SlideShare a Scribd company logo
Introduction ROA DAPHNE Results Conclusion
DAPHNE General Assembly Meeting, October 8–9 2024
Meeting Day 2, October 9, Impact Hub Athens
Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024
Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th
Randomised
Optimisation
Algorithms
Aleš Zamuda
University of Maribor
<ales.zamuda@um.si>
Acknowledgement. This work is supported by project DAPHNE (Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC and Machine Learning) funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957407.
0.2 0.4 0.6 0.8 1
·105
0
0.5
1
·105
Dimension D [integer]
Runtime
[seconds]
Runtime of ROA in DAPHNE
depending on
problem dimension size
ROA in DAPHNE
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE General Assembly Meeting, October 8–9 2024
Meeting Day 2, October 9, Impact Hub Athens
Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024
Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th
Randomised Optimisation
Algorithms
—
Initial Introduction
& Outline
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34
Introduction ROA DAPHNE Results Conclusion
Introduction & Outline: Content
1 (1 minutes) Part I: Background — Randomised
Optimisation Algorithms (ROA)
2 (7 minutes) Part II: ROA in DAPHNE on EuroHPC Vega
3 (4 minutes) Part III: VLSGO ROA in DAPHNE on Vega MODA
4 (2 minutes) Part IV: Conclusion with Takeaways
5 (≈3 minutes) Questions, Misc
6 (Appendix) Additional lecture materials
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34
Introduction ROA DAPHNE Results Conclusion
Introduction: Aims of this Talk — HPC & Benchmarking
A closer observation of execution times for
workloads processed in [2] is provided in
Fig. 1, where it is seen that the execution
time (color of the patches) changes for
different benchmark executions.
Fig. 1: Execution time of full benchmarks
for different instances of optimization
algorithms. Each patch presents one full
benchmark execution to evaluate an
optimization algorithm.
Warmup Highlights on (Generative) AI w/ ChatGPT+Synthesia: visiting Canaries/ASHPC/WCCI
Photo/video: 1) generative animation 2) HPC generated introduction (ASHPC23); 3) with underwater glider at ULPGC SIANI; 4) infront
SIANI; 5) with autonomous sailboat at SIANI;
If 2023 was about Generative AI, is 2024 on CI omnia Robotics?
• Therefore, it is useful to consider speeding up of benchmarking through vectorization of the
tasks that a benchmark is comprised of — e.g.:
• parallell data cleaning part of an individual ML tile [1] or
• synchronization between tasks when executing parallell geospatial processing [3].
• To enable the possibilities of data cleaning (preprocessing) as well as geospatial processing in
parallell ( ERK’06 a), such opportunities first need to be found or designed, if none yet exist
for a problem tackled.
• Therefore, this contribution will highlight some experiences with finding and designing
parallell ML pipelines for vectorization and observe speedup.
• The speeding up focus will be on optimization algorithms within such ML pipelines.
a
A. Zamuda and N. Guid. “Modeliranje, simulacija in upodabljanje gozdov”. In: Zbornik petnajste mednarodne Elektrotehniške in
računalniške konference ERK 2006, 25. – 27. september 2006, Portorož, Slovenija. Ljubljana: IEEE Region 8, Slovenska sekcija IEEE,
2006. Zvezek B. 2006, pp. 391–392.
[2] Zamuda, A, Brest, J., Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm and Evolutionary
Computation 25C, 72-99 (2015).
[3] Zamuda, A., Hernández Sosa, J. D., Success history applied to expert system for underwater glider path planning using differential evolution. Expert Systems
with Applications 119, 155-170 (2019).
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE General Assembly Meeting, October 8–9 2024
Meeting Day 2, October 9, Impact Hub Athens
Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024
Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th
Randomised Optimisation
Algorithms
—
I. Background — Randomised Optimisation
Algorithms (ROA)
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34
Introduction ROA DAPHNE Results Conclusion
ROA and Implementations in DAPHNE
• Differential Evolution (DE) is a ROA, a floating point
encoding Evolutionary Algorithm (EA) ROA for global
optimization over continuous spaces,
• through generations, the evolution process
improves population of vectors,
• iteratively by combining a parent individual and several other
individuals of the same population, using evolutionary
operators.
• We choose the strategy DE/rand/1/bin
• mutation: vi,G+1 = xr1,G + F × (xr2,G − xr3,G),
• crossover:
ui,j,G+1 =
(
vi,j,G+1 if rand(0, 1) ≤ CR or j = jrand
xi,j,G otherwise
,
• selection: xi,G+1 =
(
ui,G+1 if f(ui,G+1) < f(xi,G)
xi,G otherwise
,
Previously: ASHPC24, CoBCom:
• ROA in DAPHNE Benchmarked
(ASHPC24: Apple M1/M3, CoBCom,
July 2024 & D8.3 August: Vega/Slurm)
• Testing: convergence of a ML system;
ROA: Randomised Optimisation
Algorithm
• As seen from the plots, the fitness
values are convergent, optimizing.
-350
-300
-250
-200
-150
-100
-50
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
A convergence plot for
the function f2, on
different independent
runs.
-50
-40
-30
-20
-10
0
10
0 50 100 150 200 250 300
Fitness, run 1
Fitness, run 2
Fitness, run 3
Fitness, run 4
Fitness, run 5
Fitness, run 6
Fitness, run 7
Fitness, run 8
Fitness, run 9
An example ROA run, with convergence
plot for the HappyCat function (f6),
on different independent runs.
f2 =
P
x5 + 1 + max(x, 0), 0

f6 =
 P
x2, 0

− 10
2
0.125
+
P
x2, 0

/2 +
P
(x)

/10 + 0.5
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE General Assembly Meeting, October 8–9 2024
Meeting Day 2, October 9, Impact Hub Athens
Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024
Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th
Randomised Optimisation
Algorithms
—
DAPHNE: VLSGO ROA in DAPHNE on Vega MODA
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE Partners: Project Consortium
Project Consortium
13 partner institutions
from 7 countries
• DM, ML, HPC
• Academia  industry
• Different application
domains
14
• Technical University Berlin1
University of Maribor (UM): UM FERI research team DAPHNE (lead: A. Zamuda), SLING connection (EuroHPC Vega).
https://feri.um.si/en/research/international-and-structural-funds-projects/integrated-data-analysis-pipelines-for-large-scale-data-management-hpc-and-machine-learning/
1
Publication Office of the European Union. “Fact Sheet : Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and
Machine Learning”. In: CORDIS – EU research results. 2024, https://cordis.europa.eu/project/id/957407. DOI: 10.3030/957407.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE: Overview (Generic Aspect of the Project)
Overview: Generic Aspect of the Project
• Deployment Challenges
• Hardware Challenges
• DM+ML+HPC share compilation
and runtime techniques /
converging cluster hardware
• End of Dennard scaling:
P = α CFV2 (power density 1)
• End of Moore’s law
• Amdahl’s law: sp = 1/s
 Increasing Specialization
#1 Data
Representations
Sparsity Exploitation
from Algorithms to HW
dense
graph
sparse
compressed
#2 Data
Placement
Local vs distributed
CPUs/
NUMA
GPUs
FPGAs/
ASICs
#3 Data
(Value) Types
FP32, FP64, INT8,
INT32, INT64, UINT8,
BF16, TF32, FlexPoint
[NVIDIA
A100]
 DAPHNE Overall Objective:
Open and extensible system infrastructure
Different
Systems/
Libraries
Dev Teams Programming Models
Resource
Managers
Cluster
Under-
utilization
Data/File
Exchange
3 lessons learnt so far
choices made, methodology
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE: Functionalities (from Language Abstractions
to Distributed Vectorized Execution and Use Cases)
y
Functionality Introduction: from Language Abstractions to
Distributed Vectorized Execution and Use Cases
• Federated matrices/frames + distribution primitives
• Hierarchical vectorized pipelines and scheduling
• Coordinator
(spawns distributed fused pipeline)
• #1 Prepare Inputs
(N/A, repartition, broadcasts,
slices broadcasts as necessary)
• #2 Coarse-grained Tasks
(tasks run vectorized pipeline)
• #3 Combine Outputs
(N/A, all-reduce, rbind/cbind)
Node 1
X
[1:
100M]
Node 2
X
[100M:
200M]
colmu
colsd
y
y
(X)
XTX
XTy
dc = DaphneContext()
G = dc.from_numpy(npG)
G = (G != 0)
c = components(G, 100, True).compute()
Python API DaphneLib
def components(G, maxi, verbose) {
n = nrow(G); // get the number of vertexes
maxi = 100;
c = seq(1, n); // init vertex IDs
diff = inf; // init diff to +Infinity
iter = 1;
// iterative computation of connected components
while(diff0  iter=maxi) {
u = max(rowMaxs(G * t(c)), c); // neighbor prop
diff = sum(u != c); // # of changed vertexes
c = u; // update assignment
iter = iter + 1;
}
}
Domain-specific Language DaphneDSL
Multiple dispatch of functions/kernels
Example Use Cases
• DLR Earth Observation
• ESA Sentinel-1/2 datasets  4PB/year
• Training of local climate zone classifiers on So2Sat LCZ42
(15 experts, 400K instances, 10 labels each, ~55GB HDF5)
• ML pipeline: preprocessing,
ResNet-20, climate models
• IFAT Semiconductor Ion Beam Tuning
• KAI Semiconductor Material Degradation
• AVL Vehicle Development Process (ejector geometries, KPIs)
• ML-assisted simulations, data cleaning, augmentation
• Cleaning during exploratory query processing
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34
Introduction ROA DAPHNE Results Conclusion
About HPC: Vega Supercomputer (TOP500)  EuroHPCs
Demo at Euro-PAR 20232, also on EuroHPC Vega3  OpenStack; ASHPCs 2021-244
ASHPC23: EuroHPC Vega tour
Ales Zamuda
@a�eszamuda
While visiting today I had the honor visiting the spectacular
MareNostrum supercomputers and their installation. From observing
afar in ‘06 as v1v2 were deployed w/ 4294 Tflops and v3 passing the
Pflop, this tour ‘23 to v4 and v5 was sourcely. Thanks
#sors
�BSC_CNS
@rosabadia
Ales Zamuda ·
@a�eszamuda Sep 12
Show this thread
Today I am delighted to present a Severo Ochoa Research Seminar (SORS) at
Barcelona Supercomputing Center #BSC, titled: EuroHPC AI in DAPHNE
(host: Rosa Badia @rosabadia, Workflows and Distributed Computing Group
Manager, CS, BSC) bsc.es/research-and-d… #presenting @daphne_eu
4:20 PM · Sep 12, 2023 · Views
165
View post engagements
5
Post your reply Reply
Post
Ales Zamuda on X: While visiting @BSC_CNS today I had the hono... https://twitter.com/aleszamuda/status/1701601792952512938
1 od 2 19. 09. 23, 11:14
• Towards HPC  ROA in DAPHNE: June 2023, ASHPC23: 2 extended abstract
submitted (ROA are sought in DAPHNE; ROA role in GenAI),
• August 2023, Euro-Par 2023: initial demo created for ROA, confirming that ROA
can run in DAPHNE (Apple M1)
• September 2023, seminars at Alicante (UA) and Barcelona (BSC): role of ROA in
NLP (incl. GenAI), ROA deployment preparations base start for Mare Nostrum 5
(not opened yet at that time)
• January 2024, HiPEAC 2024: presentation of the initial benchmarking of ROA in
DAPHNE (Apple M3)
• June 2024, ASHPC 2024: presentation of the further benchmarking of ROA in
DAPHNE (Apple M3)
• July 2024, CoBCom 2024: Vega  ROA in DAPHNE
2
A. Vontzalidis et al. “DAPHNE Runtime: Harnessing Parallelism for Integrated Data Analysis Pipelines”. In: Euro-Par 2023: Parallel Processing
Workshops. Ed. by Demetris Zeinalipour et al. Lecture Notes in Computer Science, vol. 14352. Cham: Springer, 2024, pp. 242–246.
3
Aleš Zamuda and Mark Dokter. “Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking Randomised Optimisation
Algorithms”. In: International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom).
2024, pp. 1–8.
4
A. Zamuda. “Parallelization of benchmarking using HPC: text summarization in natural language processing (NLP), glider piloting in deep-sea
missions, and search algorithms in computational intelligence (CI)”. In: Austrian-Slovenian HPC Meeting 2021 - ASHPC21. 2021, p. 35; Aleš Zamuda.
“Generative AI Using HPC in Text Summarization and Energy Plants”. In: Austrian-Slovenian HPC Meeting 2023–ASHPC23. 2023, p. 5.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Identified DAPHNE  ROA Opportunities
• Deploying Randomised Optimisation Algorithms
(ROA) in DAPHNE on EuroHPC Vega allows
• benchmarking and research in novel and
innovative models for Artificial Intelligece
(AI).
• The methods that are supported in DAPHNE
allow seamless distribution of AI memory
• that is required when an AI algorithm run requires a
large memory that can be distributed across different
HPC nodes.
• Using DAPHNE, the benchmarking can be not
only run in
• the Runtime Environment on an HPC that is much larger
than a regular laptop computer,
• but also gather monitoring data of the workload while
the algorithm is running,
• to obtain a benchmarking profile, allowing an
informed scientific observation of a novel
algorithm under test.
To discuss these results of the proposed approach from
a more distant context:
• we provide listing the main advantages (potentials for scaling)
and limitations (newly establishing language).
• Namely, the potential for scaling the ROA was successfully
benchmarked (scaling through tasks in Slurm) and as a limitation,
• we can mention that DAPHNE is a new language and the ROA
deployed still has limitations and does not include more
advanced fitness functions
0 1 2 3 4 5 6 7 8 9
Combined power from 110 MW to 975 MW, step 0.01 MW 104
0
100
200
300
400
500
600
700
Individual
output
(power
[MW]
or
unit
total
cost
[$])
Cost, TC / 3
Powerplant P1 power
Powerplant P2 power
Powerplant P3 power
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
1 10 100 1000 10000
ROUGE-1R
ROUGE-2R
ROUGE-LR
ROUGE-SU4R
Fitness (scaled)
Real examples: science and HPC
• improved scheduling of workload in distributed multi-node
Slurm tasks, and comparisons of benchmarking resultsa
, which
are among our ongoing research work.
150
200
250
300
350
400
450
500
550
16 32 48 64 80
Seconds
to
compute
a
workload
Number of tasks (equals 16 times the SLURM --nodes parameter)
Summarizer workload
a
Zamuda, “Parallelization of benchmarking using HPC: text
summarization in natural language processing (NLP), glider piloting in
deep-sea missions, and search algorithms in computational intelligence
(CI)”; Zamuda, “Generative AI Using HPC in Text Summarization and
Energy Plants”.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE General Assembly Meeting, October 8–9 2024
Meeting Day 2, October 9, Impact Hub Athens
Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024
Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th
Randomised Optimisation
Algorithms
—
CoBCom (revisited, D ≤ 1, 000):
ROA in DAPHNE on Vega —
D ≤ 1, 000 Contribution, Results  Discussion
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Deployment Setup
Deployment command full instruction text:
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Fitness Function in LLVM
Example LLVM code for lowering of the fitness function implementation
(HappyCat function):
In line 1 the eval f6 function definition begins and in line 108 it ends, including
the constants definition (lines 2–7), allocations (e.g. in lines 8 and 14), and the
specific calls to the implemented kernels (e.g. for matrix operations like
addition/subtraction in lines 23/29 or multiplication/division in lines 17/83).
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Code Setup
Cloning the DAPHNE main repository,
from daphne-eu repository of daphne-eu at GitHub.
• The DAPHNE system is downloaded as source code,
cloning DAPHNE main repository:
In line 1, the git command is invoked, then the remote code is cloned into the
local file system in lines 2–9; and a change of directory ends it in line 11.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Container Setup (Singularity)
A singularity image is compiled locally and transferred to the Vega so that it can
be used later for compilation of DAPHNE.
• Building the build environment image (Singularity container):
In line 1, the singularity command is invoked, then the build proceeds at lines
2–22 and completes by creating the daphneeu.sif image until line 24.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Container Transfer to Target Machine
When the container image is compiled, the image is copied to Vega, where the
two-factor authentication and checking of the user access certificate take place.
• Transferring the built Singularity container image:
In line 1, the image file is specified, while authentication takes place in lines 2–3,
then copying proceeds in line 4.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Compilation
on Target Machine Within Singularity Container
With the singularity image and source code inplace, the DAPHNE system is then
compiled on the target system (Vega) from source code.
• Building the DAPHNE system on Vega:
In line 1, the compilation is started, then there are thousands of lines of output
(not printed here), and the build then finishes.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: ROA Deployment on Target Machine
After the images are prepared, a ROA is implemented in roa.d and run with different
configurations.
• Deployment of ROAs with DAPHNE using Slurm on Vega:
Sample configurations with for...do are seen in lines surrounding the srun command
in lines 6–10 and saving of outputs and timings at lines 11 and 12, respectively.
For each task, up to 1 GB memory and 10 minutes node use are requested to run the
workload using the container.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Data Flowchart
• To further explain the deployment and benchmarking of ROA in DAPHNE for our
use case, we also provide a data flowchart
• it is seen in the Figure on the right and shows how the data flows in the ROA use case.
• The ROA@HappyCat center part in red color
• is completely addressed by the DAPHNE system, within the core of the use case.
• as the DE parameters D, G, NP, and function for fitness
evaluation (HappyCat), are provided
• The pipeline generates data analysis reports
• (e.g. in PDF format, in the bottom of the flowchart),
• after it builds: the Singularity image from Docker platform
and DAPHNE from GitHub source;
• and runs the ROA tasks over Slurm (flowchart top).
• Then contribute in generating the reports:
• The collection of logs and cleanup (after waiting of the
tasks completion)
• and lookup into the Slurm database to see resource use.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Flowchart Details (Code Recap)
• First, the DAPHNE system is downloaded as source code, cloning DAPHNE
main repository as daphne-eu repository by daphne-eu at GitHub
• see Figure on page 16: in line 1, the git command is invoked, then the remote code is cloned into
the local file system in lines 2–9; and a change of directory ends it in line 11.
• Then, a singularity image is compiled locally and transferred to the Vega
so that it can be used later for compilation of DAPHNE
• see Figure on page 17: in line 1, the singularity command is invoked,
then the build proceeds at lines 2–22
and completes by creating the daphneeu.sif image until line 24.
• When the container image is compiled, the image is copied to Vega, where the
two-factor authentication and checking of the user access certificate take place
• see Figure on page 18: in line 1, the image file is specified,
while authentication takes place in lines 2–3, then copying proceeds in line 4.
• With the singularity image and source code inplace, the DAPHNE system is then compiled on the target
system (Vega)
• from source code, see Figure on page 19: in line 1, the compilation is started,
then there are thousands of lines of output (not printed here), and the build then finishes.
• After the images are prepared, a ROA is implemented in roa.d
and run with different configurations, as seen in Figure on page 20:
• sample configurations with for...do are seen in lines surrounding the srun command in lines
6–10 and saving of outputs and timings at lines 11 and 12, respectively.
• For each task, up to 1 GB memory and 10 minutes node use are requested to run the workload using the
container.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Experiment Setup and Convergence Results
• The optimisation results from the
ROA runs (fitness convergence
through generations) as
explained in the above
deployment preparation,
• as a set of convergence graphs, in
configurations with dimensions
D ∈ {10, 100, 1000} and population
sizes NP ∈ {10, 100, 1000}.
• For each of the runs plotted, we
observe that the fitness function
optimised by the ROA is successfully
improving, hence, the ROA CI is
performing its main functionality
of optimisation.
• The respective timings of the real
time to allocate and execute
different job variations as reported
by time command.
Convergent optimisation runs (fitness on vertical axis) using DAPHNE ROA on
different independent seeds:
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Experimental Results — Timing
• We can observe that the configuration of
D = 1000 and NP = 1000 in
case (i) has the far highest time
requirements overall for these cases.
• When observing each of the subfigures
separately, we see some limited degree of
variation in job allocation and execution
waiting time from 2 to 22 seconds, but
these are much less than the case (i) that
always reported timings above 100 seconds
(with only run 5 and 7 above 200 seconds,
but still below maximum requested
allocation of 10 minutes).
• We also further inspected the Slurm
database to profile run 7 and see that
while it consumed 92.139 Wh in 9m 42s,
• the task has spent only 8 seconds waiting to
be allocated, on empty current user queue,
which further demonstrates fast Vega task
allocations, practical in this use case.
Times (in seconds) of running optimisation runs, for different configurations:
The respective timings of the real time to allocate and execute different job variations
as reported by time command.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34
Introduction ROA DAPHNE Results Conclusion
CoBCom 2024: Experimental Results — Timing (Combined)
• Also, when running just a subset of the jobs
with much more similar timings (e.g. jobs
with D = 100, NP = 100) for much more
independent runs,
• the speed up is mostly capped by
the longest running job.
• While the responsiveness of the Slurm
scheduler varies slightly due to HPC
workload of all running jobs,
• the batching of the set of jobs however greatly
reduces the time required to execute a batch,
• compared to just sequentially running each job.
• Also, as allocation time is important for HPC
users so that they do not wait for their
results longer than running sequentially,
• the allocation times by far did not exceed the
combined time,
• i.e. the speed up was significant also from the
user perspective.
Combined time (left bar in the plot) vs. batched time (right):
500
1000
1500
2000
2500
3000
Time
To compare timings, we observe the combined time of
processing all batched jobs,
• compared to running them with Slurm,
demonstrating the speedup of real time needed by
runnning the tasks in parallell, and hence, scaling.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE General Assembly Meeting, October 8–9 2024
Meeting Day 2, October 9, Impact Hub Athens
Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024
Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th
Randomised Optimisation
Algorithms
—
III. ERK: ROA in DAPHNE on Vega for VLSGO
(D ≥ 10, 000) — Contribution, Results  Discussion
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34
Introduction ROA DAPHNE Results Conclusion
ERK 2024: ROA Fitness Implementation and Deployment
• Fitness function implementation in DaphneDSL:
def e v a l f ( x : matrixf64 ) − matrixf64 {
return ( (sum( x * x , 0) − 10) ˆ 2 ) ˆ 0.125 + ( sum( x * x , 0) / 2 + sum( x ) ) / 10 + 0 . 5 ;
}
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Introduction ROA DAPHNE Results Conclusion
ERK 2024: ROA Fitness Implementation and Deployment
• Fitness function implementation in DaphneDSL:
def e v a l f ( x : matrixf64 ) − matrixf64 {
return ( (sum( x * x , 0) − 10) ˆ 2 ) ˆ 0.125 + ( sum( x * x , 0) / 2 + sum( x ) ) / 10 + 0 . 5 ;
}
• Deployment (uses Singularity for DAPHNE system):
multiplier of 288 minutes per scale S was used.
for S in {1..10}; do
for NP in 1000; do
D=${S}0000
echo D=$D NP=$NP
for RNi in {1..10}; do
echo −n .
{ time srun −−mpi=none 
–time ((288∗S)) −−
mem=${S}G 
. . / daphneeu . s i f 
. / run−daphne . sh roa . d 
D=$D NP=$NP RNi=$RNi 
 results−D−$D−NP−$NP−RNi−$RNi−out . t x t 
} 2 time−D−$D−NP−$NP−RNi−$RNi−out . t x t
done #RNi
done #NP
done #D
wait
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Introduction ROA DAPHNE Results Conclusion
ERK 2024: ROA Fitness Implementation and Deployment
• Fitness function implementation in DaphneDSL:
def e v a l f ( x : matrixf64 ) − matrixf64 {
return ( (sum( x * x , 0) − 10) ˆ 2 ) ˆ 0.125 + ( sum( x * x , 0) / 2 + sum( x ) ) / 10 + 0 . 5 ;
}
• Deployment (uses Singularity for DAPHNE system):
multiplier of 288 minutes per scale S was used.
for S in {1..10}; do
for NP in 1000; do
D=${S}0000
echo D=$D NP=$NP
for RNi in {1..10}; do
echo −n .
{ time srun −−mpi=none 
–time ((288∗S)) −−
mem=${S}G 
. . / daphneeu . s i f 
. / run−daphne . sh roa . d 
D=$D NP=$NP RNi=$RNi 
 results−D−$D−NP−$NP−RNi−$RNi−out . t x t 
} 2 time−D−$D−NP−$NP−RNi−$RNi−out . t x t
done #RNi
done #NP
done #D
wait
DAPHNE system version used: July 26, 2024 (main branch, 548ea01).
DaphneDSL syntaxa:
• inspired by C/Java-like languages, case-sensitive,
• like Julia, Python NumPy, R, and Apache SystemDS DMLb,
• compiler hints for data/operator placement (i. e. local/distributed,
CPU/GPU/FPGA, computational storage)c.
a
DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines,
“DaphneDSL Language Reference”.
b
Boehm et al., “SystemDS: A Declarative Machine Learning System for the End-to-End Data Science
Lifecycle”.
c
DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines,
“DaphneDSL Language Reference”.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
Introduction ROA DAPHNE Results Conclusion
ERK 2024: Experiment Setup and Convergence Results
• The optimisation results from the ROA runs (fitness convergence through
generations) as explained in the above deployment preparation,
• as a set of convergence graphs, in configurations with dimensions D = 10000S, S ∈ {1, 2, 3, ..., 10}
and population size NP ∈ {1000}.
• For each of the runs plotted, we observe that the fitness function optimised by the ROA is
successfully improving, hence, the ROA CI is performing its main functionality of
optimisation.
• All jobs have successfully reached target generations of 300 for the VLSGO tasks,
except 4 cancelled earlier by Slurm due to timeout: on node cn0514 (jobs 31746064 on S = 5, RNi = 6 at G = 298; 31746065 on
S = 3, RNi = 6 and RNi = 1 both at G = 289) and cn0570 (31746113, G = 269).
Convergent optimisation runs (fitness on vertical axis) using DAPHNE ROA on function HappyCat, for different
independent seeds, D = 10000S, S ∈ {1, 2, 3, ..., 10} and population size NP ∈ {1000}:
-12000
-10000
-8000
-6000
-4000
-2000
0
2000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
-16000
-14000
-12000
-10000
-8000
-6000
-4000
-2000
0
2000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
-20000
-15000
-10000
-5000
0
5000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
-25000
-20000
-15000
-10000
-5000
0
5000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
-25000
-20000
-15000
-10000
-5000
0
5000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
-25000
-20000
-15000
-10000
-5000
0
5000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
-25000
-20000
-15000
-10000
-5000
0
5000
10000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
-30000
-25000
-20000
-15000
-10000
-5000
0
5000
10000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
-30000
-25000
-20000
-15000
-10000
-5000
0
5000
10000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
-35000
-30000
-25000
-20000
-15000
-10000
-5000
0
5000
10000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
• The respective timings of the real time to allocate and execute different job variations as reported by Umlaut monitor (next page).
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34
Introduction ROA DAPHNE Results Conclusion
ERK 2024: Experimental Results — Load Monitoring
• The respective timings of the real time to execute different job variations as reported by
Universal Machine Learning Analysis Utility (Umlaut) from GitHub
https://github.com/daphne-eu/umlaut; and their resource monitoring during execution.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Introduction ROA DAPHNE Results Conclusion
ERK 2024: Experimental Results — Load Monitoring
• The respective timings of the real time to execute different job variations as reported by
Universal Machine Learning Analysis Utility (Umlaut) from GitHub
https://github.com/daphne-eu/umlaut; and their resource monitoring during execution.
• Total runtime
Total runtime over independent runs of initially D = 10.000, NP = 1000.
0 1000 2000 3000 4000 5000 6000 7000
Time taken in seconds
HPC time
from
2024-08-03 10:48:23
HPC time
from
2024-08-03 10:50:50
HPC time
from
2024-08-03 10:51:10
HPC time
from
2024-08-03 10:54:16
HPC time
from
2024-08-03 10:55:51
HPC time
from
2024-08-03 10:56:16
HPC time
from
2024-08-03 10:57:09
HPC time
from
2024-08-03 11:02:11
HPC time
from
2024-08-03 11:05:39
HPC time
from
2024-08-03 11:19:09
5770.01
5931.00
5929.37
6116.42
6211.01
6236.19
6265.27
6603.99
6823.02
7600.40
Metric: Time
• Run times over scaling level S for D, where runtime dash-dotted linear fit of data
points is seen increasing with S.
• Plots for CPU load
CPU load are drawn: for RNi = 1 (the first run) of D = 10.000 (smallest S) and
RNi = 4 (typical, median run) of D = 100.000 (largest S).
0h 0m 0.00s 0h 26m 24.40s 0h 52m 8.29s 1h 17m 55.01s 1h 43m 30.90s
Time elapsed since start of pipeline run
12.5
48.3
109.0
169.7
230.5
291.2
351.9
412.6
473.4
534.1
594.8
655.6
CPU
usage
in
%
Metric: CPU usage
0h 0m 0.00s 7h 52m 58.25s 15h 49m 46.77s 23h 35m 41.24s 31h 32m 43.44s
Time elapsed since start of pipeline run
17.3
47.9
113.1
178.3
243.5
308.7
374.0
439.2
504.4
569.6
634.8
700.0
CPU
usage
in
%
Metric: CPU usage
D = 10.000, RNi = 1 D = 100.000, RNi = 5
• CPU load is baselined at 100% (one thread) and the jitters with higher loads are attributed to
multi-threaded executions of DAPHNE kernels with Basic Linear Algebra Subprograms (BLAS).
Deviations in running time among independent runs were observed and could be studied
further.
Times (in seconds) of running optimisation
runs, for different configurations:
0 20000 40000 60000 80000 100000
Time taken in seconds
HPC time ROA D=10000 NP=1000 RNi=4
from
2024-08-03 10:56:16
HPC time ROA D=20000 NP=1000 RNi=2
from
2024-08-03 12:59:54
HPC time ROA D=30000 NP=1000 RNi=7
from
2024-08-03 15:11:47
HPC time ROA D=40000 NP=1000 RNi=5
from
2024-08-03 17:23:23
HPC time ROA D=50000 NP=1000 RNi=10
from
2024-08-03 19:46:52
HPC time ROA D=70000 NP=1000 RNi=5
from
2024-08-03 22:22:57
HPC time ROA D=60000 NP=1000 RNi=8
from
2024-08-03 22:53:07
HPC time ROA D=80000 NP=1000 RNi=6
from
2024-08-04 03:46:32
HPC time ROA D=90000 NP=1000 RNi=5
from
2024-08-04 06:34:54
HPC time ROA D=100000 NP=1000 RNi=8
from
2024-08-04 12:29:47
6236.19
13638.10
21579.85
29462.71
38076.01
47448.61
49272.19
66865.54
76977.61
98269.75
Metric: Time
0.2 0.4 0.6 0.8 1
·105
0
0.5
1
·105
Dimension D [integer]
Runtime
[seconds]
Runtime of ROA in DAPHNE
depending on
problem dimension size
ROA in DAPHNE
Total runtime
CPU load
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
Introduction ROA DAPHNE Results Conclusion
ERK 2024: Experimental Results — Memory Monitoring
• Furthermore, usage of memory resources is monitored using Umlaut.
• As memory was seen increasing during the runa,
in meanwhile after experiments have already been done in August using latest July code
updates and by the time of revision of this paper in September, also for loopsb
,
the implementation of allocations has been upgraded in the language implementation with
newest software release (version 0.3) and additional regular updates.
• Successfully initially observed using Umlaut:
• the memory usage plot peeks at approximately 105.87 MB for these runs,
by initially rising to roughly 89 MB
and then staying almost all of the time at that usage,
slightly varying because of iterative allocations.
a
Benjamin Steinwender et al. Integrated Data Analysis Pipelines for Large-Scale Data Management,
HPC, and Machine Learning : D8.3 Benchmarking Results all Use Case Studies. Tech. rep. Version 2.1.
KAI (KAI Kompetenzzentrum Automobil- und Industrieelektronik GmbH), DLR (Deutsches Zentrum für
Luft- und Raumfahrt EV), IFAT (Infineon Technologies Austria AG), AVL (AVL List GmbH), and UM
(Univerza v Mariboru), 2024.
b
Borko Bošković, Janez Brest, and Aleš Zamuda. “Loops of the Domain-specific Programming
Language DaphneDSL”. In: Proceedings of 33rd International Electrotechnical and Computer Science
Conference. 2024, pp. 388–392.
0h 0m 0.00s 0h 26m 4.65s 0h 51m 40.06s 1h 16m 48.42s 1h 41m 56.29s
Seconds elapsed since start of pipeline run
87.44
89.11
90.79
92.46
94.14
95.82
97.49
99.17
100.84
102.52
104.20
105.87
Memory
usage
in
MB
Metric: Memory usage
Memory usage profiles during the run
execution of DAPHNE ROA on function
HappyCat, D = 10.000, NP = 1000, and 10
RNi configuration values.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34
Introduction ROA DAPHNE Results Conclusion
ERK 2024: UM Team presentations
Computational Intelligence (IEEE Slovenia CIS, CIS11) at ERK 2024 track
Computer and Information Science (sessions CS) and Technical Presentations.5
5
Aleš Zamuda. “Very Large Scale Global Optimization with Randomised Optimisation Algorithms in DAPHNE”. In: Proceedings of 33rd
International Electrotechnical and Computer Science Conference. 2024, pp. 383–387; Bošković, Brest, and Zamuda, “Loops of the Domain-specific
Programming Language DaphneDSL”; Matjaž Divjak and Aleš Zamuda. “Experimental pipeline definition for surface high-density electromyogram
(HDEMG) processing”. In: Proceedings of 33rd International Electrotechnical and Computer Science Conference. 2024, pp. 378–382; Klemen Berkovič
and Aleš Zamuda. “Presentation at ERK 2024”. In: 33rd International Electrotechnical and Computer Science Conference, Portorož, Slovenia. 2024;
Danilo Korže and Aleš Zamuda. “Testing DaphneDSL Simple Matrix Operations”. In: 33rd International Electrotechnical and Computer Science
Conference, Portorož, Slovenia. 2024; Tina Tomažič, Eva Sophie Paulusberger, and Aleš Zamuda. “Digital Strategic Communication: the Case of the
1st DAPHNE Symposium”. In: Proceedings of 33rd International Electrotechnical and Computer Science Conference. 2024, pp. 405–410.
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34
Introduction ROA DAPHNE Results Conclusion
Ongoing: Ubuntu 24.04 Singularity image for EuroHPC CUDA
• Investigating Vega CUDA feasibility.
• 2024, September: causes PTX instruction delivery mismatch
• DAPHNE to intermediate kernels CUDA driver card.
• Docker image: 2024-09-18 X86-64 BASE ubuntu24.04
• daphneeu/daphne, By daphneeu, Updated 19 September days ago
• Container for compiled DAPHNE binaries, Pulls 1.5K.
• Docker image CUDA driver: 560.35.03
• 560.35.03
• Vega driver: 550.54.15
• NVIDIA UNIX x86 64 Kernel Module 550.54.15 Tue Mar 5 22:23:56 UTC
2024
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE General Assembly Meeting, October 8–9 2024
Meeting Day 2, October 9, Impact Hub Athens
Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024
Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th
Randomised Optimisation
Algorithms
—
IV: Conclusion
with Takeaways
—
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34
Introduction ROA DAPHNE Results Conclusion
DAPHNE General Assembly Meeting 2024: ROA Takeaways
• Presented a deployment of DAPHNE (Integrated Data Analysis Pipelines for
Large-Scale Data Management, HPC and Machine Learning)
on EuroHPC Vega, running ROA CI tasks with Slurm.
• An example ROA benchmarking scenario was benchmarked
using HappyCat function on VLSGO (very large dimensions)
• and comparing overall run times and monitoring was discussed.
• In further detail:
• the insight explanation to resource monitoring
of the applied HappyCat function was presented,
• the deployment preparation was reviewed step by step from a flowchart,
and
• running of ROA was discussed for VLSGO
• from CI configuration and convergence perspective,
• from HPC perspective (e.g. timing and other resource use and monitoring),
• as well as in perspective from current main advantages and limitations for
prospective users and ongoing work (incl. EuroHPC).
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34
Introduction ROA DAPHNE Results Conclusion
Further Research — After DAPHNE GAM 2024
• Future work includes
• further deployment (e.g. to additional hardware),
• benchmarking, and
• extending the ROA scenario and library
• as well as research in other use cases,
• especially from CI and remote sensing, including
• underwater missions like ocean glider path planning
• and text summarization.
0.2 0.4 0.6 0.8 1
·105
0
0.5
1
·105
Dimension D [integer]
Runtime
[seconds]
Runtime of ROA in DAPHNE
depending on
problem dimension size
ROA in DAPHNE
-35000
-30000
-25000
-20000
-15000
-10000
-5000
0
5000
10000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
10000
1x106
1x108
1x1010
1x1012
0 1 2 3 4 5 6 7 8 9
FES
Digits
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
0 1 2 3 4 5 6 7 8 9
Combined power from 110 MW to 975 MW, step 0.01 MW 104
0
100
200
300
400
500
600
700
Individual
output
(power
[MW]
or
unit
total
cost
[$])
Cost, TC / 3
Powerplant P1 power
Powerplant P2 power
Powerplant P3 power
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
1 10 100 1000 10000
ROUGE-1R
ROUGE-2R
ROUGE-LR
ROUGE-SU4R
Fitness (scaled)
150
200
250
300
350
400
450
500
550
16 32 48 64 80
Seconds
to
compute
a
workload
Number of tasks (equals 16 times the SLURM --nodes parameter)
Summarizer workload
Real examples: science and HPC
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34
Thank you. Questions?
Thanks!
Acknowledgement: this work is supported by DAPHNE, funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 957407.
0.2 0.4 0.6 0.8 1
·105
0
0.5
1
·105
Dimension D [integer]
Runtime
[seconds]
Runtime of ROA in DAPHNE
depending on
problem dimension size
ROA in DAPHNE
-35000
-30000
-25000
-20000
-15000
-10000
-5000
0
5000
10000
0 50 100 150 200 250 300
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Run 10
10000
1x106
1x108
1x1010
1x1012
0 1 2 3 4 5 6 7 8 9
FES
Digits
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
0 1 2 3 4 5 6 7 8 9
Combined power from 110 MW to 975 MW, step 0.01 MW 104
0
100
200
300
400
500
600
700
Individual
output
(power
[MW]
or
unit
total
cost
[$])
Cost, TC / 3
Powerplant P1 power
Powerplant P2 power
Powerplant P3 power
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
1 10 100 1000 10000
ROUGE-1R
ROUGE-2R
ROUGE-LR
ROUGE-SU4R
Fitness (scaled)
150
200
250
300
350
400
450
500
550
16 32 48 64 80
Seconds
to
compute
a
workload
Number of tasks (equals 16 times the SLURM --nodes parameter)
Summarizer workload
Real examples: science and HPC
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34
Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34

More Related Content

PDF
Randomised Optimisation Algorithms Pipelines @ DAPHNE FRM 2025
PDF
Randomised Optimisation Algorithms in DAPHNE
PDF
Very Large Scale Global Optimization with Randomised Optimisation Algorithms ...
PDF
Deployment of Randomised Optimisation Algorithms Benchmarking in DAPHNE
PDF
Modelling, Simulation, and Computer-aided Design in Computational, Evolutiona...
PDF
Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking ...
PDF
Evolutionary Optimization Algorithms & Large-Scale Machine Learning
PDF
Speeding Up Vectorized Benchmarking of Optimization Algorithms
Randomised Optimisation Algorithms Pipelines @ DAPHNE FRM 2025
Randomised Optimisation Algorithms in DAPHNE
Very Large Scale Global Optimization with Randomised Optimisation Algorithms ...
Deployment of Randomised Optimisation Algorithms Benchmarking in DAPHNE
Modelling, Simulation, and Computer-aided Design in Computational, Evolutiona...
Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking ...
Evolutionary Optimization Algorithms & Large-Scale Machine Learning
Speeding Up Vectorized Benchmarking of Optimization Algorithms

Similar to Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (20)

PDF
ULPGC2023-Erasmus+lectures_Ales_Zamuda_SystemsTheory+IntelligentAutonomousSys...
ODP
Parallel Problem Solving from Nature session-4
PDF
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...
PPSX
2009 MSc Presentation for Parallel-MEGA
PDF
Review of Metaheuristics and Generalized Evolutionary Walk Algorithm
PDF
Toward the Online Visualisation of Algorithm Performance for Parameter Selection
PPT
fouad_kharroubi_PhD_Defense_05_06_2014.ppt
PPT
fouad_kharroubi_PhD_Defense_05_06_2014.ppt
PPT
fouad_kharroubi_PhD_Defense_05_06_2014.ppt
PDF
Viktor Kajml diploma thesis
PPT
Chap11 slides
PDF
Differential evolution optimization technique
PDF
IRJET- Artificial Algorithms Comparative Study
ODP
Multi-criteria meta-parameter tuning for mono-objective stochastic metaheuris...
PDF
A Framework for Self-Tuning Optimization Algorithm
PDF
Evolutionary Computation Wellington Pinheiro Dos Santos Editor
PPTX
NIPS 2016. BayesOpt workshop invited talk.
PDF
Bat Algorithm: Literature Review and Applications
PDF
Solving 100-Digit Challenge with Score 100 by Extended Running Time and Paral...
PDF
Ijsea04031014
ULPGC2023-Erasmus+lectures_Ales_Zamuda_SystemsTheory+IntelligentAutonomousSys...
Parallel Problem Solving from Nature session-4
HPC Deployment / Use Cases (EVEREST + DAPHNE: Workshop on Design and Programm...
2009 MSc Presentation for Parallel-MEGA
Review of Metaheuristics and Generalized Evolutionary Walk Algorithm
Toward the Online Visualisation of Algorithm Performance for Parameter Selection
fouad_kharroubi_PhD_Defense_05_06_2014.ppt
fouad_kharroubi_PhD_Defense_05_06_2014.ppt
fouad_kharroubi_PhD_Defense_05_06_2014.ppt
Viktor Kajml diploma thesis
Chap11 slides
Differential evolution optimization technique
IRJET- Artificial Algorithms Comparative Study
Multi-criteria meta-parameter tuning for mono-objective stochastic metaheuris...
A Framework for Self-Tuning Optimization Algorithm
Evolutionary Computation Wellington Pinheiro Dos Santos Editor
NIPS 2016. BayesOpt workshop invited talk.
Bat Algorithm: Literature Review and Applications
Solving 100-Digit Challenge with Score 100 by Extended Running Time and Paral...
Ijsea04031014
Ad

More from University of Maribor (19)

PDF
Digital Strategic Communication: the Case of the 1st DAPHNE Symposium
PDF
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
PDF
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
PDF
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
PDF
Poročilo odbora CIS (CH08873) za leto 2023 na letni skupščini IEEE Slovenija ...
PDF
EuroHPC AI in DAPHNE and Text Summarization
PDF
EuroHPC AI in DAPHNE
PDF
Generative AI Using HPC in Text Summarization and Energy Plants
PDF
Load balancing energy power plants with high-performance data analytics (HPDA...
PDF
Poročilo ODBORA CIS (CH08873) za leto 2020
PDF
Poročilo ODBORA CIS (CH08873) za leto 2019
PDF
Poročilo ODBORA CIS (CH08873) za leto 2022
PDF
Delo vodje odbora IEEE: naloge, dobre prakse, poročanje
PDF
IEEE Slovenia: Introduction (in Slovene), with details in English
PDF
IEEE Slovenia CIS in 2021 (a report in Slovene language)
PDF
Superračunalništvo v Mariboru (2021, CIS11, ZID)
PDF
Monitoring and Operational Data Analytics from a User Perspective at First Eu...
PDF
Parallelization of Benchmarking using HPC: Text Summarization in Natural Lang...
PDF
Examples Implementing Black-Box Discrete Optimization Benchmarking Survey for...
Digital Strategic Communication: the Case of the 1st DAPHNE Symposium
Remote Sensing and Computational, Evolutionary, Supercomputing, and Intellige...
Presentation of IEEE Slovenia CIS (Computational Intelligence Society) Chapte...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Poročilo odbora CIS (CH08873) za leto 2023 na letni skupščini IEEE Slovenija ...
EuroHPC AI in DAPHNE and Text Summarization
EuroHPC AI in DAPHNE
Generative AI Using HPC in Text Summarization and Energy Plants
Load balancing energy power plants with high-performance data analytics (HPDA...
Poročilo ODBORA CIS (CH08873) za leto 2020
Poročilo ODBORA CIS (CH08873) za leto 2019
Poročilo ODBORA CIS (CH08873) za leto 2022
Delo vodje odbora IEEE: naloge, dobre prakse, poročanje
IEEE Slovenia: Introduction (in Slovene), with details in English
IEEE Slovenia CIS in 2021 (a report in Slovene language)
Superračunalništvo v Mariboru (2021, CIS11, ZID)
Monitoring and Operational Data Analytics from a User Perspective at First Eu...
Parallelization of Benchmarking using HPC: Text Summarization in Natural Lang...
Examples Implementing Black-Box Discrete Optimization Benchmarking Survey for...
Ad

Recently uploaded (20)

PPTX
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPTX
BIOMOLECULES PPT........................
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPT
protein biochemistry.ppt for university classes
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
The scientific heritage No 166 (166) (2025)
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
An interstellar mission to test astrophysical black holes
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
Microbiology with diagram medical studies .pptx
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
Vitamins & Minerals: Complete Guide to Functions, Food Sources, Deficiency Si...
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
Phytochemical Investigation of Miliusa longipes.pdf
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
BIOMOLECULES PPT........................
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
ECG_Course_Presentation د.محمد صقران ppt
protein biochemistry.ppt for university classes
2. Earth - The Living Planet Module 2ELS
The scientific heritage No 166 (166) (2025)
Taita Taveta Laboratory Technician Workshop Presentation.pptx
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
TOTAL hIP ARTHROPLASTY Presentation.pptx
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
Classification Systems_TAXONOMY_SCIENCE8.pptx
An interstellar mission to test astrophysical black holes
Comparative Structure of Integument in Vertebrates.pptx
Microbiology with diagram medical studies .pptx
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS

Randomised Optimisation Algorithms @ DAPHNE GAM 2024

  • 1. Introduction ROA DAPHNE Results Conclusion DAPHNE General Assembly Meeting, October 8–9 2024 Meeting Day 2, October 9, Impact Hub Athens Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024 Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th Randomised Optimisation Algorithms Aleš Zamuda University of Maribor <ales.zamuda@um.si> Acknowledgement. This work is supported by project DAPHNE (Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC and Machine Learning) funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957407. 0.2 0.4 0.6 0.8 1 ·105 0 0.5 1 ·105 Dimension D [integer] Runtime [seconds] Runtime of ROA in DAPHNE depending on problem dimension size ROA in DAPHNE Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 1/ 34
  • 2. Introduction ROA DAPHNE Results Conclusion DAPHNE General Assembly Meeting, October 8–9 2024 Meeting Day 2, October 9, Impact Hub Athens Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024 Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th Randomised Optimisation Algorithms — Initial Introduction & Outline — Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 2/ 34
  • 3. Introduction ROA DAPHNE Results Conclusion Introduction & Outline: Content 1 (1 minutes) Part I: Background — Randomised Optimisation Algorithms (ROA) 2 (7 minutes) Part II: ROA in DAPHNE on EuroHPC Vega 3 (4 minutes) Part III: VLSGO ROA in DAPHNE on Vega MODA 4 (2 minutes) Part IV: Conclusion with Takeaways 5 (≈3 minutes) Questions, Misc 6 (Appendix) Additional lecture materials Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 3/ 34
  • 4. Introduction ROA DAPHNE Results Conclusion Introduction: Aims of this Talk — HPC & Benchmarking A closer observation of execution times for workloads processed in [2] is provided in Fig. 1, where it is seen that the execution time (color of the patches) changes for different benchmark executions. Fig. 1: Execution time of full benchmarks for different instances of optimization algorithms. Each patch presents one full benchmark execution to evaluate an optimization algorithm. Warmup Highlights on (Generative) AI w/ ChatGPT+Synthesia: visiting Canaries/ASHPC/WCCI Photo/video: 1) generative animation 2) HPC generated introduction (ASHPC23); 3) with underwater glider at ULPGC SIANI; 4) infront SIANI; 5) with autonomous sailboat at SIANI; If 2023 was about Generative AI, is 2024 on CI omnia Robotics? • Therefore, it is useful to consider speeding up of benchmarking through vectorization of the tasks that a benchmark is comprised of — e.g.: • parallell data cleaning part of an individual ML tile [1] or • synchronization between tasks when executing parallell geospatial processing [3]. • To enable the possibilities of data cleaning (preprocessing) as well as geospatial processing in parallell ( ERK’06 a), such opportunities first need to be found or designed, if none yet exist for a problem tackled. • Therefore, this contribution will highlight some experiences with finding and designing parallell ML pipelines for vectorization and observe speedup. • The speeding up focus will be on optimization algorithms within such ML pipelines. a A. Zamuda and N. Guid. “Modeliranje, simulacija in upodabljanje gozdov”. In: Zbornik petnajste mednarodne Elektrotehniške in računalniške konference ERK 2006, 25. – 27. september 2006, Portorož, Slovenija. Ljubljana: IEEE Region 8, Slovenska sekcija IEEE, 2006. Zvezek B. 2006, pp. 391–392. [2] Zamuda, A, Brest, J., Self-adaptive control parameters’ randomization frequency and propagations in differential evolution. Swarm and Evolutionary Computation 25C, 72-99 (2015). [3] Zamuda, A., Hernández Sosa, J. D., Success history applied to expert system for underwater glider path planning using differential evolution. Expert Systems with Applications 119, 155-170 (2019). Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 4/ 34
  • 5. Introduction ROA DAPHNE Results Conclusion DAPHNE General Assembly Meeting, October 8–9 2024 Meeting Day 2, October 9, Impact Hub Athens Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024 Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th Randomised Optimisation Algorithms — I. Background — Randomised Optimisation Algorithms (ROA) — Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 5/ 34
  • 6. Introduction ROA DAPHNE Results Conclusion ROA and Implementations in DAPHNE • Differential Evolution (DE) is a ROA, a floating point encoding Evolutionary Algorithm (EA) ROA for global optimization over continuous spaces, • through generations, the evolution process improves population of vectors, • iteratively by combining a parent individual and several other individuals of the same population, using evolutionary operators. • We choose the strategy DE/rand/1/bin • mutation: vi,G+1 = xr1,G + F × (xr2,G − xr3,G), • crossover: ui,j,G+1 = ( vi,j,G+1 if rand(0, 1) ≤ CR or j = jrand xi,j,G otherwise , • selection: xi,G+1 = ( ui,G+1 if f(ui,G+1) < f(xi,G) xi,G otherwise , Previously: ASHPC24, CoBCom: • ROA in DAPHNE Benchmarked (ASHPC24: Apple M1/M3, CoBCom, July 2024 & D8.3 August: Vega/Slurm) • Testing: convergence of a ML system; ROA: Randomised Optimisation Algorithm • As seen from the plots, the fitness values are convergent, optimizing. -350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 A convergence plot for the function f2, on different independent runs. -50 -40 -30 -20 -10 0 10 0 50 100 150 200 250 300 Fitness, run 1 Fitness, run 2 Fitness, run 3 Fitness, run 4 Fitness, run 5 Fitness, run 6 Fitness, run 7 Fitness, run 8 Fitness, run 9 An example ROA run, with convergence plot for the HappyCat function (f6), on different independent runs. f2 = P x5 + 1 + max(x, 0), 0 f6 = P x2, 0 − 10 2 0.125 + P x2, 0 /2 + P (x) /10 + 0.5 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 6/ 34
  • 7. Introduction ROA DAPHNE Results Conclusion DAPHNE General Assembly Meeting, October 8–9 2024 Meeting Day 2, October 9, Impact Hub Athens Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024 Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th Randomised Optimisation Algorithms — DAPHNE: VLSGO ROA in DAPHNE on Vega MODA — Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 7/ 34
  • 8. Introduction ROA DAPHNE Results Conclusion DAPHNE Partners: Project Consortium Project Consortium 13 partner institutions from 7 countries • DM, ML, HPC • Academia industry • Different application domains 14 • Technical University Berlin1 University of Maribor (UM): UM FERI research team DAPHNE (lead: A. Zamuda), SLING connection (EuroHPC Vega). https://feri.um.si/en/research/international-and-structural-funds-projects/integrated-data-analysis-pipelines-for-large-scale-data-management-hpc-and-machine-learning/ 1 Publication Office of the European Union. “Fact Sheet : Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and Machine Learning”. In: CORDIS – EU research results. 2024, https://cordis.europa.eu/project/id/957407. DOI: 10.3030/957407. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 8/ 34
  • 9. Introduction ROA DAPHNE Results Conclusion DAPHNE: Overview (Generic Aspect of the Project) Overview: Generic Aspect of the Project • Deployment Challenges • Hardware Challenges • DM+ML+HPC share compilation and runtime techniques / converging cluster hardware • End of Dennard scaling: P = α CFV2 (power density 1) • End of Moore’s law • Amdahl’s law: sp = 1/s  Increasing Specialization #1 Data Representations Sparsity Exploitation from Algorithms to HW dense graph sparse compressed #2 Data Placement Local vs distributed CPUs/ NUMA GPUs FPGAs/ ASICs #3 Data (Value) Types FP32, FP64, INT8, INT32, INT64, UINT8, BF16, TF32, FlexPoint [NVIDIA A100]  DAPHNE Overall Objective: Open and extensible system infrastructure Different Systems/ Libraries Dev Teams Programming Models Resource Managers Cluster Under- utilization Data/File Exchange 3 lessons learnt so far choices made, methodology Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 9/ 34
  • 10. Introduction ROA DAPHNE Results Conclusion DAPHNE: Functionalities (from Language Abstractions to Distributed Vectorized Execution and Use Cases) y Functionality Introduction: from Language Abstractions to Distributed Vectorized Execution and Use Cases • Federated matrices/frames + distribution primitives • Hierarchical vectorized pipelines and scheduling • Coordinator (spawns distributed fused pipeline) • #1 Prepare Inputs (N/A, repartition, broadcasts, slices broadcasts as necessary) • #2 Coarse-grained Tasks (tasks run vectorized pipeline) • #3 Combine Outputs (N/A, all-reduce, rbind/cbind) Node 1 X [1: 100M] Node 2 X [100M: 200M] colmu colsd y y (X) XTX XTy dc = DaphneContext() G = dc.from_numpy(npG) G = (G != 0) c = components(G, 100, True).compute() Python API DaphneLib def components(G, maxi, verbose) { n = nrow(G); // get the number of vertexes maxi = 100; c = seq(1, n); // init vertex IDs diff = inf; // init diff to +Infinity iter = 1; // iterative computation of connected components while(diff0 iter=maxi) { u = max(rowMaxs(G * t(c)), c); // neighbor prop diff = sum(u != c); // # of changed vertexes c = u; // update assignment iter = iter + 1; } } Domain-specific Language DaphneDSL Multiple dispatch of functions/kernels Example Use Cases • DLR Earth Observation • ESA Sentinel-1/2 datasets  4PB/year • Training of local climate zone classifiers on So2Sat LCZ42 (15 experts, 400K instances, 10 labels each, ~55GB HDF5) • ML pipeline: preprocessing, ResNet-20, climate models • IFAT Semiconductor Ion Beam Tuning • KAI Semiconductor Material Degradation • AVL Vehicle Development Process (ejector geometries, KPIs) • ML-assisted simulations, data cleaning, augmentation • Cleaning during exploratory query processing Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 10/ 34
  • 11. Introduction ROA DAPHNE Results Conclusion About HPC: Vega Supercomputer (TOP500) EuroHPCs Demo at Euro-PAR 20232, also on EuroHPC Vega3 OpenStack; ASHPCs 2021-244 ASHPC23: EuroHPC Vega tour Ales Zamuda @a�eszamuda While visiting today I had the honor visiting the spectacular MareNostrum supercomputers and their installation. From observing afar in ‘06 as v1v2 were deployed w/ 4294 Tflops and v3 passing the Pflop, this tour ‘23 to v4 and v5 was sourcely. Thanks #sors �BSC_CNS @rosabadia Ales Zamuda · @a�eszamuda Sep 12 Show this thread Today I am delighted to present a Severo Ochoa Research Seminar (SORS) at Barcelona Supercomputing Center #BSC, titled: EuroHPC AI in DAPHNE (host: Rosa Badia @rosabadia, Workflows and Distributed Computing Group Manager, CS, BSC) bsc.es/research-and-d… #presenting @daphne_eu 4:20 PM · Sep 12, 2023 · Views 165 View post engagements 5 Post your reply Reply Post Ales Zamuda on X: While visiting @BSC_CNS today I had the hono... https://twitter.com/aleszamuda/status/1701601792952512938 1 od 2 19. 09. 23, 11:14 • Towards HPC ROA in DAPHNE: June 2023, ASHPC23: 2 extended abstract submitted (ROA are sought in DAPHNE; ROA role in GenAI), • August 2023, Euro-Par 2023: initial demo created for ROA, confirming that ROA can run in DAPHNE (Apple M1) • September 2023, seminars at Alicante (UA) and Barcelona (BSC): role of ROA in NLP (incl. GenAI), ROA deployment preparations base start for Mare Nostrum 5 (not opened yet at that time) • January 2024, HiPEAC 2024: presentation of the initial benchmarking of ROA in DAPHNE (Apple M3) • June 2024, ASHPC 2024: presentation of the further benchmarking of ROA in DAPHNE (Apple M3) • July 2024, CoBCom 2024: Vega ROA in DAPHNE 2 A. Vontzalidis et al. “DAPHNE Runtime: Harnessing Parallelism for Integrated Data Analysis Pipelines”. In: Euro-Par 2023: Parallel Processing Workshops. Ed. by Demetris Zeinalipour et al. Lecture Notes in Computer Science, vol. 14352. Cham: Springer, 2024, pp. 242–246. 3 Aleš Zamuda and Mark Dokter. “Deploying DAPHNE Computational Intelligence on EuroHPC Vega for Benchmarking Randomised Optimisation Algorithms”. In: International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom). 2024, pp. 1–8. 4 A. Zamuda. “Parallelization of benchmarking using HPC: text summarization in natural language processing (NLP), glider piloting in deep-sea missions, and search algorithms in computational intelligence (CI)”. In: Austrian-Slovenian HPC Meeting 2021 - ASHPC21. 2021, p. 35; Aleš Zamuda. “Generative AI Using HPC in Text Summarization and Energy Plants”. In: Austrian-Slovenian HPC Meeting 2023–ASHPC23. 2023, p. 5. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 11/ 34
  • 12. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Identified DAPHNE ROA Opportunities • Deploying Randomised Optimisation Algorithms (ROA) in DAPHNE on EuroHPC Vega allows • benchmarking and research in novel and innovative models for Artificial Intelligece (AI). • The methods that are supported in DAPHNE allow seamless distribution of AI memory • that is required when an AI algorithm run requires a large memory that can be distributed across different HPC nodes. • Using DAPHNE, the benchmarking can be not only run in • the Runtime Environment on an HPC that is much larger than a regular laptop computer, • but also gather monitoring data of the workload while the algorithm is running, • to obtain a benchmarking profile, allowing an informed scientific observation of a novel algorithm under test. To discuss these results of the proposed approach from a more distant context: • we provide listing the main advantages (potentials for scaling) and limitations (newly establishing language). • Namely, the potential for scaling the ROA was successfully benchmarked (scaling through tasks in Slurm) and as a limitation, • we can mention that DAPHNE is a new language and the ROA deployed still has limitations and does not include more advanced fitness functions 0 1 2 3 4 5 6 7 8 9 Combined power from 110 MW to 975 MW, step 0.01 MW 104 0 100 200 300 400 500 600 700 Individual output (power [MW] or unit total cost [$]) Cost, TC / 3 Powerplant P1 power Powerplant P2 power Powerplant P3 power -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 1 10 100 1000 10000 ROUGE-1R ROUGE-2R ROUGE-LR ROUGE-SU4R Fitness (scaled) Real examples: science and HPC • improved scheduling of workload in distributed multi-node Slurm tasks, and comparisons of benchmarking resultsa , which are among our ongoing research work. 150 200 250 300 350 400 450 500 550 16 32 48 64 80 Seconds to compute a workload Number of tasks (equals 16 times the SLURM --nodes parameter) Summarizer workload a Zamuda, “Parallelization of benchmarking using HPC: text summarization in natural language processing (NLP), glider piloting in deep-sea missions, and search algorithms in computational intelligence (CI)”; Zamuda, “Generative AI Using HPC in Text Summarization and Energy Plants”. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 12/ 34
  • 13. Introduction ROA DAPHNE Results Conclusion DAPHNE General Assembly Meeting, October 8–9 2024 Meeting Day 2, October 9, Impact Hub Athens Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024 Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th Randomised Optimisation Algorithms — CoBCom (revisited, D ≤ 1, 000): ROA in DAPHNE on Vega — D ≤ 1, 000 Contribution, Results Discussion — Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 13/ 34
  • 14. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Deployment Setup Deployment command full instruction text: Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 14/ 34
  • 15. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Fitness Function in LLVM Example LLVM code for lowering of the fitness function implementation (HappyCat function): In line 1 the eval f6 function definition begins and in line 108 it ends, including the constants definition (lines 2–7), allocations (e.g. in lines 8 and 14), and the specific calls to the implemented kernels (e.g. for matrix operations like addition/subtraction in lines 23/29 or multiplication/division in lines 17/83). Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 15/ 34
  • 16. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Code Setup Cloning the DAPHNE main repository, from daphne-eu repository of daphne-eu at GitHub. • The DAPHNE system is downloaded as source code, cloning DAPHNE main repository: In line 1, the git command is invoked, then the remote code is cloned into the local file system in lines 2–9; and a change of directory ends it in line 11. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 16/ 34
  • 17. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Container Setup (Singularity) A singularity image is compiled locally and transferred to the Vega so that it can be used later for compilation of DAPHNE. • Building the build environment image (Singularity container): In line 1, the singularity command is invoked, then the build proceeds at lines 2–22 and completes by creating the daphneeu.sif image until line 24. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 17/ 34
  • 18. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Container Transfer to Target Machine When the container image is compiled, the image is copied to Vega, where the two-factor authentication and checking of the user access certificate take place. • Transferring the built Singularity container image: In line 1, the image file is specified, while authentication takes place in lines 2–3, then copying proceeds in line 4. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 18/ 34
  • 19. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Compilation on Target Machine Within Singularity Container With the singularity image and source code inplace, the DAPHNE system is then compiled on the target system (Vega) from source code. • Building the DAPHNE system on Vega: In line 1, the compilation is started, then there are thousands of lines of output (not printed here), and the build then finishes. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 19/ 34
  • 20. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: ROA Deployment on Target Machine After the images are prepared, a ROA is implemented in roa.d and run with different configurations. • Deployment of ROAs with DAPHNE using Slurm on Vega: Sample configurations with for...do are seen in lines surrounding the srun command in lines 6–10 and saving of outputs and timings at lines 11 and 12, respectively. For each task, up to 1 GB memory and 10 minutes node use are requested to run the workload using the container. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 20/ 34
  • 21. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Data Flowchart • To further explain the deployment and benchmarking of ROA in DAPHNE for our use case, we also provide a data flowchart • it is seen in the Figure on the right and shows how the data flows in the ROA use case. • The ROA@HappyCat center part in red color • is completely addressed by the DAPHNE system, within the core of the use case. • as the DE parameters D, G, NP, and function for fitness evaluation (HappyCat), are provided • The pipeline generates data analysis reports • (e.g. in PDF format, in the bottom of the flowchart), • after it builds: the Singularity image from Docker platform and DAPHNE from GitHub source; • and runs the ROA tasks over Slurm (flowchart top). • Then contribute in generating the reports: • The collection of logs and cleanup (after waiting of the tasks completion) • and lookup into the Slurm database to see resource use. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 21/ 34
  • 22. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Flowchart Details (Code Recap) • First, the DAPHNE system is downloaded as source code, cloning DAPHNE main repository as daphne-eu repository by daphne-eu at GitHub • see Figure on page 16: in line 1, the git command is invoked, then the remote code is cloned into the local file system in lines 2–9; and a change of directory ends it in line 11. • Then, a singularity image is compiled locally and transferred to the Vega so that it can be used later for compilation of DAPHNE • see Figure on page 17: in line 1, the singularity command is invoked, then the build proceeds at lines 2–22 and completes by creating the daphneeu.sif image until line 24. • When the container image is compiled, the image is copied to Vega, where the two-factor authentication and checking of the user access certificate take place • see Figure on page 18: in line 1, the image file is specified, while authentication takes place in lines 2–3, then copying proceeds in line 4. • With the singularity image and source code inplace, the DAPHNE system is then compiled on the target system (Vega) • from source code, see Figure on page 19: in line 1, the compilation is started, then there are thousands of lines of output (not printed here), and the build then finishes. • After the images are prepared, a ROA is implemented in roa.d and run with different configurations, as seen in Figure on page 20: • sample configurations with for...do are seen in lines surrounding the srun command in lines 6–10 and saving of outputs and timings at lines 11 and 12, respectively. • For each task, up to 1 GB memory and 10 minutes node use are requested to run the workload using the container. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 22/ 34
  • 23. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Experiment Setup and Convergence Results • The optimisation results from the ROA runs (fitness convergence through generations) as explained in the above deployment preparation, • as a set of convergence graphs, in configurations with dimensions D ∈ {10, 100, 1000} and population sizes NP ∈ {10, 100, 1000}. • For each of the runs plotted, we observe that the fitness function optimised by the ROA is successfully improving, hence, the ROA CI is performing its main functionality of optimisation. • The respective timings of the real time to allocate and execute different job variations as reported by time command. Convergent optimisation runs (fitness on vertical axis) using DAPHNE ROA on different independent seeds: Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 23/ 34
  • 24. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Experimental Results — Timing • We can observe that the configuration of D = 1000 and NP = 1000 in case (i) has the far highest time requirements overall for these cases. • When observing each of the subfigures separately, we see some limited degree of variation in job allocation and execution waiting time from 2 to 22 seconds, but these are much less than the case (i) that always reported timings above 100 seconds (with only run 5 and 7 above 200 seconds, but still below maximum requested allocation of 10 minutes). • We also further inspected the Slurm database to profile run 7 and see that while it consumed 92.139 Wh in 9m 42s, • the task has spent only 8 seconds waiting to be allocated, on empty current user queue, which further demonstrates fast Vega task allocations, practical in this use case. Times (in seconds) of running optimisation runs, for different configurations: The respective timings of the real time to allocate and execute different job variations as reported by time command. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 24/ 34
  • 25. Introduction ROA DAPHNE Results Conclusion CoBCom 2024: Experimental Results — Timing (Combined) • Also, when running just a subset of the jobs with much more similar timings (e.g. jobs with D = 100, NP = 100) for much more independent runs, • the speed up is mostly capped by the longest running job. • While the responsiveness of the Slurm scheduler varies slightly due to HPC workload of all running jobs, • the batching of the set of jobs however greatly reduces the time required to execute a batch, • compared to just sequentially running each job. • Also, as allocation time is important for HPC users so that they do not wait for their results longer than running sequentially, • the allocation times by far did not exceed the combined time, • i.e. the speed up was significant also from the user perspective. Combined time (left bar in the plot) vs. batched time (right): 500 1000 1500 2000 2500 3000 Time To compare timings, we observe the combined time of processing all batched jobs, • compared to running them with Slurm, demonstrating the speedup of real time needed by runnning the tasks in parallell, and hence, scaling. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 25/ 34
  • 26. Introduction ROA DAPHNE Results Conclusion DAPHNE General Assembly Meeting, October 8–9 2024 Meeting Day 2, October 9, Impact Hub Athens Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024 Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th Randomised Optimisation Algorithms — III. ERK: ROA in DAPHNE on Vega for VLSGO (D ≥ 10, 000) — Contribution, Results Discussion — Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 26/ 34
  • 27. Introduction ROA DAPHNE Results Conclusion ERK 2024: ROA Fitness Implementation and Deployment • Fitness function implementation in DaphneDSL: def e v a l f ( x : matrixf64 ) − matrixf64 { return ( (sum( x * x , 0) − 10) ˆ 2 ) ˆ 0.125 + ( sum( x * x , 0) / 2 + sum( x ) ) / 10 + 0 . 5 ; } Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
  • 28. Introduction ROA DAPHNE Results Conclusion ERK 2024: ROA Fitness Implementation and Deployment • Fitness function implementation in DaphneDSL: def e v a l f ( x : matrixf64 ) − matrixf64 { return ( (sum( x * x , 0) − 10) ˆ 2 ) ˆ 0.125 + ( sum( x * x , 0) / 2 + sum( x ) ) / 10 + 0 . 5 ; } • Deployment (uses Singularity for DAPHNE system): multiplier of 288 minutes per scale S was used. for S in {1..10}; do for NP in 1000; do D=${S}0000 echo D=$D NP=$NP for RNi in {1..10}; do echo −n . { time srun −−mpi=none –time ((288∗S)) −− mem=${S}G . . / daphneeu . s i f . / run−daphne . sh roa . d D=$D NP=$NP RNi=$RNi results−D−$D−NP−$NP−RNi−$RNi−out . t x t } 2 time−D−$D−NP−$NP−RNi−$RNi−out . t x t done #RNi done #NP done #D wait Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
  • 29. Introduction ROA DAPHNE Results Conclusion ERK 2024: ROA Fitness Implementation and Deployment • Fitness function implementation in DaphneDSL: def e v a l f ( x : matrixf64 ) − matrixf64 { return ( (sum( x * x , 0) − 10) ˆ 2 ) ˆ 0.125 + ( sum( x * x , 0) / 2 + sum( x ) ) / 10 + 0 . 5 ; } • Deployment (uses Singularity for DAPHNE system): multiplier of 288 minutes per scale S was used. for S in {1..10}; do for NP in 1000; do D=${S}0000 echo D=$D NP=$NP for RNi in {1..10}; do echo −n . { time srun −−mpi=none –time ((288∗S)) −− mem=${S}G . . / daphneeu . s i f . / run−daphne . sh roa . d D=$D NP=$NP RNi=$RNi results−D−$D−NP−$NP−RNi−$RNi−out . t x t } 2 time−D−$D−NP−$NP−RNi−$RNi−out . t x t done #RNi done #NP done #D wait DAPHNE system version used: July 26, 2024 (main branch, 548ea01). DaphneDSL syntaxa: • inspired by C/Java-like languages, case-sensitive, • like Julia, Python NumPy, R, and Apache SystemDS DMLb, • compiler hints for data/operator placement (i. e. local/distributed, CPU/GPU/FPGA, computational storage)c. a DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines, “DaphneDSL Language Reference”. b Boehm et al., “SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle”. c DAPHNE: An Open and Extensible System Infrastructure for Integrated Data Analysis Pipelines, “DaphneDSL Language Reference”. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 27/ 34
  • 30. Introduction ROA DAPHNE Results Conclusion ERK 2024: Experiment Setup and Convergence Results • The optimisation results from the ROA runs (fitness convergence through generations) as explained in the above deployment preparation, • as a set of convergence graphs, in configurations with dimensions D = 10000S, S ∈ {1, 2, 3, ..., 10} and population size NP ∈ {1000}. • For each of the runs plotted, we observe that the fitness function optimised by the ROA is successfully improving, hence, the ROA CI is performing its main functionality of optimisation. • All jobs have successfully reached target generations of 300 for the VLSGO tasks, except 4 cancelled earlier by Slurm due to timeout: on node cn0514 (jobs 31746064 on S = 5, RNi = 6 at G = 298; 31746065 on S = 3, RNi = 6 and RNi = 1 both at G = 289) and cn0570 (31746113, G = 269). Convergent optimisation runs (fitness on vertical axis) using DAPHNE ROA on function HappyCat, for different independent seeds, D = 10000S, S ∈ {1, 2, 3, ..., 10} and population size NP ∈ {1000}: -12000 -10000 -8000 -6000 -4000 -2000 0 2000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 -16000 -14000 -12000 -10000 -8000 -6000 -4000 -2000 0 2000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 -20000 -15000 -10000 -5000 0 5000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 -25000 -20000 -15000 -10000 -5000 0 5000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 -25000 -20000 -15000 -10000 -5000 0 5000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 -25000 -20000 -15000 -10000 -5000 0 5000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 -25000 -20000 -15000 -10000 -5000 0 5000 10000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 -30000 -25000 -20000 -15000 -10000 -5000 0 5000 10000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 -30000 -25000 -20000 -15000 -10000 -5000 0 5000 10000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 -35000 -30000 -25000 -20000 -15000 -10000 -5000 0 5000 10000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 • The respective timings of the real time to allocate and execute different job variations as reported by Umlaut monitor (next page). Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 28/ 34
  • 31. Introduction ROA DAPHNE Results Conclusion ERK 2024: Experimental Results — Load Monitoring • The respective timings of the real time to execute different job variations as reported by Universal Machine Learning Analysis Utility (Umlaut) from GitHub https://github.com/daphne-eu/umlaut; and their resource monitoring during execution. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
  • 32. Introduction ROA DAPHNE Results Conclusion ERK 2024: Experimental Results — Load Monitoring • The respective timings of the real time to execute different job variations as reported by Universal Machine Learning Analysis Utility (Umlaut) from GitHub https://github.com/daphne-eu/umlaut; and their resource monitoring during execution. • Total runtime Total runtime over independent runs of initially D = 10.000, NP = 1000. 0 1000 2000 3000 4000 5000 6000 7000 Time taken in seconds HPC time from 2024-08-03 10:48:23 HPC time from 2024-08-03 10:50:50 HPC time from 2024-08-03 10:51:10 HPC time from 2024-08-03 10:54:16 HPC time from 2024-08-03 10:55:51 HPC time from 2024-08-03 10:56:16 HPC time from 2024-08-03 10:57:09 HPC time from 2024-08-03 11:02:11 HPC time from 2024-08-03 11:05:39 HPC time from 2024-08-03 11:19:09 5770.01 5931.00 5929.37 6116.42 6211.01 6236.19 6265.27 6603.99 6823.02 7600.40 Metric: Time • Run times over scaling level S for D, where runtime dash-dotted linear fit of data points is seen increasing with S. • Plots for CPU load CPU load are drawn: for RNi = 1 (the first run) of D = 10.000 (smallest S) and RNi = 4 (typical, median run) of D = 100.000 (largest S). 0h 0m 0.00s 0h 26m 24.40s 0h 52m 8.29s 1h 17m 55.01s 1h 43m 30.90s Time elapsed since start of pipeline run 12.5 48.3 109.0 169.7 230.5 291.2 351.9 412.6 473.4 534.1 594.8 655.6 CPU usage in % Metric: CPU usage 0h 0m 0.00s 7h 52m 58.25s 15h 49m 46.77s 23h 35m 41.24s 31h 32m 43.44s Time elapsed since start of pipeline run 17.3 47.9 113.1 178.3 243.5 308.7 374.0 439.2 504.4 569.6 634.8 700.0 CPU usage in % Metric: CPU usage D = 10.000, RNi = 1 D = 100.000, RNi = 5 • CPU load is baselined at 100% (one thread) and the jitters with higher loads are attributed to multi-threaded executions of DAPHNE kernels with Basic Linear Algebra Subprograms (BLAS). Deviations in running time among independent runs were observed and could be studied further. Times (in seconds) of running optimisation runs, for different configurations: 0 20000 40000 60000 80000 100000 Time taken in seconds HPC time ROA D=10000 NP=1000 RNi=4 from 2024-08-03 10:56:16 HPC time ROA D=20000 NP=1000 RNi=2 from 2024-08-03 12:59:54 HPC time ROA D=30000 NP=1000 RNi=7 from 2024-08-03 15:11:47 HPC time ROA D=40000 NP=1000 RNi=5 from 2024-08-03 17:23:23 HPC time ROA D=50000 NP=1000 RNi=10 from 2024-08-03 19:46:52 HPC time ROA D=70000 NP=1000 RNi=5 from 2024-08-03 22:22:57 HPC time ROA D=60000 NP=1000 RNi=8 from 2024-08-03 22:53:07 HPC time ROA D=80000 NP=1000 RNi=6 from 2024-08-04 03:46:32 HPC time ROA D=90000 NP=1000 RNi=5 from 2024-08-04 06:34:54 HPC time ROA D=100000 NP=1000 RNi=8 from 2024-08-04 12:29:47 6236.19 13638.10 21579.85 29462.71 38076.01 47448.61 49272.19 66865.54 76977.61 98269.75 Metric: Time 0.2 0.4 0.6 0.8 1 ·105 0 0.5 1 ·105 Dimension D [integer] Runtime [seconds] Runtime of ROA in DAPHNE depending on problem dimension size ROA in DAPHNE Total runtime CPU load Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 29/ 34
  • 33. Introduction ROA DAPHNE Results Conclusion ERK 2024: Experimental Results — Memory Monitoring • Furthermore, usage of memory resources is monitored using Umlaut. • As memory was seen increasing during the runa, in meanwhile after experiments have already been done in August using latest July code updates and by the time of revision of this paper in September, also for loopsb , the implementation of allocations has been upgraded in the language implementation with newest software release (version 0.3) and additional regular updates. • Successfully initially observed using Umlaut: • the memory usage plot peeks at approximately 105.87 MB for these runs, by initially rising to roughly 89 MB and then staying almost all of the time at that usage, slightly varying because of iterative allocations. a Benjamin Steinwender et al. Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and Machine Learning : D8.3 Benchmarking Results all Use Case Studies. Tech. rep. Version 2.1. KAI (KAI Kompetenzzentrum Automobil- und Industrieelektronik GmbH), DLR (Deutsches Zentrum für Luft- und Raumfahrt EV), IFAT (Infineon Technologies Austria AG), AVL (AVL List GmbH), and UM (Univerza v Mariboru), 2024. b Borko Bošković, Janez Brest, and Aleš Zamuda. “Loops of the Domain-specific Programming Language DaphneDSL”. In: Proceedings of 33rd International Electrotechnical and Computer Science Conference. 2024, pp. 388–392. 0h 0m 0.00s 0h 26m 4.65s 0h 51m 40.06s 1h 16m 48.42s 1h 41m 56.29s Seconds elapsed since start of pipeline run 87.44 89.11 90.79 92.46 94.14 95.82 97.49 99.17 100.84 102.52 104.20 105.87 Memory usage in MB Metric: Memory usage Memory usage profiles during the run execution of DAPHNE ROA on function HappyCat, D = 10.000, NP = 1000, and 10 RNi configuration values. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 30/ 34
  • 34. Introduction ROA DAPHNE Results Conclusion ERK 2024: UM Team presentations Computational Intelligence (IEEE Slovenia CIS, CIS11) at ERK 2024 track Computer and Information Science (sessions CS) and Technical Presentations.5 5 Aleš Zamuda. “Very Large Scale Global Optimization with Randomised Optimisation Algorithms in DAPHNE”. In: Proceedings of 33rd International Electrotechnical and Computer Science Conference. 2024, pp. 383–387; Bošković, Brest, and Zamuda, “Loops of the Domain-specific Programming Language DaphneDSL”; Matjaž Divjak and Aleš Zamuda. “Experimental pipeline definition for surface high-density electromyogram (HDEMG) processing”. In: Proceedings of 33rd International Electrotechnical and Computer Science Conference. 2024, pp. 378–382; Klemen Berkovič and Aleš Zamuda. “Presentation at ERK 2024”. In: 33rd International Electrotechnical and Computer Science Conference, Portorož, Slovenia. 2024; Danilo Korže and Aleš Zamuda. “Testing DaphneDSL Simple Matrix Operations”. In: 33rd International Electrotechnical and Computer Science Conference, Portorož, Slovenia. 2024; Tina Tomažič, Eva Sophie Paulusberger, and Aleš Zamuda. “Digital Strategic Communication: the Case of the 1st DAPHNE Symposium”. In: Proceedings of 33rd International Electrotechnical and Computer Science Conference. 2024, pp. 405–410. Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 31/ 34
  • 35. Introduction ROA DAPHNE Results Conclusion Ongoing: Ubuntu 24.04 Singularity image for EuroHPC CUDA • Investigating Vega CUDA feasibility. • 2024, September: causes PTX instruction delivery mismatch • DAPHNE to intermediate kernels CUDA driver card. • Docker image: 2024-09-18 X86-64 BASE ubuntu24.04 • daphneeu/daphne, By daphneeu, Updated 19 September days ago • Container for compiled DAPHNE binaries, Pulls 1.5K. • Docker image CUDA driver: 560.35.03 • 560.35.03 • Vega driver: 550.54.15 • NVIDIA UNIX x86 64 Kernel Module 550.54.15 Tue Mar 5 22:23:56 UTC 2024 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 32/ 34
  • 36. Introduction ROA DAPHNE Results Conclusion DAPHNE General Assembly Meeting, October 8–9 2024 Meeting Day 2, October 9, Impact Hub Athens Impact Hub Athens, Karaiskaki 28, Athina 105 54, Greece, October 8-9, 2024 Room, Athens, Greece 13:30 – 14:00 Wednesday, 9th Randomised Optimisation Algorithms — IV: Conclusion with Takeaways — Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 33/ 34
  • 37. Introduction ROA DAPHNE Results Conclusion DAPHNE General Assembly Meeting 2024: ROA Takeaways • Presented a deployment of DAPHNE (Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC and Machine Learning) on EuroHPC Vega, running ROA CI tasks with Slurm. • An example ROA benchmarking scenario was benchmarked using HappyCat function on VLSGO (very large dimensions) • and comparing overall run times and monitoring was discussed. • In further detail: • the insight explanation to resource monitoring of the applied HappyCat function was presented, • the deployment preparation was reviewed step by step from a flowchart, and • running of ROA was discussed for VLSGO • from CI configuration and convergence perspective, • from HPC perspective (e.g. timing and other resource use and monitoring), • as well as in perspective from current main advantages and limitations for prospective users and ongoing work (incl. EuroHPC). Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 34/ 34
  • 38. Introduction ROA DAPHNE Results Conclusion Further Research — After DAPHNE GAM 2024 • Future work includes • further deployment (e.g. to additional hardware), • benchmarking, and • extending the ROA scenario and library • as well as research in other use cases, • especially from CI and remote sensing, including • underwater missions like ocean glider path planning • and text summarization. 0.2 0.4 0.6 0.8 1 ·105 0 0.5 1 ·105 Dimension D [integer] Runtime [seconds] Runtime of ROA in DAPHNE depending on problem dimension size ROA in DAPHNE -35000 -30000 -25000 -20000 -15000 -10000 -5000 0 5000 10000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 10000 1x106 1x108 1x1010 1x1012 0 1 2 3 4 5 6 7 8 9 FES Digits f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 0 1 2 3 4 5 6 7 8 9 Combined power from 110 MW to 975 MW, step 0.01 MW 104 0 100 200 300 400 500 600 700 Individual output (power [MW] or unit total cost [$]) Cost, TC / 3 Powerplant P1 power Powerplant P2 power Powerplant P3 power -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 1 10 100 1000 10000 ROUGE-1R ROUGE-2R ROUGE-LR ROUGE-SU4R Fitness (scaled) 150 200 250 300 350 400 450 500 550 16 32 48 64 80 Seconds to compute a workload Number of tasks (equals 16 times the SLURM --nodes parameter) Summarizer workload Real examples: science and HPC Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 35/ 34
  • 39. Thank you. Questions? Thanks! Acknowledgement: this work is supported by DAPHNE, funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 957407. 0.2 0.4 0.6 0.8 1 ·105 0 0.5 1 ·105 Dimension D [integer] Runtime [seconds] Runtime of ROA in DAPHNE depending on problem dimension size ROA in DAPHNE -35000 -30000 -25000 -20000 -15000 -10000 -5000 0 5000 10000 0 50 100 150 200 250 300 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 10000 1x106 1x108 1x1010 1x1012 0 1 2 3 4 5 6 7 8 9 FES Digits f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 0 1 2 3 4 5 6 7 8 9 Combined power from 110 MW to 975 MW, step 0.01 MW 104 0 100 200 300 400 500 600 700 Individual output (power [MW] or unit total cost [$]) Cost, TC / 3 Powerplant P1 power Powerplant P2 power Powerplant P3 power -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 1 10 100 1000 10000 ROUGE-1R ROUGE-2R ROUGE-LR ROUGE-SU4R Fitness (scaled) 150 200 250 300 350 400 450 500 550 16 32 48 64 80 Seconds to compute a workload Number of tasks (equals 16 times the SLURM --nodes parameter) Summarizer workload Real examples: science and HPC Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34 Aleš Zamuda 7@aleszamuda Randomised Optimisation Algorithms @ DAPHNE GAM 2024 (Athens) 36/ 34