SlideShare a Scribd company logo
1
Reinforced Concrete
Structures 1 - Eurocodes
RCS 1
Professor Marwan SADEK
https://www.researchgate.net/profile/Marwan_Sadek
https://fr.slideshare.net/marwansadek00
Email : marwansadek00@gmail.com
If you detect any mistakes, please let me know at : marwansadek00@gmail.com
2
RCS1
M. SADEK
Ch 1 : Generalities – Reinforced concrete in practice
Ch 2 : Evolution of the standards – Limit states
Ch 3 : Mechanical Characteristics of materials – Constitutive
relations
Ch 4 : Durability and Cover
Ch 5 : Beam under simple bending – Ultimate limit state ULS
Ch 6 : Beam under simple bending – serviceability limit state SLS
Ch 7 : Section subjected to pure tension
3
Selected References
French BAEL Code (91, 99)
 Règles BAEL 91 modifiées 99, Règles techniques de conception et de calcul des
ouvrages et constructions en béton armé, Eyrolles, 2000.
 J. Perchat (2000), Maîtrise du BAEL 91 et des DTU associés, Eyrolles, 2000.
 J.P. Mougin (2000), BAEL 91 modifié 99 et DTU associés, Eyrolles, 2000.
 ….
EUROCODES
 H. Thonier (2013), Le projet de béton armé, 7ème édition, SEBTP, 2013.
 Jean-Armand Calgaro, Paolo Formichi ( 2013) Calcul des actions sur les
bâtiments selon l'Eurocode 1 , Le moniteur, 2013.
 J. M. Paillé (2009), Calcul des structures en béton, Eyrolles- AFNOR, 2009.
 Jean Perchat (2013), Traité de béton armé Selon l'Eurocode 2, Le moniteur,
2013 (2ème édition)
 Manual for the design of concrete building structures to Eurocode 2, The
Institution of Structural Engineers, BCA, 2006.
 A. J. Bond (2006), How to Design Concrete Structures using Eurocode 2, The
concrete centre, BCA, 2006.
https://usingeurocodes.com/
M. SADEK
4
In addition to Eurocodes, the references that are mainly
used to prepare this course material are :
 Thonier 2013
 Perchat 2013
 Paillé 2009
Some figures and formulas are taken from
 Cours de S. Multon - BETON ARME Eurocode 2 (available on internet)
 Cours béton armé de Christian Albouy
M. SADEK
5
Chapter V
Beam under simple bending – Ultimate limit
state ULS
1. Introduction
2. Design Assumptions
3. Rectangular Section without compression Steel
4. Rectangular Section with compression Steel
5. T Section
6. Particular rules
6
M. SADEK
 Embedded beam
 Drop Beam
 Inverted beam
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
7
M. SADEK
 Beam subjected to simple bending : M(x), V(x)
Note : In Reinforced concrete, bending stress and shear stress are treated separately.
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
8
M. SADEK
Simple / Pure bending
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
9
 Initiation of cracking
 Increase in Cracks
 Excessive strain in Steel / Crushing of Concrete
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
10
M. SADEK
 Beam subjected to simple bending (ULS)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
11
ASSUMPTIONS
H1) Principle of Navier-Bernoulli : After deformation, plane sections
remain plane and normal to the axis of the beam (linear strain diagram)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
12
ASSUMPTIONS
H2) The tensile strength of the concrete is neglected
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
13
ASSUMPTIONS
H3) bundled bars are treated as a single bar of a diameter derived
from the equivalent total area and placed at the COG of the group
H4) Total bond between concrete and steel (no relative slip)
at the contact : s=c
H5) The design stress-strain diagram for the concrete and the steel
are :
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
14
Stress-Strain Diagram for concrete under compression
a) Parabola-rectangle
b) Bi-linear
fcd :Design value of concrete compressive strength (cylinder, t28 days)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
15
c) Rectangular stress distribution
 Note : In the present course, we will use the diagram c (simplified).
The use of diagrams a and b are authorized by the EC2, See Annexes
for more details
cc= 1 (FNA)
C = 1.5 (Persistent situation ) ; 1.2 (Accidental situation)
Stress-Strain Diagram for concrete under compression
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
16
Design :
 Horizontal top branch without the need to check the strain limit.
 Inclined top branch with a strain limit (s  ud = 0.9ud )
s = 1.15 (persistent)
1.0 (accidental)
Stress-Strain Diagram for concrete under compression
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
17
Example : Persistent situation : fyd = fyk / s= 435 MPa
se = fyd/Es = 2.17.10-3
 < se => s = 200 000 
 > se => s = 435 MPa.
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
18
 s > se (persistent situation)
s  435 + 727 (s -2.17.10-3) < 466 MPa for steel B
s  435 + 952 ( s -2.17.10-3) < 454 MPa for steel A
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
19
Rule of 3 Pivots :
The design of a RC section at ULS is carried out assuming that the stress-strain
diagram through one of the 3 Pivots A, B or C.
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
20
 Pivot A (Not very frequent)
 Steel : c  cu
s = ud that depends on the steel type (A, B or C)
(no limitation when the horizontal top branch diagram is used)
Difference with BAEL : The EC2 fix the pivot A at ud higher than 10x10-3 (BAEL)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
21
 Pivot B (Common Case)
 Concrete : c = cu2 =3.5 ‰ , c2 =2 ‰ (for fck50 MPa)
s  ud
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
22
Pivot C
(h-y) / h = c2/cu2 => y = (1-c2/cu2).h
(Compression, bending with axial force)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
23
Simple Bending, ULS
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
24
 Fundamental Combination (detail in Ch. 2)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
25
c
s
sc
Strain
Diagram
Internal
Forces
Fc,sc
Fsc
Fc
Fs
z
 A : Cross sectional area of reinforcement (tension zone) (A or As)
 d : Effective depth of a cross-section : distance from the C.O.G of the tension steel to the extreme
compression fibre
A’ : Cross sectional area of compression steel
 d’ : distance from the C.O.G of the compression steel A’ to the extreme compression fibre
 z : Lever arm of internal forces
M > 0
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
26
 Fc : Resultant of compression force in the concrete
 Fsc : Resultant of compression force in the compression steel
 Fc,sc : Resultant of Fc and Fsc
 Fs : Resultant of tensile force at the tensile steel
 x : Position of the N.A
c
s
sc
Strain
Diagram
Internal
Forces
x Fc,sc
Fsc
Fc
Fs
z
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
27
c
s
sc
x Fc,sc
Fsc
Fc
Fs
z
 Equilibrium of forces Fs = Fc,sc
 Equilibrium of moments MEd = Fc,sc .z = Fs.z
 3 Unknowns (in general) : A, A’, x
Strain
Diagram
Internal
Forces
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
28
Rectangular section, Without compression steel (A’=0)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
29
Simplification of the
constitutive law of the Steel
EC2 3.1.7(3)
Rectangular section, Without compression steel (A’=0)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
30
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
31
Fc
FS
Fc = Fs
MED = Fc.z
z
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
32
 Dimensionless Form :
By substituting :
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
33
 fck 50 MPa,  = 1 ; =0.8
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
34
Note that :
x = u.d =(c / c+s) d
u = (c / c+s)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
35
 Boundaries of Pivots A, B
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
36
 Steel type A  ud = 22,5 .10-3  AB = (3.5 / 3.5+22.5) = 0.135  AB = 0.102
 Steel type B   AB =0.072  AB = 0.056
 Steel type C   AB =0.049  AB = 0.039
 fck  50 MPa,  = 1 ; =0.8
 Boundaries of Pivots A, B
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
37
 Pivot B AB  u
It can be noted that in general, the Pivot B is reached
 c = cu2 =3.5 ‰ ; s  ud
 s = (1/u -1) cu
(The concrete reaches its maximum strength)
 Boundaries of Pivots A, B
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
38
 Pivot B AB  u  lim
 The tensile steel stress should not be in the elastic domain (non economical
solution) ! In this case, the tensile steel section should be reduced , or a
compression steel should be added.
s  ud but s  se
Line BE (Pivot B & steel at
elastic limit)
 Boundaries of Pivots A, B
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
39
(fck  50 Mpa)
Persistant Situation Accidental Situation
s = 1.15 s = 1
fyk(MPa) lim lim lim lim
400 0.668 0.392 0.636 0.380
500 0.617 0.372 0.583 0.358
lim = BE
 Pivot B AB  u  lim
 Boundaries of Pivots A, B
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
40
 Pivot A
s =ud ; c =cu
u  AB
 Boundaries of Pivots A, B
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
41
 Tensile steel section A (fck 50 MPa)
a) Stress-Strain diagram with Inclined Top branch
i. u  AB  Pivot A
s = 455 MPa (Steel A) , 466 MPa (Steel B)
ii. AB  u  lim  Pivot B
s = (1/u -1) cu
s  435 + 727 (s -2.17.10-3) < 466 MPa Steel B
s  435 + 952 (s -2.17.10-3) < 454 MPa Steel A
(A’=0, u  lim )
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
42
 Tensile steel sectiopn A (fck 50 MPa)
b) Stress-Strain diagram with horizontal Top branch
(A’=0, u  lim )
s = fyd
Note : No limitation for the steel strain
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
43
Note 1
 Effective depth d – Initial value dini
 The exact value of d could not be determined before the choice of the steel
reinforcement.
 Take d  0.9 h for common beams (this formula is not safe for embedded beam
and for slab with low thickness  20 cm)
Take d = h – cnom – 1 cm (Slab with a thickness  20 cm )
After the determination of the reinforcement, it becomes possible to calculate the
exact value of d=dreal. If dreal < dini , the steel reinforcement section As should be
recalculated.
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
44
 Note 2
 Approximate value of A (Quick check)
z  0.9d ; d  0.9 h
 This formula doesn't give any information about the compression stress
in the concrete. It becomes obsolete if a compression steel is required.
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
45
 Minimum Reinforcement (to prevent brittle failure)
 For rectangular section bh, the ultimate resistant bending moment of Non-
reinforced concrete :
MRc = (I/v)  fctm = (b.h²/6)  fctm
 The minimum As,min section should resist the following moment
MRs = As,min  fyk  z
 By considering MRc = MRs , and substituting z  0.9 d ; h d / 0.9
As,min = b.d.[fctm/(0.9  0.81  6)fyk]  0.23 b d fctm / fyk
 L’EC2 replace the value of 0.23 by 0.26 and fix a lower limit of the quantity 0.26 fctm/fyk
with the value 0.0013
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
46
 Minimum Reinforcement
 Maximum Reinforcement
As,max = 0,04 Ac
 Ac : denotes for the cross sectional area of the concrete
 As,max : Maximum steel reinforcement in both compression and
tension zones
 As,min : Minimum tensile section of longitudinal steel reinforcement;
bt : denotes the mean width of the tension zone;
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
47
Rectangular section , With compression steel (A’0)
u  lim
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
48
 3 unknowns (A, A’, x) / 2 equations ???
 Infinite number of solutions
 Possibility n°1 : Minimum of “A+ A’ " (long run)
 Possibility n°2 : Concept of limit Moment (adopted in general)
- Resolution by the decomposition method - 2 imaginary sections
u  lim
Rectangular section , With compression steel (A’0)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
49
2 imaginary sections
 Maximum capacity of the concrete Mlim  A1
 The compression steel A’ will resist (Med  Mlim)  A2
u  lim  Med  Mlim= lim .b.d².fcd
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
50
cu
s
sc
x=lim.d
d’
d
A1 = Mlim / (1 – 0.4.lim).d.fyd
A’ = (Med – Mlim) / [sc . (d-d’)]
sc = 3,5.10-3. (1-d’/xlim)
 The value of sc is close to 3 °/°° (>se), in other terms sc=fyd when using the diagram
with horizontal top branch, and a value slightly great than fyd when using the diagram
with inclined top branch.
 In general, we take a value sc=fyd .
A2 = A’. sc / s = A’. fyd / s
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
51
A1 = Mlim / [(1 – 0.4.lim).d.fyd]
A2 = A’. sc / s
A’ = (Med – Mlim) / [fyd . (d-d’)]
 When using same types and grade for A and A’  sc = s = fyd
 A2 = A’
A = A1 + A2
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
52
 Note 1 : The EC2 don’t restrict the moment that could be supported by
the compression steel like the previous BAEL standard (40% Med).
However A’ is limited by the maximum requirement
A+A’  As,max = 0,04 Ac
 Note 2 : Any compression longitudinal reinforcement (diameter )
which is included in the resistance calculation should be held by
transverse reinforcement with spacing not greater than 15 .
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
53
T Section
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
54
 Effective width of flanges (all limit states)
 l0 : distance between points of zero moment
(EC 2-1-1, 5.3.2)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
55
 Effective width of flanges (All limit states)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
56
(EC 2-1-1, 5.3.2) Effective width of flanges (All limit states)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
57
 Maximum resistant moment that could be supported by the
flange (flange in compression)
2
f
uT eff f cd
h
M b h f (d ) 
1sA
ux fh
s 1sN
1cN
 ff h,dz 501
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
58
Case 1: Common case M Mu uT
bw
b = beff
d
hf
The Neutral Axis is located in the flange, the
flange is partially in compression
The T section is calculated as a rectangular
section (width beff and height h)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
59
Case 2: The Neutral Axis is located in the WebM Mu uT
Divide the section in 2 imaginary sections
 The reinforcement section is expected to be very significant
bw
b=beff
d
hf
=
beff-bw
A1
A2
bw
+
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
60
M Mu uT
1
eff w
u uT
eff
b b
M M
b

 Section A1 will resist:
bw
b=beff
d
hf
=
beff-bw
A1
A2
bw
+
A1= (beff-bw)×h0×fcd / s
(s = fyd, diagram with
horizontal top branch)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
61
M Mu uT
 Section A2 will resist
 Calculation identical to a rectangular section with a width
bw and a height h
bw
b=beff
d
hf
=
beff-bw
A1
A2
bw
+
M M Mu u u2 1 
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
62
M Mu uT
 s = fyd , diagram with horizontal top branch or Pivot A (palier incliné)
 s = to be determined function of s if Pivot B (diagram with inclined top
branch). This stress could be used when calculating A1
cdw
u
u
fdb
M
2
2
2   u u2 2125 1 1 2  , ( )
 Note: Introduce A’ whenu2 > lim
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
63
M Mu uT
bw
b=beff
d
hf
=
beff-bw
A1
A2
bw
+
A = A1 + A2
A1= (beff-bw)×h0×fcd / s
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
64
Predimensioning of concrete section – Rectangular section
b
h
If b is not imposed , we can take
0.3 h  b  0.5 h
We fix b, and we find the value of h
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
65
b
h
b/h  0.4 ; h  2.5 b
d  0.9 h = 2.25 d
 Pivot B AB  u  lim
Steel B 0.056  u  0.372
0.056  Med / bd²fcd  0.372
Predimensioning – Rectangular section
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
66
b
h
Other criterion
- Design at SLS + maximum deflection condition
Steel A
Predimensioning – Rectangular section
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
67
 Effective span of beams and slabs in buildings (EC2 - 5.3.2.2)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
68
Other detailing arrangements (EC2 - 9.2.1.2)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
69
 Source :Thonier (2013)
1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
70
Exercices
 Rectangular section without compression steel:
 Tensile steel reinforcement
o using the stress strain diagram with inclined top branch
o using the stress strain diagram with horizontal top branch
o Exact value of d
 Rectangular section with compression steel:
 Determination of the reinforcement steel sections (tension and
compression)
 Predimensioning of a rectangular section of concrete and determination of
the steel reinforcement while taking in account the beam self weight
 Design of T section

More Related Content

PDF
Etabs (atkins)
PDF
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
PPTX
Design of pile cap
PDF
Basement wall design
PPT
Shear Force And Bending Moment Diagram For Frames
PDF
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
PDF
Design notes for seismic design of building accordance to Eurocode 8
Etabs (atkins)
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
Design of pile cap
Basement wall design
Shear Force And Bending Moment Diagram For Frames
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Design notes for seismic design of building accordance to Eurocode 8

What's hot (20)

PDF
Slab Design-(BNBC & ACI)
PDF
aisc steel construction manual 13th edition.pdf
PDF
Structural engineering i
PDF
Etabs steel-design
PDF
Rcs1-Chapter2-Standards
PDF
Structural dynamics good notes
DOC
Structure Reinforced Concrete
PDF
Design for Short Axially Loaded Columns ACI318
PDF
Flexural design of beam...PRC-I
PDF
Calulation of deflection and crack width according to is 456 2000
PDF
Steel code book
PDF
Rcc design handbook
PDF
Design of steel beams
PPTX
Design of column base plates anchor bolt
PDF
Rcs1 -chapter6-SLS
PPTX
Overview of Direct Analysis Method of Design for
PDF
Lecture 1 design loads
PDF
Etabs modeling - Design of slab according to EC2
PDF
Flexural safety cost of optimized reinforced concrete beams
PPT
Slab Design-(BNBC & ACI)
aisc steel construction manual 13th edition.pdf
Structural engineering i
Etabs steel-design
Rcs1-Chapter2-Standards
Structural dynamics good notes
Structure Reinforced Concrete
Design for Short Axially Loaded Columns ACI318
Flexural design of beam...PRC-I
Calulation of deflection and crack width according to is 456 2000
Steel code book
Rcc design handbook
Design of steel beams
Design of column base plates anchor bolt
Rcs1 -chapter6-SLS
Overview of Direct Analysis Method of Design for
Lecture 1 design loads
Etabs modeling - Design of slab according to EC2
Flexural safety cost of optimized reinforced concrete beams
Ad

Similar to Rcs1-Chapter5-ULS (20)

PDF
Rcs1-chapter3-constitutive-law
PDF
PDF
Lec.5 strength design method rectangular sections 1
PPTX
Column Interaction Diagram construction
PDF
PDF
Lecture 5.pdf
DOC
Chapter 1
PDF
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
PPTX
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
PDF
Chapter 5-cables and arches
PPTX
Pre stress concrete
PPTX
Design of rectangular beam by USD
PPT
Lec 10-flexural analysis and design of beamns
PPT
PDF
Ch 3-a.pdf
PDF
Lec.3 working stress 1
PDF
Analysis and Design of Reinforced Concrete Beams
PPT
Flexural design of Beam...PRC-I
PDF
Lec.4 working stress 2
DOCX
Rcs1-chapter3-constitutive-law
Lec.5 strength design method rectangular sections 1
Column Interaction Diagram construction
Lecture 5.pdf
Chapter 1
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Chapter 5-cables and arches
Pre stress concrete
Design of rectangular beam by USD
Lec 10-flexural analysis and design of beamns
Ch 3-a.pdf
Lec.3 working stress 1
Analysis and Design of Reinforced Concrete Beams
Flexural design of Beam...PRC-I
Lec.4 working stress 2
Ad

More from Marwan Sadek (9)

PDF
SBA1 - EC2 - Chap 2 - Evolution - réglementation
PDF
SBA1 - EC2 - Chap 6 - Flexion simple ELS
PDF
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
PDF
SBA1 - EC2 - Chap 4 - Durabilité et enrobage
PDF
SBA1 - EC2 - Chap 3 - Matériaux- Loi de comportement
PDF
SBA1 - EC2 - Chap 1 - Généralités
PPTX
Cfp senset power point
PDF
Rcs1-chapter4-durability
PDF
Rcs1-chapter1
SBA1 - EC2 - Chap 2 - Evolution - réglementation
SBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 4 - Durabilité et enrobage
SBA1 - EC2 - Chap 3 - Matériaux- Loi de comportement
SBA1 - EC2 - Chap 1 - Généralités
Cfp senset power point
Rcs1-chapter4-durability
Rcs1-chapter1

Recently uploaded (20)

PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
PPTX
Cell Types and Its function , kingdom of life
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Complications of Minimal Access Surgery at WLH
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
RMMM.pdf make it easy to upload and study
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
UNIT III MENTAL HEALTH NURSING ASSESSMENT
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PDF
Indian roads congress 037 - 2012 Flexible pavement
Digestion and Absorption of Carbohydrates, Proteina and Fats
Cell Types and Its function , kingdom of life
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Paper A Mock Exam 9_ Attempt review.pdf.
Complications of Minimal Access Surgery at WLH
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
RMMM.pdf make it easy to upload and study
Weekly quiz Compilation Jan -July 25.pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Final Presentation General Medicine 03-08-2024.pptx
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
A systematic review of self-coping strategies used by university students to ...
UNIT III MENTAL HEALTH NURSING ASSESSMENT
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Supply Chain Operations Speaking Notes -ICLT Program
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Indian roads congress 037 - 2012 Flexible pavement

Rcs1-Chapter5-ULS

  • 1. 1 Reinforced Concrete Structures 1 - Eurocodes RCS 1 Professor Marwan SADEK https://www.researchgate.net/profile/Marwan_Sadek https://fr.slideshare.net/marwansadek00 Email : marwansadek00@gmail.com If you detect any mistakes, please let me know at : marwansadek00@gmail.com
  • 2. 2 RCS1 M. SADEK Ch 1 : Generalities – Reinforced concrete in practice Ch 2 : Evolution of the standards – Limit states Ch 3 : Mechanical Characteristics of materials – Constitutive relations Ch 4 : Durability and Cover Ch 5 : Beam under simple bending – Ultimate limit state ULS Ch 6 : Beam under simple bending – serviceability limit state SLS Ch 7 : Section subjected to pure tension
  • 3. 3 Selected References French BAEL Code (91, 99)  Règles BAEL 91 modifiées 99, Règles techniques de conception et de calcul des ouvrages et constructions en béton armé, Eyrolles, 2000.  J. Perchat (2000), Maîtrise du BAEL 91 et des DTU associés, Eyrolles, 2000.  J.P. Mougin (2000), BAEL 91 modifié 99 et DTU associés, Eyrolles, 2000.  …. EUROCODES  H. Thonier (2013), Le projet de béton armé, 7ème édition, SEBTP, 2013.  Jean-Armand Calgaro, Paolo Formichi ( 2013) Calcul des actions sur les bâtiments selon l'Eurocode 1 , Le moniteur, 2013.  J. M. Paillé (2009), Calcul des structures en béton, Eyrolles- AFNOR, 2009.  Jean Perchat (2013), Traité de béton armé Selon l'Eurocode 2, Le moniteur, 2013 (2ème édition)  Manual for the design of concrete building structures to Eurocode 2, The Institution of Structural Engineers, BCA, 2006.  A. J. Bond (2006), How to Design Concrete Structures using Eurocode 2, The concrete centre, BCA, 2006. https://usingeurocodes.com/ M. SADEK
  • 4. 4 In addition to Eurocodes, the references that are mainly used to prepare this course material are :  Thonier 2013  Perchat 2013  Paillé 2009 Some figures and formulas are taken from  Cours de S. Multon - BETON ARME Eurocode 2 (available on internet)  Cours béton armé de Christian Albouy M. SADEK
  • 5. 5 Chapter V Beam under simple bending – Ultimate limit state ULS 1. Introduction 2. Design Assumptions 3. Rectangular Section without compression Steel 4. Rectangular Section with compression Steel 5. T Section 6. Particular rules
  • 6. 6 M. SADEK  Embedded beam  Drop Beam  Inverted beam 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 7. 7 M. SADEK  Beam subjected to simple bending : M(x), V(x) Note : In Reinforced concrete, bending stress and shear stress are treated separately. 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 8. 8 M. SADEK Simple / Pure bending 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 9. 9  Initiation of cracking  Increase in Cracks  Excessive strain in Steel / Crushing of Concrete 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 10. 10 M. SADEK  Beam subjected to simple bending (ULS) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 11. 11 ASSUMPTIONS H1) Principle of Navier-Bernoulli : After deformation, plane sections remain plane and normal to the axis of the beam (linear strain diagram) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 12. 12 ASSUMPTIONS H2) The tensile strength of the concrete is neglected 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 13. 13 ASSUMPTIONS H3) bundled bars are treated as a single bar of a diameter derived from the equivalent total area and placed at the COG of the group H4) Total bond between concrete and steel (no relative slip) at the contact : s=c H5) The design stress-strain diagram for the concrete and the steel are : 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 14. 14 Stress-Strain Diagram for concrete under compression a) Parabola-rectangle b) Bi-linear fcd :Design value of concrete compressive strength (cylinder, t28 days) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 15. 15 c) Rectangular stress distribution  Note : In the present course, we will use the diagram c (simplified). The use of diagrams a and b are authorized by the EC2, See Annexes for more details cc= 1 (FNA) C = 1.5 (Persistent situation ) ; 1.2 (Accidental situation) Stress-Strain Diagram for concrete under compression 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 16. 16 Design :  Horizontal top branch without the need to check the strain limit.  Inclined top branch with a strain limit (s  ud = 0.9ud ) s = 1.15 (persistent) 1.0 (accidental) Stress-Strain Diagram for concrete under compression 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 17. 17 Example : Persistent situation : fyd = fyk / s= 435 MPa se = fyd/Es = 2.17.10-3  < se => s = 200 000   > se => s = 435 MPa. 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 18. 18  s > se (persistent situation) s  435 + 727 (s -2.17.10-3) < 466 MPa for steel B s  435 + 952 ( s -2.17.10-3) < 454 MPa for steel A 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 19. 19 Rule of 3 Pivots : The design of a RC section at ULS is carried out assuming that the stress-strain diagram through one of the 3 Pivots A, B or C. 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 20. 20  Pivot A (Not very frequent)  Steel : c  cu s = ud that depends on the steel type (A, B or C) (no limitation when the horizontal top branch diagram is used) Difference with BAEL : The EC2 fix the pivot A at ud higher than 10x10-3 (BAEL) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 21. 21  Pivot B (Common Case)  Concrete : c = cu2 =3.5 ‰ , c2 =2 ‰ (for fck50 MPa) s  ud 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 22. 22 Pivot C (h-y) / h = c2/cu2 => y = (1-c2/cu2).h (Compression, bending with axial force) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 23. 23 Simple Bending, ULS 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 24. 24  Fundamental Combination (detail in Ch. 2) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 25. 25 c s sc Strain Diagram Internal Forces Fc,sc Fsc Fc Fs z  A : Cross sectional area of reinforcement (tension zone) (A or As)  d : Effective depth of a cross-section : distance from the C.O.G of the tension steel to the extreme compression fibre A’ : Cross sectional area of compression steel  d’ : distance from the C.O.G of the compression steel A’ to the extreme compression fibre  z : Lever arm of internal forces M > 0 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 26. 26  Fc : Resultant of compression force in the concrete  Fsc : Resultant of compression force in the compression steel  Fc,sc : Resultant of Fc and Fsc  Fs : Resultant of tensile force at the tensile steel  x : Position of the N.A c s sc Strain Diagram Internal Forces x Fc,sc Fsc Fc Fs z 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 27. 27 c s sc x Fc,sc Fsc Fc Fs z  Equilibrium of forces Fs = Fc,sc  Equilibrium of moments MEd = Fc,sc .z = Fs.z  3 Unknowns (in general) : A, A’, x Strain Diagram Internal Forces 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 28. 28 Rectangular section, Without compression steel (A’=0) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 29. 29 Simplification of the constitutive law of the Steel EC2 3.1.7(3) Rectangular section, Without compression steel (A’=0) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 30. 30 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 31. 31 Fc FS Fc = Fs MED = Fc.z z 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 32. 32  Dimensionless Form : By substituting : 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 33. 33  fck 50 MPa,  = 1 ; =0.8 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 34. 34 Note that : x = u.d =(c / c+s) d u = (c / c+s) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 35. 35  Boundaries of Pivots A, B 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 36. 36  Steel type A  ud = 22,5 .10-3  AB = (3.5 / 3.5+22.5) = 0.135  AB = 0.102  Steel type B   AB =0.072  AB = 0.056  Steel type C   AB =0.049  AB = 0.039  fck  50 MPa,  = 1 ; =0.8  Boundaries of Pivots A, B 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 37. 37  Pivot B AB  u It can be noted that in general, the Pivot B is reached  c = cu2 =3.5 ‰ ; s  ud  s = (1/u -1) cu (The concrete reaches its maximum strength)  Boundaries of Pivots A, B 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 38. 38  Pivot B AB  u  lim  The tensile steel stress should not be in the elastic domain (non economical solution) ! In this case, the tensile steel section should be reduced , or a compression steel should be added. s  ud but s  se Line BE (Pivot B & steel at elastic limit)  Boundaries of Pivots A, B 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 39. 39 (fck  50 Mpa) Persistant Situation Accidental Situation s = 1.15 s = 1 fyk(MPa) lim lim lim lim 400 0.668 0.392 0.636 0.380 500 0.617 0.372 0.583 0.358 lim = BE  Pivot B AB  u  lim  Boundaries of Pivots A, B 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 40. 40  Pivot A s =ud ; c =cu u  AB  Boundaries of Pivots A, B 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 41. 41  Tensile steel section A (fck 50 MPa) a) Stress-Strain diagram with Inclined Top branch i. u  AB  Pivot A s = 455 MPa (Steel A) , 466 MPa (Steel B) ii. AB  u  lim  Pivot B s = (1/u -1) cu s  435 + 727 (s -2.17.10-3) < 466 MPa Steel B s  435 + 952 (s -2.17.10-3) < 454 MPa Steel A (A’=0, u  lim ) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 42. 42  Tensile steel sectiopn A (fck 50 MPa) b) Stress-Strain diagram with horizontal Top branch (A’=0, u  lim ) s = fyd Note : No limitation for the steel strain 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 43. 43 Note 1  Effective depth d – Initial value dini  The exact value of d could not be determined before the choice of the steel reinforcement.  Take d  0.9 h for common beams (this formula is not safe for embedded beam and for slab with low thickness  20 cm) Take d = h – cnom – 1 cm (Slab with a thickness  20 cm ) After the determination of the reinforcement, it becomes possible to calculate the exact value of d=dreal. If dreal < dini , the steel reinforcement section As should be recalculated. 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 44. 44  Note 2  Approximate value of A (Quick check) z  0.9d ; d  0.9 h  This formula doesn't give any information about the compression stress in the concrete. It becomes obsolete if a compression steel is required. 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 45. 45  Minimum Reinforcement (to prevent brittle failure)  For rectangular section bh, the ultimate resistant bending moment of Non- reinforced concrete : MRc = (I/v)  fctm = (b.h²/6)  fctm  The minimum As,min section should resist the following moment MRs = As,min  fyk  z  By considering MRc = MRs , and substituting z  0.9 d ; h d / 0.9 As,min = b.d.[fctm/(0.9  0.81  6)fyk]  0.23 b d fctm / fyk  L’EC2 replace the value of 0.23 by 0.26 and fix a lower limit of the quantity 0.26 fctm/fyk with the value 0.0013 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 46. 46  Minimum Reinforcement  Maximum Reinforcement As,max = 0,04 Ac  Ac : denotes for the cross sectional area of the concrete  As,max : Maximum steel reinforcement in both compression and tension zones  As,min : Minimum tensile section of longitudinal steel reinforcement; bt : denotes the mean width of the tension zone; 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 47. 47 Rectangular section , With compression steel (A’0) u  lim 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 48. 48  3 unknowns (A, A’, x) / 2 equations ???  Infinite number of solutions  Possibility n°1 : Minimum of “A+ A’ " (long run)  Possibility n°2 : Concept of limit Moment (adopted in general) - Resolution by the decomposition method - 2 imaginary sections u  lim Rectangular section , With compression steel (A’0) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 49. 49 2 imaginary sections  Maximum capacity of the concrete Mlim  A1  The compression steel A’ will resist (Med  Mlim)  A2 u  lim  Med  Mlim= lim .b.d².fcd 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 50. 50 cu s sc x=lim.d d’ d A1 = Mlim / (1 – 0.4.lim).d.fyd A’ = (Med – Mlim) / [sc . (d-d’)] sc = 3,5.10-3. (1-d’/xlim)  The value of sc is close to 3 °/°° (>se), in other terms sc=fyd when using the diagram with horizontal top branch, and a value slightly great than fyd when using the diagram with inclined top branch.  In general, we take a value sc=fyd . A2 = A’. sc / s = A’. fyd / s 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 51. 51 A1 = Mlim / [(1 – 0.4.lim).d.fyd] A2 = A’. sc / s A’ = (Med – Mlim) / [fyd . (d-d’)]  When using same types and grade for A and A’  sc = s = fyd  A2 = A’ A = A1 + A2 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 52. 52  Note 1 : The EC2 don’t restrict the moment that could be supported by the compression steel like the previous BAEL standard (40% Med). However A’ is limited by the maximum requirement A+A’  As,max = 0,04 Ac  Note 2 : Any compression longitudinal reinforcement (diameter ) which is included in the resistance calculation should be held by transverse reinforcement with spacing not greater than 15 . 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect.Sec with A’ 6. Particular rules
  • 53. 53 T Section 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 54. 54  Effective width of flanges (all limit states)  l0 : distance between points of zero moment (EC 2-1-1, 5.3.2) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 55. 55  Effective width of flanges (All limit states) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 56. 56 (EC 2-1-1, 5.3.2) Effective width of flanges (All limit states) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 57. 57  Maximum resistant moment that could be supported by the flange (flange in compression) 2 f uT eff f cd h M b h f (d )  1sA ux fh s 1sN 1cN  ff h,dz 501 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 58. 58 Case 1: Common case M Mu uT bw b = beff d hf The Neutral Axis is located in the flange, the flange is partially in compression The T section is calculated as a rectangular section (width beff and height h) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 59. 59 Case 2: The Neutral Axis is located in the WebM Mu uT Divide the section in 2 imaginary sections  The reinforcement section is expected to be very significant bw b=beff d hf = beff-bw A1 A2 bw + 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 60. 60 M Mu uT 1 eff w u uT eff b b M M b   Section A1 will resist: bw b=beff d hf = beff-bw A1 A2 bw + A1= (beff-bw)×h0×fcd / s (s = fyd, diagram with horizontal top branch) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 61. 61 M Mu uT  Section A2 will resist  Calculation identical to a rectangular section with a width bw and a height h bw b=beff d hf = beff-bw A1 A2 bw + M M Mu u u2 1  1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 62. 62 M Mu uT  s = fyd , diagram with horizontal top branch or Pivot A (palier incliné)  s = to be determined function of s if Pivot B (diagram with inclined top branch). This stress could be used when calculating A1 cdw u u fdb M 2 2 2   u u2 2125 1 1 2  , ( )  Note: Introduce A’ whenu2 > lim 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 63. 63 M Mu uT bw b=beff d hf = beff-bw A1 A2 bw + A = A1 + A2 A1= (beff-bw)×h0×fcd / s 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 64. 64 Predimensioning of concrete section – Rectangular section b h If b is not imposed , we can take 0.3 h  b  0.5 h We fix b, and we find the value of h 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 65. 65 b h b/h  0.4 ; h  2.5 b d  0.9 h = 2.25 d  Pivot B AB  u  lim Steel B 0.056  u  0.372 0.056  Med / bd²fcd  0.372 Predimensioning – Rectangular section 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 66. 66 b h Other criterion - Design at SLS + maximum deflection condition Steel A Predimensioning – Rectangular section 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 67. 67  Effective span of beams and slabs in buildings (EC2 - 5.3.2.2) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 68. 68 Other detailing arrangements (EC2 - 9.2.1.2) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 69. 69  Source :Thonier (2013) 1. Introduction 3. Rect.Sec. (A’=0) 5. T Section2.Assumptions 4. Rect. Sec with A’ 6. Particular rules
  • 70. 70 Exercices  Rectangular section without compression steel:  Tensile steel reinforcement o using the stress strain diagram with inclined top branch o using the stress strain diagram with horizontal top branch o Exact value of d  Rectangular section with compression steel:  Determination of the reinforcement steel sections (tension and compression)  Predimensioning of a rectangular section of concrete and determination of the steel reinforcement while taking in account the beam self weight  Design of T section