This document discusses rank-aware algorithms for joint sparse recovery from multiple measurement vectors (MMV). It begins by introducing the MMV problem and showing that when the rank of the signal matrix is r, the necessary and sufficient conditions for unique recovery are less restrictive than in the single measurement vector case. Classical MMV algorithms like SOMP and l1/lq minimization are not rank-aware. The document then proposes two rank-aware pursuit algorithms:
1) Rank-Aware OMP, which modifies the atom selection step of SOMP but still suffers from rank degeneration over iterations.
2) Rank-Aware Order Recursive Matching Pursuit (RA-ORMP), which forces the sparsity