.org/documents/monitor.pdf • Deployed at: www.nordugrid.org/monitor/ • NorduGrid Grid Monitor Sampled: 2021-06-28 at 17-57-08 • Nation-wide in Slovenia: https://www.sling.si/gridmonitor/loadmon.php http://www.nordugrid.org/monitor/index.php? display=vo=Slovenia Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 43/57
  • 44. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References MODA Example From: ARC at Jost Example experiments from DOI: 10.1016/j.swevo.2015.10.007 (SPSRDEMMS) – job YYULDmGOXpmnmmR0Xox1SiGmABFKDmABFKDmrtMKDmABFKDm66faPo. Sample ARC file gridlog/diag (2–3 day Wall Times). runtimeenvironments=APPS/ARNES/MPI−1.6−R ; CPUUsage=99% MaxResidentMemory=5824kB AverageUnsharedMemory=0kB AverageUnsharedStack=0kB AverageSharedMemory=0kB PageSize=4096B MajorPageFaults=4 MinorPageFaults=1213758 Swaps=0 ForcedSwitches=36371494 WaitSwitches=170435 Inputs=45608 Outputs=477168 SocketReceived=0 SocketSent=0 Signals =0 nodename=wn003 . arnes . s i WallTime=148332s Processors=16 UserTime=147921.14s KernelTime =2.54 s AverageTotalMemory=0kB AverageResidentMemory=0kB LRMSStartTime=20150906104626Z LRMSEndTime=20150908035838Z exitcode=0 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 44/57
  • 45. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References EuroCC HPC: Vega (TOP500 #106, HPCG #56 — June 2021) • Researchers apply to EuroHPC JU calls for access. • Regular calls opened in 2021 fall (Benchmark Development). • https://prace-ri.eu/benchmark-and-development-access-information-for-applicants/ • 60% capacities for national share (70% OA, 20% commercial, 10% host (community, urgent priority of national importance, maintenance)) + 35% EuroHPC JU share (approved applications) • Has a SLURM dev partition for SSH login (SLURM partitions w/ CPUs: login[0001-0004]=128; login[0005-0008]=64; cn[0001-384,0577-0960]=256; cn[0385-0576]=256; gn[01-60]=256). Listing 1: Setting up at Vega — slurm dev partition access (login). 1 [ ales . zamuda@vglogin0007 ˜]$ s i n g u l a r i t y pull qmake . s i f docker : / / ak352 /qmake−opencv 2 [ ales . zamuda@vglogin0007 ˜]$ s i n g u l a r i t y run qmake . s i f bash 3 cd sum; qmake ; make clean ; make 4 5 [ ales . zamuda@vglogin0007 ˜]$ cat runme . sh 6 # ! / bin / bash 7 cd sum time mpirun 8 − −mca btl openib warn no device params found 0 9 . / summarizer 10 − −useBinaryDEMPI − −i n p u t f i l e mRNA−1273−t x t 11 − −withoutStatementMarkersInput 12 − −printPreprocessProgress calcInverseTermFrequencyndTermWeights 13 − −printOptimizationBestInGeneration 14 − −summarylength 600 − −NP 200 15 − −GMAX 400 16 summarizer . out . $SLURM PROCID 17 2 summarizer . err . $SLURM PROCID Text summarization/generation systems are getting more and more useful and accessible on deployed systems (e.g. OpenAI’s ChatGPT, Microsoft’s Bing AI part, NVIDIA’s (Fin)Megatron, BLOOM, LaMDA, BERT, VALL-E, Point-E, etc.). -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 1 10 100 Evaluation Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 45/57
  • 46. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References MODA at First EuroCC HPC Vega Supercomputer Listing 2: Runnig at Vega MODA. 1 ===================================================================== GMAX=200 ===== 2 [ ales . zamuda@vglogin0002 ˜]$ srun − −cpu−bind=cores − −nodes=1 − −ntasks−per−node=101 3 − −cpus−per−task=2 − − mem=180G s i n g u l a r i t y run qmake . s i f bash 4 srun : job 4531374 queued and waiting for resources 5 srun : job 4531374 has been allocated resources 6 [ ”$SLURM PROCID” = 0 ] . / runme . sh 7 real 5m22.475 s 8 user 484m42.262 s 9 sys 1m38.304 s 10 ===================================================================== NODES=51 ===== 11 [ ales . zamuda@vglogin0002 ˜]$ srun − −cpu−bind=cores − −nodes=1 − −ntasks−per−node=51 12 − −cpus−per−task=2 − − mem=180G s i n g u l a r i t y run qmake . s i f bash 13 srun : job 4531746 queued and waiting for resources 14 srun : job 4531746 has been allocated resources 15 [ ”$SLURM PROCID” = 0 ] . / runme . sh 16 real 13m57.851 s 17 user 431m25.833 s 18 sys 0m29.272 s 19 ===================================================================== GMAX=400 ===== 20 [ ales . zamuda@vglogin0002 ˜]$ srun − −cpu−bind=cores − −nodes=1 − −ntasks−per−node=101 21 − −cpus−per−task=2 − − mem=180G s i n g u l a r i t y run qmake . s i f bash 22 srun : job 4532697 queued and waiting for resources 23 srun : job 4532697 has been allocated resources 24 [ ”$SLURM PROCID” = 0 ] . / runme . sh 25 real 6m14.687 s 26 user 590m45.641 s 27 sys 1m40.930 s Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 46/57
  • 47. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References More Output: SLURM accounting Listing 3: Example accounting tool at Vega: sacct. [ ales . zamuda@vglogin0002 ˜]$ sacct 4531374. ext+ extern vega−users 202 COMPLETED 0:0 4531746. ext+ extern vega−users 102 COMPLETED 0:0 4532697. ext+ extern vega−users 202 COMPLETED 0:0 [ ales . zamuda@vglogin0002 ˜]$ sacct −j 4531374 −j 4531746 −j 4532697 −o MaxRSS , MaxVMSize , AvePages MaxRSS MaxVMSize AvePages − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − 0 217052K 0 26403828K 1264384K 22 0 217052K 0 13325268K 1264380K 0 0 217052K 0 26404356K 1264384K 30 Future MODA testings: • testing the web interface for job analysis (as available from HPC RIVR); • profiling MPI inter-node communication; • use profilers and monitoring tools available — in the context of heterogeneous setups, like e.g. • TAU Performance System — http://www.cs.uoregon.edu/research/tau/home.php, • LIKWID Performance Tools — https://hpc.fau.de/research/tools/likwid/. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 47/57
  • 48. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Deploying DAPHNE on Vega Main documentation file: Deploy.md Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 48/57
  • 49. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References SLURM Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 49/57
  • 50. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 50/57
  • 51. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 51/57
  • 52. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References More HPC User Perspective Nation-wide in Slovenia More: at University of Maribor, Bologna study courses for teaching (training) of Computer Science at cycles — click URL: • level 1 (BSc) • year 1: Programming I – e.g. C++ syntax • year 2: Computer Architectures – e.g. assembly, microcode, ILP • year 3: Parallell and Distributed Computing – e.g. OpenMP, MPI, CUDA • level 2 (MSc) • year 1: Cloud Computing Deployment and Management – e.g. arc, slurm, Hadoop, containers (docker, singularity) through virtualization • level 3 (PhD) • EU and other national projects research: HPC RIVR, EuroCC, DAPHNE, ... – e.g. scaling new systems of CI Operational Research of ... over HPC • IEEE Computational Intelligence Task Force on Benchmarking • Scientific Journals (e.g. SWEVO, TEVC, JoCS, ASOC, INS) These contribute towards Sustainable Development of HPC. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 52/57
  • 53. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Biography and References: Organizations • Associate Professor at University of Maribor, Slovenia • Continuous research programme funded by Slovenian Research Agency, P2-0041: Computer Systems, Methodologies, and Intelligent Services • EU H2020 Research and Innovation project, holder for UM part: Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and Machine Learning (DAPHNE), https://cordis.europa.eu/project/id/957407 • IEEE (Institute of Electrical and Electronics Engineers) SM • IEEE Computational Intelligence Society (CIS), senior member • IEEE CIS ISATC (Intelligent Systems Applications Technical Committee) — Vice Chair Conferences; IEEE CIS ECTC (Evolutionary Computation TC) • IEEE CIS Task Force on Benchmarking, chair Website link • IEEE CIS, Slovenia Section Chapter (CH08873), founding chair • IEEE Slovenia Section, 2018–2021 vice chair, 2018-21 • IEEE Young Professionals Slovenia, 2016-19 chair • ACM SIGEVO (Special Interest Group on Genetic and Evolutionary Computation); EurAI; SLAIS • Associate Editor: Swarm and Evolutionary Computation (2016-’22), Human-centric Computing and Information Sciences, Frontiers in robotics and AI (section Robot Learning and Evolution) • Co-operation in Science and Techology (COST) Association Management Committee, member: • CA COST Action CA22137: Randomised Optimisation Algorithms Research Network (ROAR-NET), 2.10.2023–1.10.1027 • CA COST Action CA15140: Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO), WG3 VC • ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications (cHiPSet); • More: SI-HPC vice-chair; HPC-RIVR user; EuroHPC Vega user; SLAIS Honorary Tribunal; SLING CB member; Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 53/57
  • 54. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Biography and References: Top Publications • Aleš Zamuda, Elena Lloret. Optimizing Data-Driven Models for Summarization as Parallel Tasks. Journal of Computational Science, 2020, vol. 42, pp. 101101. DOI 10.1016/j.jocs.2020.101101. • A. Zamuda, J. D. Hernández Sosa. Success history applied to expert system for underwater glider path planning using differential evolution. Expert Systems with Applications, 2019, vol. 119, pp. 155-170. DOI 10.1016/j.eswa.2018.10.048 • C. Lucas, D. Hernández-Sosa, D. Greiner, A. Zamuda, R. Caldeira. An Approach to Multi-Objective Path Planning Optimization for Underwater Gliders. Sensors, 2019, vol. 19, no. 24, pp. 5506. DOI 10.3390/s19245506. • A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, A. Zamuda. Distance Based Parameter Adaptation for Success-History based Differential Evolution. Swarm and Evolutionary Computation, 2019, vol. 50, pp. 100462. DOI 10.1016/j.swevo.2018.10.013. • A. Zamuda, J. Brest. Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm and Evolutionary Computation, 2015, vol. 25C, pp. 72-99. DOI 10.1016/j.swevo.2015.10.007. • A. Zamuda, J. D. Hernández Sosa, L. Adler. Constrained Differential Evolution Optimization for Underwater Glider Path Planning in Sub-mesoscale Eddy Sampling. Applied Soft Computing, 2016, vol. 42, pp. 93-118. DOI 10.1016/j.asoc.2016.01.038. • A. Zamuda, J. D. Hernández Sosa. Differential Evolution and Underwater Glider Path Planning Applied to the Short-Term Opportunistic Sampling of Dynamic Mesoscale Ocean Structures. Applied Soft Computing, vol. 24, November 2014, pp. 95-108. DOI 10.1016/j.asoc.2014.06.048. • A. Zamuda, J. Brest. Vectorized Procedural Models for Animated Trees Reconstruction using Differential Evolution. Information Sciences, vol. 278, pp. 1-21, 2014. DOI 10.1016/j.ins.2014.04.037. • A. Zamuda, J. Brest. Environmental Framework to Visualize Emergent Artificial Forest Ecosystems. Information Sciences, vol. 220, pp. 522-540, 2013. DOI 10.1016/j.ins.2012.07.031. • A. Glotić, A. Zamuda. Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution. Applied Energy, 1 March 2015, vol. 141, pp. 42-56. DOI 10.1016/j.apenergy.2014.12.020. • H. Hamann, Y. Khaluf, J. Botev, M. Divband Soorati, E. Ferrante, O. Kosak, J.-M. Montanier, S. Mostaghim, R. Redpath, J. Timmis, F. Veenstra, M. Wahby and A. Zamuda. Hybrid Societies: Challenges and Perspectives in the Design of Collective Behavior in Self-organizing Systems. Frontiers in Robotics and AI, 2016, vol. 3, no. 14. DOI 10.3389/frobt.2016.00014. • J. Šilc, A. Zamuda. Special Issue on ”Bioinspired Optimization” (guest editors). Informatica - An International Journal of Computing and Informatics, 2015, vol. 39, no. 2, pp. 1-122. Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 54/57
  • 55. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Biography and References: Bound Specific to HPC PROJECTS: • DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and Machine Learning • ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications • SLING: Slovenian national supercomputing network • SI-HPC: Slovenian corsortium for High-Performance Computing • UM HPC-RIVR: Supercomputer at UM, https://www.hpc-rivr.si/ • SmartVillages: Smart digital transformation of villages in the Alpine Space • Interreg Alpine Space, https://www.alpine-space.eu/projects/smartvillages/en/home • Interactive multimedia digital signage (PKP, Adin DS) EDITOR: • Associate Editor in journals: • Swarm and Evolutionary Computation (2016-2022), • Human-centric Computing and Information Sciences (2020-2023), • Frontiers in robotics and AI, section Robot Learning and Evolution (2021-2023), • etc. • Mathematics-MDPI, Special Issue Guest Editor: ”Innovations in High-Performance Computing” • Mathematics-MDPI, Special Issue Guest Editor: ”Evolutionary Algorithms in Engineering Design Optimization” • Journal of advanced engineering and computation (member of editorial board since 2019). Viet Nam: Ton Duc Thang University, 2017-. ISSN 2588-123X. • Cloud Computing and Data Science (Associate Editor, since 2019). Universal Wiser Publisher Pte.Ltd. • D. Gleich, P. Planinšič, A. Zamuda. 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE Xplore, Maribor, 20-22 June 2018. • General Chair: 7-th Joint International Conferences on Swarm, Evolutionary and Memetic Computing Conference (SEMCCO 2019) Fuzzy And Neural Computing Conference (FANCCO 2019), Maribor, Slovenia, EU, 10-12 July 2019; co-editors: Aleš Zamuda, Swagatam Das, Ponnuthurai Nagaratnam Suganthan, Bijaya Ketan Panigrahi. • Organizers member: GECCO 2022, GECCO 2023 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 55/57
  • 56. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Biography and References: More Publications on HPC • Aleš Zamuda, Elena Lloret. Optimizing Data-Driven Models for Summarization as Parallel Tasks. Journal of Computational Science, 2020, vol. 42, pp. 101101. DOI 10.1016/j.jocs.2020.101101. • Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm, Philippe Bonnet, Florina Ciorba, Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy, Christian Faerber, Georgios Goumas, Dirk Habich, Niclas Hedam, Marlies Hofer, Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman Kern, Tomaž Kosar, Alexander Krause, Daniel Krems, Andreas Laber, Wolfgang Lehner, Eric Mier, Marcus Paradies, Bernhard Peischl, Gabrielle Poerwawinata, Stratos Psomadakis, Tilmann Rabl, Piotr Ratuszniak, Pedro Silva, Nikolai Skuppin, Andreas Starzacher, Benjamin Steinwender, Ilin Tolovski, Pınar Tözün, Wojciech Ulatowski, Yuanyuan Wang, Izajasz Wrosz, Aleš Zamuda, Ce Zhang, Xiao Xiang Zhu. DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines. 12th Conference on Innovative Data Systems Research, CIDR 2022, Chaminade, CA, January 9-12, 2022. • Aleš Zamuda, Vincenzo Crescimanna, Juan C. Burguillo, Joana Matos Dias, Katarzyna Wegrzyn-Wolska, Imen Rached, Horacio González-Vélez, Roman Senkerik, Claudia Pop, Tudor Cioara, Ioan Salomie, Andrea Bracciali. Forecasting Cryptocurrency Value by Sentiment Analysis: An HPC-Oriented Survey of the State-of-the-Art in the Cloud Era. Kołodziej J., González-Vélez H. (eds) High-Performance Modelling and Simulation for Big Data Applications. Lecture Notes in Computer Science, vol 11400, 2019, pp. 325-349. DOI 10.1007/978-3-030-16272-6 12. • Nenad Karolija, Aleš Zamuda. On cloud-supported web-based integrated development environment for programming dataflow architectures. MILUTINOVIĆ, Veljko (ur.), KOTLAR, Milos (ur.). Exploring the DataFlow supercomputing paradigm: example algorithms for selected applications, (Computer communications and networks (Internet), ISSN 2197-8433), 2019, pp. 41-51. DOI 10.1007/978-3-030-13803-5 2. • Simone Spolaor, Marco Gribaudo, Mauro Iacono, Tomas Kadavy, Zuzana Komı́nková Oplatková, Giancarlo Mauri, Sabri Pllana, Roman Senkerik, Natalija Stojanovic, Esko Turunen, Adam Viktorin, Salvatore Vitabile, Aleš Zamuda, Marco S. Nobile. Towards Human Cell Simulation. Kołodziej J., González-Vélez H. (eds) High-Performance Modelling and Simulation for Big Data Applications. Lecture Notes in Computer Science, vol 11400, 2019, pp. 221-249. DOI 10.1007/978-3-030-16272-6 8. • A. Zamuda, J. D. Hernandez Sosa, L. Adler. Improving Constrained Glider Trajectories for Ocean Eddy Border Sampling within Extended Mission Planning Time. IEEE Congress on Evolutionary Computation (CEC) 2016, 2016, pp. 1727-1734. • A. Zamuda. Function evaluations upto 1e+12 and large population sizes assessed in distance-based success history differential evolution for 100-digit challenge and numerical optimization scenarios (DISHchain 1e+12): a competition entry for ”100-digit challenge, and four other numerical optimization competitions” at the genetic and evolutionary computation conference (GECCO) 2019. Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2019), 2019, pp. 11-12. • ... several more experiments for papers run using HPCs. • ... also, pedagogic materials in Slovenian and English — see Conclusion . Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 56/57
  • 57. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References Promo materials: Calls for Papers, Websites CS FERI WWW CIS TFoB CFPs WWW LI Twitter Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57 Aleš Zamuda 7@aleszamuda Randomised Optimisation Alg. in DAPHNE @ ASHPC, Grundlsee, 10-13 June 2024 57/57