SlideShare a Scribd company logo
Diode Applications
REC 101: Basic Electronics Unit 1
PN junction diode: Introduction of Semiconductor Materials Semiconductor Diode: Depletion
layer, V-I characteristics, ideal and practical, diode resistance, capacitance, Diode Equivalent
Circuits, Transition and Diffusion Capacitance, Zener Diodes breakdown mechanism (Zener
and avalanche) Diode Application: Series , Parallel and Series, Parallel Diode Configuration,
Half and Full Wave rectification, Clippers, Clampers, Zener diode as shunt regulator, Voltage-
Multiplier Circuits Special Purpose two terminal Devices :Light-Emitting Diodes, Varactor
(Varicap) Diodes, Tunnel Diodes, Liquid-Crystal Displays.
9/11/2017 1
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
Diode Application: Series, Parallel and
Series, Parallel Configuration
• The forward resistance of diode is so small
compared to the other series elements of network
that it can be ignored (if not specified)
• In general, a diode is in the ON state if the current
established by the sources is such that, its direction
matches to the arrow of diode symbol, and VD  VK
otherwise it is in OFF state
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
2
Diode VK (V)
Ideal 0
Ge 0.3
Si 0.7
GaAs 1.2
Steps to find the state of diode
1. Replace the diode with equivalent circuit.
2. mentally replace diode with a resistance
and check direction of current through it.
3. If current direction matches to diode arrow
then diode is ON otherwise it is OFF
Practical
VK
ideal ideal
VK
Rf
OR
Diode Equivalent circuit
VK knee voltage
Rf diode forward resistance
Diode Application: Series , Parallel and
Series, Parallel Diode Configuration,
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
3
ideal
0.7 V
10 V 100 
Si
10 V 100 
1.Replace diode with
equivalent circuit
ideal
0.7 V
10 V 100 
2.Replace ideal diode with
fictitious resistance and
find the current direction
3. As current matches with
diode direction, it is ON.
Short-circuit the diode
and solve the circuit
mA93A093.0
100
7.010


I
0.7 V
10 V 100 
I
Diode Application: rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
4
• One of the common application of diode is ‘rectifier’ which
converts AC signal into DC.
• There are many rectifier circuits
– Half Wave rectifier
– Full wave rectifier; Bridge type & Centre tapped
• Practical rectifier consists of; Transformer, Rectifier, Filter &
Regulator stage
• Rectifier output for one cycle (period) of input is analyzed
AC
Input
+
DC
output
-
Transformer
Stage
Rectifier
Stage
Regulator
stage
Filter
Stage
Diode Application: Half Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
5
t
Vi(t)
T
Vm
-Vm
+
Vo(t)=Vi(t)
-
+
Vi(t)
-
Rt
Vi(t)
T
Vm
-Vm
Vo
T
Vm
t
Positive Half cycle
(0  t< T/2)
Vi(t) >0 and diode is ON
So Vo(t) = Vi(t)
+ -
+
V0(t)
-
+
Vi(t)
-
R
Half wave rectifier circuit 
T
tSinVtV mi


2
where,)( 
The process of removing one-
half the input ac signal to
establish a dc level is called
halfwave rectification
V0(t)
T
Vm
t
+
Vi(t)
-
Rt
Vi(t)
T
Vm
-Vm
Negative Half cycle
(T/2  t< T)
Vi(t) <0 and diode is OFF
So Vo(t) = 0
+
Vo(t)=0
-






TtTfor
TtfortV
tV i
2/0
2/0)(
)(periodofoutputcombinedTherefore 0
Diode Application: Half Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
6
t
Vi(t)
T
Vm
-Vm
V0(t)
T
Vm
t
2T
2T
Vdc= 0.318Vm
 
  






mm
T
m
dc
T
m
TT
i
T
dc
V
Cos
T
Cos
V
tCos
T
V
V
dttSinV
T
dtdttV
T
dttV
T
V






















 
)0(
22
1
.0)(
1
)(
1
2
0
2
0
2
0
2
00
0
VDC: is periodic average of output wave
mdc VV 318.0 





TtTfor
TtfortV
tV i
2/0
2/0)(
)(0
 
       
2
0
4
2sin
42
2cos1
2
.0)(
1
)(
1
2
2
0
2
2
0
22
0
2
2
0
2
22
0
2
0
2
0
2
mm
T
m
T
m
T
m
dc
T
m
TT
i
T
orms
VV
t
T
V
t
T
V
dtt
T
V
V
dttSin
T
V
dtdttV
T
dttV
T
V

















Vrms: square root of periodic average of squared output
mrms VV 5.0
Diode Application: Half Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
7
Peak inverse voltage (PIV or PRV) :
Applying KVL, in loop of reverse bias diode. PIV  Vm
-
Vm
+
R
- PIV +
V0(t)=0 V
Ripple factor: ratio of Vac to Vdc
  21.1157.11
2
12
factorformiskwhere
11factorRipple
2
2
2
f
2
222
222
































m
m
f
dc
rms
dc
dcrms
dc
ac
dcacrms
V
V
k
V
V
V
VV
V
V
VVV
Diode Application:
Bridge type Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
8
t
Vi(t)
T
Vm
-Vm
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
+
Vi(t)
-
R
- Vo(t) +
Positive Half cycle
(0  t< T/2)
Vi(t)>0 so
D2 and D3 is ON
D1 and D4 is ON
So Vo(t) = Vi(t)
+
Vi(t)
-
R
- Vo(t) +
D1 D2
D3 D4
The process of utilizing full
period of ac signal to establish
a dc level is called fullwave
rectification
A bridge with 4 diodes as
shown in figure is most
familiar full wave rectifier.
Diode Application:
Bridge type Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
9
t
Vi(t)
T
Vm
-Vm
V0(t)
T
Vm
t
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
+
Vi(t)
-
R
- Vo(t) +
Negative Half cycle
(T/2  t< T)
Vi(t)<0 and
D2 and D3 is ON
D1 and D4 is ON
So Vo(t) = - Vi(t)
 

 m
T
m
T
i
T
dc
V
dttSinV
T
dttV
T
dttV
T
V
22
)(2
1
)(
1 2
0
2
00
0 








 
VDC: As the area above the axis for one full cycle
is now twice of that for a half-wave system, dc
level has also been doubled
mdc VV 636.0






TtTfortV
TtfortV
tV
i
i
2/)(
2/0)(
)(periodofoutputcombinedTherefore 0
Vdc= 0.636Vm
Diode Application:
Bridge type Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
10
 
22
2
)(
2
)(
1 22
0
2
22
0
2
0
2 mm
T
m
T
i
T
orms
VV
dttSin
T
V
dttV
T
dttV
T
V   
Vrms:
mrms VV 707.0
Peak inverse voltage (PIV or PRV)
Applying KVL, in loop containing
input and reverse bias diode.
PIV  Vm
+
Vm
-
R
- Vo(t) +
-
Vm
+
R
- Vo(t) +
Ripple factor: ratio of Vac to Vdc
  48.01109.11
22
1
2
21
2
2
2
2



























m
m
dc
rms
V
V
V
V
Diode Application:
Centre tapped Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
11
t
Vi(t)
T
Vm
-Vm
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
R
1:2
+
Vi(t)
- - Vo(t) +
+
Vi(t)
-
+
Vi(t)
-
Positive Half cycle
(0  t< T/2)
Vi(t) >0 so
D1 is ON & D2 is OFF
So V0(t) = Vi(t)
+
Vi(t)
-
R
- Vo(t) +
+
Vi(t)
-
+
Vi(t)
-
1:2
D1
D2
Another type of fullwave
rectifier is Centre tapped
It uses 2 diodes with a centre
tapped transformer.
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
R
1:2
+
Vi(t)
- - Vo(t) +
+
Vi(t)
-
+
Vi(t)
-
Negative Half cycle
(T/2  t< T)
Vi(t) <0 so
D1 is OFF & D2 is ON
So V0 (t) = -Vi(t)
Diode Application:
Centre tapped Full Wave rectifier
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
12
VDC: equal to that of bridge type full wave rectifier
mdc VV 636.0






TtTfortV
TtfortV
tV
i
i
2/)(
2/0)(
)(periodofoutputcombinedTherefore 0
t
Vi(t)
T
Vm
-Vm
Vo(t)
T
Vm
t
Vdc= 0.636VmVrms: equal to that of bridge type full wave rectifier
mrms VV 707.0
Peak inverse voltage (PIV or PRV)
Applying KVL, in loop containing input
and reverse bias diode.
PIV  2Vm
R
1:2
+
Vm
- - Vm +
+
Vm
-
+
Vm
-- PIV +
Ripple factor: ratio of Vac to Vdc
48.0
Diode Application: Clippers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
13
Clippers are networks that employ diodes to “clip” away a
portion of an input signal without distorting the remaining
part of the applied waveform.
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
Vm
-Vm
If Vi(t) 0, Diode ON, Vo(t)= Vi(t)
If Vi(t) <0, Diode OFF, Vo(t) =0
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
-Vm
If Vi(t) >0, Diode OFF, Vo(t)= 0
If Vi(t) 0, Diode ON, Vo(t) =Vi(t)
Negative Series Clipper
Positive Series Clipper
Diode Application: Clippers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
14
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
Vm-VVV V
-V
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
-(Vm+V)
If Vi(t) -V0, Diode ON, Vo(t)= Vi(t) -V
If Vi(t) -V<0, Diode OFF, Vo(t) =0
If Vi(t) -V>0, Diode OFF, Vo(t)= 0
If Vi(t) -V  0, Diode ON, Vo(t) =Vi(t) -V
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R
t
Vo(t)
Vm+V
V
V
V
-V
t
Vi(t)
T
Vm
-Vm
+
V0(t)
-
+
Vi(t)
-
R t
Vo(t)
T
-(Vm-V)
If Vi(t) +V0, Diode ON, Vo(t)= Vi(t) +V
If Vi(t) +V<0, Diode OFF, Vo(t) =0
If Vi(t)+V>0, Diode OFF, Vo(t)= 0
If Vi(t) +V  0, Diode ON, Vo(t) =Vi(t) +V
T
Negative biased Series Clipper Positive biased Series Clipper
Diode Application: Clippers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
15
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
Vm
If Vi(t) >0, Diode OFF, Vo(t)= Vi(t)
If Vi(t)  0, Diode ON, Vo(t) =0
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-Vm
If Vi(t)  0, Diode ON, Vo(t)= 0
If Vi(t) <0, Diode OFF, Vo(t) =Vi(t)
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-Vm
If Vi(t)-V 0, Diode ON, Vo(t)= V
If Vi(t)-V <0, Diode OFF, Vo(t) = Vi(t)
V
V V
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
Vm
If Vi(t)-V >0, Diode OFF, Vo(t)= Vi(t)
If Vi(t)-V 0, Diode ON, Vo(t) = V
V
V V
Negative parallel Clipper Positive parallel Clipper
Negative biased parallel Clipper Positive biased parallel Clipper
Diode Application: Clippers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
16
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-Vm
If Vi(t)+V  0, Diode ON, Vo(t)= -V
If Vi(t)+V <0, Diode OFF, Vo(t) = Vi(t)
VV -V
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
Vm
If Vi(t)+V >0, Diode OFF, Vo(t)= Vi(t)
If Vi(t)+V 0, Diode ON, Vo(t) = -V
V-V
Negative biased parallel Clipper Positive biased parallel Clipper
-V
+
V0(t)
-
+
Vi(t)
-
R
t
Vi(t)
T
Vm
-Vm
If Vi(t)- V1 0, Diode D1 ON, & Vi(t)+ V2 >0, Diode D2 OFF, Vo(t)= V1
If Vi(t)- V1 <0, Diode D1 OFF, & Vi(t)+ V2 >0, Diode D2 OFF, Vo(t)= Vi(t)
If Vi(t)- V1 <0, Diode D1 OFF, & Vi(t)+ V2 0, Diode D2 ON, Vo(t)= -V2
V1
V1
t
Vo(t)
T
V1
V2
-V2
-V2
D1 D2
Diode Application: Clampers
Clamping networks have capacitor connected in series with a
diode and resistance in parallel.
Steps to solve clamper circuit
1. Start analysis by examining the response of the portion of
the input signal that will forward bias the diode
2. determine maximum voltage with polarity on capacitor
(assumed that capacitor is charged instantaneously)
3. Assume that during the period when the diode is in OFF state
the capacitor holds on to its established voltage level
4. Now determine the output
5. Check that total swing of the output matches to the input
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
17
Diode Application: Clampers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
18
Step 1. In +ve half cycle, Diode is ON and maximum voltage on
charged capacitor voltage Vm with polarities shown
V1
+
V0(t)
-
+
Vi(t)
-
R
C
+
V0(t)
-
+
Vi(t)
-
R
C
+ Vm -
t
Vi(t)
T
Vm
-Vm
t
Vi(t)
T
Vm
-Vm
Diode Application: Clampers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
19
2. Assuming capacitor has charged upto to Vm and holds in when
diode is in OFF state
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
Vm
-Vm
Now as Vi(t)-Vm0, diode is ON and Vo(t)=0
+
V0(t)
-
+
Vi(t)
-
R
C
+ Vm -
+
V0(t)
-
+
Vi(t)
-
R
C
+ Vm -
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-2Vm
Now as Vi(t)-Vm<0, diode is OFF and Vo(t)= Vi(t)-Vm =-2Vm
Positive part of cycle
(0  t< T/2)
Vi(t) =Vm so
Diode is ON
So V0(t) = 0
Negative part of cycle
(T/2  t< 0)
Vi(t) =-Vm so
Diode is OFF
So V0(t) = Vi(t)-Vm= -2Vm
Diode Application: Clampers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
20
The output is drawn
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-2Vm
-2Vm
-2Vm
Diode Application: Clampers
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
21
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
-2Vm
+
V0(t)
-
+
Vi(t)
-
R
C
Vm
+ -
Vm
+
V0(t)
-
+
Vi(t)
-
R
C
t
Vi(t)
T
Vm
-Vm
t
Vo(t)
T
2Vm
- m +
t
Vi(t)
T
Vm
-Vm
Vm+V +
V0(t)
-
+
Vi(t)
-
R
C
V
- +
t
Vo(t)
T
2Vm+V
V
t
Vi(t)
T
Vm
-Vm
V
+
V0(t)
-
+
Vi(t)
-
R
C
(Vm+V)
+ -
t
Vo(t)
T
-V
-2Vm-V
t
Vi(t)
T
Vm
-Vm
Vm-V +
V0(t)
-
+
Vi(t)
-
R
C
V
- +
t
Vo(t)
T
2Vm-V
-V
t
Vi(t)
T
Vm
-Vm
V
+
V0(t)
-
+
Vi(t)
-
R
C
(Vm-V)
+ -
t
Vo(t)
T
V
-2Vm+V
Diode Application: Zener diode as shunt regulator
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
22
The use of the Zener diode as a regulator is very common.
Steps to analyse Zener diode networks
1. Determine the state of the Zener diode by removing it from the
network and calculating the voltage across the resulting open circuit
2. Substitute the appropriate equivalent circuit and solve for the
desired unknowns + VD -
Forward bias VD  0
+ VK -
+ VD -
+ VD - - VZ +
Reverse bias VZ <VD < 0
Breakdown VD = VZ
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
23
+
V0
-
R
+
VZ
-
IZ
RL
Vi
+
V0
-
R
+
V
-
RL
Vi
L
iL
RR
VR
V

If V  VZ Then Zener is ON (breakdown region)
If V < VZ Then Zener is OFF
If diode is ON, then circuit shall be
+
V0
-
R
RL
Vi VZ
IR
IZ IL
ZZZ
L
Z
i
L
ZZi
Z
LRZ
ZO
IVP
RR
V
R
V
R
V
R
VV
I
III
VVV












11
Diode Application: Zener diode as shunt regulator
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
24
L
iL
RR
VR
V


If V  VZ Then Zener is ON (breakdown region)
If V < VZ Then Zener is OFF
If diode is ON, then circuit shall be
sheetdataperascurrentdiodemaxiswhere
soconstant,isas
breakdowninONbetodiodeforresistanceLoadMin
thus
min
minmin
max
min
min
ZMZMRL
R
L
Z
L
L
L
L
Zi
Z
L
L
iL
ZO
IIII
I
R
V
R
V
I
R
VV
RV
R
RR
VR
VVV






+
V0
-
R
+
VZ
-
IZ
RL
Vi
+
V0
-
R
+
V
-
RL
Vi
+
V0
-
R
RL
Vi VZ
IR
IZ IL
Diode Application: Zener diode as shunt regulator
Diode Application: Voltage-Multiplier Circuits
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
25
• Voltage multipliers use clamping action to increase peak rectified
voltages without increasing the transformer’s voltage rating.
• Multiplication factors of two, three, and four are common.
• Voltage multipliers are used in high-voltage, low-current
• applications such as cathode-ray tubes (CRTs) and particle
accelerators
Diode Application: Voltage-Multiplier Circuits
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
26
Half wave Voltage doubler
t
Vi(t)
T
Vm
-Vm
D1
C1
+
Vi(t)
-
-
2Vm
+
D2
C2
t
Vi(t)
T
Vm
-Vm
C1
+
Vi(t)
-
+
Vo(t)
-
C2
+ -
Vm+
Vm
-
-
Vm
+
+ -
C1
+
Vi(t)
-
-
2Vm
+
C2
Vm
Half wave Voltage doubler operation:
Positive half cycle
Half wave Voltage doubler operation:
Negative half cycle
t
Vi(t)
T
Vm
-Vm
Diode Application: Voltage-Multiplier Circuits
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
27
Full wave Voltage doubler
Full wave Voltage doubler operation:
Positive half cycle
Full wave Voltage doubler operation:
Negative half cycle
t
Vi(t)
T
Vm
-Vm
C1
D1
+
2Vm
-
C2
+
Vi(t)
-
D2
t
Vi(t)
T
Vm
-Vm
C1
D1
+
-
C2
+
Vi(t)
-
D2
Vm
+
-
t
Vi(t)
T
Vm
-Vm
C1
D1
+
-
C2
+
Vi(t)
-
D2
Vm
-
+
+
-
Vm
+
-
Vm
+
-
Vm
+
-
Vm
Diode Application: Voltage-Multiplier Circuits
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
28
Voltage Tripler and Quadrupler
t
Vi(t)
T
Vm
-Vm
Vm
+
Vi(t)
-
D1
C2
D2
C3
D3
C4
D4
C1
+ -
+ -
2Vm
+ -
2Vm
+ -
2Vm
doubler
Quadrupler
Tripler
Thanks
9/11/2017
REC 101 Unit I by Dr Naim R Kidwai,
Professor & Dean, JIT Jahangirabad
29
Contact
Dr Naim R Kidwai
Professor & Dean
JETGI, Faculty of Engineering Barabanki, (UP)
Email: naim.kidwai@gmail.com
Naim.Kidwai@jit.edu.in

More Related Content

PDF
Rec101 unit 1 (part i) semiconductor materials
PDF
Rec101 unit 1 (part ii) pn junction diode
PPT
Topic 3 pn_junction_and_diode
PPTX
Tunnel Diode
PPTX
Varactor diode
PDF
P n junction--eema
PPTX
Pn junction diode characteristics Lab expriment
PPT
Diodes
Rec101 unit 1 (part i) semiconductor materials
Rec101 unit 1 (part ii) pn junction diode
Topic 3 pn_junction_and_diode
Tunnel Diode
Varactor diode
P n junction--eema
Pn junction diode characteristics Lab expriment
Diodes

What's hot (20)

PPTX
PPTX
Pn junction diode by sarmad baloch
PPT
Diode
PPTX
FET Biasing
PPTX
P n junction characteristics
PPTX
PPTX
Zener Diode Presentation
PPTX
Diode Application
PPTX
Unijunction transistor (ujt)
PDF
Tunnel Diode (Esaki Diode )
PPTX
Zener Diode Full Presentation
PDF
Clipper & Clamper notes by mha physics
PPT
Semiconductor diodes
PDF
Semi conductor diode
PDF
PPTX
Diode circuits
PPT
Circuit Theorem
Pn junction diode by sarmad baloch
Diode
FET Biasing
P n junction characteristics
Zener Diode Presentation
Diode Application
Unijunction transistor (ujt)
Tunnel Diode (Esaki Diode )
Zener Diode Full Presentation
Clipper & Clamper notes by mha physics
Semiconductor diodes
Semi conductor diode
Diode circuits
Circuit Theorem
Ad

Similar to Rec101 unit 1 (part iii) diode applications (20)

PDF
3-Diode Applications.pdfffffffffffffffff
PDF
halfe wave rectifier and full wave recifiers
PPTX
Diode Applications.pptx
PPT
Lecture_02_Diode_Applications.ppt
PDF
DIODE APPLICATIONS .pdf
PDF
Electronics 1 : Chapter # 04 : Diode Applications and Types
PPTX
Lect 05 Diodes and applications - Part2.pptx
PDF
Lectures in electronic circiuts on diode
PDF
Power electronics Uncontrolled Rectifiers - Diode Rectifiers
PDF
Electronics Lab Manual by Er. Swapnil V. Kaware
PDF
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
PDF
dien-tu-tuong-tu_pham-nguyen-thanh-loan_chapter-1-_diodes-and-applications - ...
PDF
Unit-III Electronics.pdf
PPTX
powerelectronicsuncontrlled rectifier4th sem ca1.pptx
PDF
ELL PROJECT.pdf
PPTX
JUNCTION DIODE APPLICATIONS
PDF
Electronic device lecture-4 B.Tech Semester-3.pdf
PDF
320 lecture7
PPTX
Diode half wave and full wave rectifiers
PPTX
ADE UNIT-I.pptx
3-Diode Applications.pdfffffffffffffffff
halfe wave rectifier and full wave recifiers
Diode Applications.pptx
Lecture_02_Diode_Applications.ppt
DIODE APPLICATIONS .pdf
Electronics 1 : Chapter # 04 : Diode Applications and Types
Lect 05 Diodes and applications - Part2.pptx
Lectures in electronic circiuts on diode
Power electronics Uncontrolled Rectifiers - Diode Rectifiers
Electronics Lab Manual by Er. Swapnil V. Kaware
Electronic devices-and-circuit-theory-10th-ed-boylestad-chapter-2
dien-tu-tuong-tu_pham-nguyen-thanh-loan_chapter-1-_diodes-and-applications - ...
Unit-III Electronics.pdf
powerelectronicsuncontrlled rectifier4th sem ca1.pptx
ELL PROJECT.pdf
JUNCTION DIODE APPLICATIONS
Electronic device lecture-4 B.Tech Semester-3.pdf
320 lecture7
Diode half wave and full wave rectifiers
ADE UNIT-I.pptx
Ad

More from Dr Naim R Kidwai (20)

PDF
Asynchronous sequential circuit analysis
PDF
synchronous Sequential circuit counters and registers
PDF
Clocked Sequential circuit analysis and design
PDF
Sequential circuit-flip flops
PDF
Sampling Theorem
PDF
Moodle introduction
PDF
Project financial feasibility
PDF
financing infrastructure projects
PDF
financing projects
PDF
multiple projects and constraints
PDF
project risk analysis
PDF
Nec 602 unit ii Random Variables and Random process
PDF
spread spectrum communication
PDF
Error Control coding
PDF
information theory
PDF
Rec101 unit ii (part 2) bjt biasing and re model
PDF
Rec101 unit ii (part 3) field effect transistor
PDF
Rec101 unit ii (part 1) bjt characteristics
PDF
Rec101 unit v communication engg
PDF
Rec101 unit iv emi
Asynchronous sequential circuit analysis
synchronous Sequential circuit counters and registers
Clocked Sequential circuit analysis and design
Sequential circuit-flip flops
Sampling Theorem
Moodle introduction
Project financial feasibility
financing infrastructure projects
financing projects
multiple projects and constraints
project risk analysis
Nec 602 unit ii Random Variables and Random process
spread spectrum communication
Error Control coding
information theory
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 1) bjt characteristics
Rec101 unit v communication engg
Rec101 unit iv emi

Recently uploaded (20)

PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
DOCX
573137875-Attendance-Management-System-original
PPTX
Geodesy 1.pptx...............................................
PDF
PPT on Performance Review to get promotions
PDF
Well-logging-methods_new................
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPTX
web development for engineering and engineering
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Construction Project Organization Group 2.pptx
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
Sustainable Sites - Green Building Construction
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
573137875-Attendance-Management-System-original
Geodesy 1.pptx...............................................
PPT on Performance Review to get promotions
Well-logging-methods_new................
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
web development for engineering and engineering
Model Code of Practice - Construction Work - 21102022 .pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Construction Project Organization Group 2.pptx
UNIT 4 Total Quality Management .pptx
CYBER-CRIMES AND SECURITY A guide to understanding
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
bas. eng. economics group 4 presentation 1.pptx
Mechanical Engineering MATERIALS Selection
Sustainable Sites - Green Building Construction

Rec101 unit 1 (part iii) diode applications

  • 1. Diode Applications REC 101: Basic Electronics Unit 1 PN junction diode: Introduction of Semiconductor Materials Semiconductor Diode: Depletion layer, V-I characteristics, ideal and practical, diode resistance, capacitance, Diode Equivalent Circuits, Transition and Diffusion Capacitance, Zener Diodes breakdown mechanism (Zener and avalanche) Diode Application: Series , Parallel and Series, Parallel Diode Configuration, Half and Full Wave rectification, Clippers, Clampers, Zener diode as shunt regulator, Voltage- Multiplier Circuits Special Purpose two terminal Devices :Light-Emitting Diodes, Varactor (Varicap) Diodes, Tunnel Diodes, Liquid-Crystal Displays. 9/11/2017 1 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad
  • 2. Diode Application: Series, Parallel and Series, Parallel Configuration • The forward resistance of diode is so small compared to the other series elements of network that it can be ignored (if not specified) • In general, a diode is in the ON state if the current established by the sources is such that, its direction matches to the arrow of diode symbol, and VD  VK otherwise it is in OFF state 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 2 Diode VK (V) Ideal 0 Ge 0.3 Si 0.7 GaAs 1.2 Steps to find the state of diode 1. Replace the diode with equivalent circuit. 2. mentally replace diode with a resistance and check direction of current through it. 3. If current direction matches to diode arrow then diode is ON otherwise it is OFF Practical VK ideal ideal VK Rf OR Diode Equivalent circuit VK knee voltage Rf diode forward resistance
  • 3. Diode Application: Series , Parallel and Series, Parallel Diode Configuration, 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 3 ideal 0.7 V 10 V 100  Si 10 V 100  1.Replace diode with equivalent circuit ideal 0.7 V 10 V 100  2.Replace ideal diode with fictitious resistance and find the current direction 3. As current matches with diode direction, it is ON. Short-circuit the diode and solve the circuit mA93A093.0 100 7.010   I 0.7 V 10 V 100  I
  • 4. Diode Application: rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 4 • One of the common application of diode is ‘rectifier’ which converts AC signal into DC. • There are many rectifier circuits – Half Wave rectifier – Full wave rectifier; Bridge type & Centre tapped • Practical rectifier consists of; Transformer, Rectifier, Filter & Regulator stage • Rectifier output for one cycle (period) of input is analyzed AC Input + DC output - Transformer Stage Rectifier Stage Regulator stage Filter Stage
  • 5. Diode Application: Half Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 5 t Vi(t) T Vm -Vm + Vo(t)=Vi(t) - + Vi(t) - Rt Vi(t) T Vm -Vm Vo T Vm t Positive Half cycle (0  t< T/2) Vi(t) >0 and diode is ON So Vo(t) = Vi(t) + - + V0(t) - + Vi(t) - R Half wave rectifier circuit  T tSinVtV mi   2 where,)(  The process of removing one- half the input ac signal to establish a dc level is called halfwave rectification V0(t) T Vm t + Vi(t) - Rt Vi(t) T Vm -Vm Negative Half cycle (T/2  t< T) Vi(t) <0 and diode is OFF So Vo(t) = 0 + Vo(t)=0 -       TtTfor TtfortV tV i 2/0 2/0)( )(periodofoutputcombinedTherefore 0
  • 6. Diode Application: Half Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 6 t Vi(t) T Vm -Vm V0(t) T Vm t 2T 2T Vdc= 0.318Vm            mm T m dc T m TT i T dc V Cos T Cos V tCos T V V dttSinV T dtdttV T dttV T V                         )0( 22 1 .0)( 1 )( 1 2 0 2 0 2 0 2 00 0 VDC: is periodic average of output wave mdc VV 318.0       TtTfor TtfortV tV i 2/0 2/0)( )(0           2 0 4 2sin 42 2cos1 2 .0)( 1 )( 1 2 2 0 2 2 0 22 0 2 2 0 2 22 0 2 0 2 0 2 mm T m T m T m dc T m TT i T orms VV t T V t T V dtt T V V dttSin T V dtdttV T dttV T V                  Vrms: square root of periodic average of squared output mrms VV 5.0
  • 7. Diode Application: Half Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 7 Peak inverse voltage (PIV or PRV) : Applying KVL, in loop of reverse bias diode. PIV  Vm - Vm + R - PIV + V0(t)=0 V Ripple factor: ratio of Vac to Vdc   21.1157.11 2 12 factorformiskwhere 11factorRipple 2 2 2 f 2 222 222                                 m m f dc rms dc dcrms dc ac dcacrms V V k V V V VV V V VVV
  • 8. Diode Application: Bridge type Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 8 t Vi(t) T Vm -Vm t Vi(t) T Vm -Vm Vo(t) T Vm t + Vi(t) - R - Vo(t) + Positive Half cycle (0  t< T/2) Vi(t)>0 so D2 and D3 is ON D1 and D4 is ON So Vo(t) = Vi(t) + Vi(t) - R - Vo(t) + D1 D2 D3 D4 The process of utilizing full period of ac signal to establish a dc level is called fullwave rectification A bridge with 4 diodes as shown in figure is most familiar full wave rectifier.
  • 9. Diode Application: Bridge type Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 9 t Vi(t) T Vm -Vm V0(t) T Vm t t Vi(t) T Vm -Vm Vo(t) T Vm t + Vi(t) - R - Vo(t) + Negative Half cycle (T/2  t< T) Vi(t)<0 and D2 and D3 is ON D1 and D4 is ON So Vo(t) = - Vi(t)     m T m T i T dc V dttSinV T dttV T dttV T V 22 )(2 1 )( 1 2 0 2 00 0            VDC: As the area above the axis for one full cycle is now twice of that for a half-wave system, dc level has also been doubled mdc VV 636.0       TtTfortV TtfortV tV i i 2/)( 2/0)( )(periodofoutputcombinedTherefore 0 Vdc= 0.636Vm
  • 10. Diode Application: Bridge type Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 10   22 2 )( 2 )( 1 22 0 2 22 0 2 0 2 mm T m T i T orms VV dttSin T V dttV T dttV T V    Vrms: mrms VV 707.0 Peak inverse voltage (PIV or PRV) Applying KVL, in loop containing input and reverse bias diode. PIV  Vm + Vm - R - Vo(t) + - Vm + R - Vo(t) + Ripple factor: ratio of Vac to Vdc   48.01109.11 22 1 2 21 2 2 2 2                            m m dc rms V V V V
  • 11. Diode Application: Centre tapped Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 11 t Vi(t) T Vm -Vm t Vi(t) T Vm -Vm Vo(t) T Vm t R 1:2 + Vi(t) - - Vo(t) + + Vi(t) - + Vi(t) - Positive Half cycle (0  t< T/2) Vi(t) >0 so D1 is ON & D2 is OFF So V0(t) = Vi(t) + Vi(t) - R - Vo(t) + + Vi(t) - + Vi(t) - 1:2 D1 D2 Another type of fullwave rectifier is Centre tapped It uses 2 diodes with a centre tapped transformer. t Vi(t) T Vm -Vm Vo(t) T Vm t R 1:2 + Vi(t) - - Vo(t) + + Vi(t) - + Vi(t) - Negative Half cycle (T/2  t< T) Vi(t) <0 so D1 is OFF & D2 is ON So V0 (t) = -Vi(t)
  • 12. Diode Application: Centre tapped Full Wave rectifier 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 12 VDC: equal to that of bridge type full wave rectifier mdc VV 636.0       TtTfortV TtfortV tV i i 2/)( 2/0)( )(periodofoutputcombinedTherefore 0 t Vi(t) T Vm -Vm Vo(t) T Vm t Vdc= 0.636VmVrms: equal to that of bridge type full wave rectifier mrms VV 707.0 Peak inverse voltage (PIV or PRV) Applying KVL, in loop containing input and reverse bias diode. PIV  2Vm R 1:2 + Vm - - Vm + + Vm - + Vm -- PIV + Ripple factor: ratio of Vac to Vdc 48.0
  • 13. Diode Application: Clippers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 13 Clippers are networks that employ diodes to “clip” away a portion of an input signal without distorting the remaining part of the applied waveform. t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T Vm -Vm If Vi(t) 0, Diode ON, Vo(t)= Vi(t) If Vi(t) <0, Diode OFF, Vo(t) =0 t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T -Vm If Vi(t) >0, Diode OFF, Vo(t)= 0 If Vi(t) 0, Diode ON, Vo(t) =Vi(t) Negative Series Clipper Positive Series Clipper
  • 14. Diode Application: Clippers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 14 t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T Vm-VVV V -V t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T -(Vm+V) If Vi(t) -V0, Diode ON, Vo(t)= Vi(t) -V If Vi(t) -V<0, Diode OFF, Vo(t) =0 If Vi(t) -V>0, Diode OFF, Vo(t)= 0 If Vi(t) -V  0, Diode ON, Vo(t) =Vi(t) -V t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) Vm+V V V V -V t Vi(t) T Vm -Vm + V0(t) - + Vi(t) - R t Vo(t) T -(Vm-V) If Vi(t) +V0, Diode ON, Vo(t)= Vi(t) +V If Vi(t) +V<0, Diode OFF, Vo(t) =0 If Vi(t)+V>0, Diode OFF, Vo(t)= 0 If Vi(t) +V  0, Diode ON, Vo(t) =Vi(t) +V T Negative biased Series Clipper Positive biased Series Clipper
  • 15. Diode Application: Clippers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 15 + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T Vm If Vi(t) >0, Diode OFF, Vo(t)= Vi(t) If Vi(t)  0, Diode ON, Vo(t) =0 + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T -Vm If Vi(t)  0, Diode ON, Vo(t)= 0 If Vi(t) <0, Diode OFF, Vo(t) =Vi(t) + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T -Vm If Vi(t)-V 0, Diode ON, Vo(t)= V If Vi(t)-V <0, Diode OFF, Vo(t) = Vi(t) V V V + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T Vm If Vi(t)-V >0, Diode OFF, Vo(t)= Vi(t) If Vi(t)-V 0, Diode ON, Vo(t) = V V V V Negative parallel Clipper Positive parallel Clipper Negative biased parallel Clipper Positive biased parallel Clipper
  • 16. Diode Application: Clippers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 16 + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T -Vm If Vi(t)+V  0, Diode ON, Vo(t)= -V If Vi(t)+V <0, Diode OFF, Vo(t) = Vi(t) VV -V + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm t Vo(t) T Vm If Vi(t)+V >0, Diode OFF, Vo(t)= Vi(t) If Vi(t)+V 0, Diode ON, Vo(t) = -V V-V Negative biased parallel Clipper Positive biased parallel Clipper -V + V0(t) - + Vi(t) - R t Vi(t) T Vm -Vm If Vi(t)- V1 0, Diode D1 ON, & Vi(t)+ V2 >0, Diode D2 OFF, Vo(t)= V1 If Vi(t)- V1 <0, Diode D1 OFF, & Vi(t)+ V2 >0, Diode D2 OFF, Vo(t)= Vi(t) If Vi(t)- V1 <0, Diode D1 OFF, & Vi(t)+ V2 0, Diode D2 ON, Vo(t)= -V2 V1 V1 t Vo(t) T V1 V2 -V2 -V2 D1 D2
  • 17. Diode Application: Clampers Clamping networks have capacitor connected in series with a diode and resistance in parallel. Steps to solve clamper circuit 1. Start analysis by examining the response of the portion of the input signal that will forward bias the diode 2. determine maximum voltage with polarity on capacitor (assumed that capacitor is charged instantaneously) 3. Assume that during the period when the diode is in OFF state the capacitor holds on to its established voltage level 4. Now determine the output 5. Check that total swing of the output matches to the input 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 17
  • 18. Diode Application: Clampers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 18 Step 1. In +ve half cycle, Diode is ON and maximum voltage on charged capacitor voltage Vm with polarities shown V1 + V0(t) - + Vi(t) - R C + V0(t) - + Vi(t) - R C + Vm - t Vi(t) T Vm -Vm t Vi(t) T Vm -Vm
  • 19. Diode Application: Clampers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 19 2. Assuming capacitor has charged upto to Vm and holds in when diode is in OFF state t Vi(t) T Vm -Vm t Vo(t) T Vm -Vm Now as Vi(t)-Vm0, diode is ON and Vo(t)=0 + V0(t) - + Vi(t) - R C + Vm - + V0(t) - + Vi(t) - R C + Vm - t Vi(t) T Vm -Vm t Vo(t) T -2Vm Now as Vi(t)-Vm<0, diode is OFF and Vo(t)= Vi(t)-Vm =-2Vm Positive part of cycle (0  t< T/2) Vi(t) =Vm so Diode is ON So V0(t) = 0 Negative part of cycle (T/2  t< 0) Vi(t) =-Vm so Diode is OFF So V0(t) = Vi(t)-Vm= -2Vm
  • 20. Diode Application: Clampers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 20 The output is drawn t Vi(t) T Vm -Vm t Vo(t) T -2Vm -2Vm -2Vm
  • 21. Diode Application: Clampers 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 21 t Vi(t) T Vm -Vm t Vo(t) T -2Vm + V0(t) - + Vi(t) - R C Vm + - Vm + V0(t) - + Vi(t) - R C t Vi(t) T Vm -Vm t Vo(t) T 2Vm - m + t Vi(t) T Vm -Vm Vm+V + V0(t) - + Vi(t) - R C V - + t Vo(t) T 2Vm+V V t Vi(t) T Vm -Vm V + V0(t) - + Vi(t) - R C (Vm+V) + - t Vo(t) T -V -2Vm-V t Vi(t) T Vm -Vm Vm-V + V0(t) - + Vi(t) - R C V - + t Vo(t) T 2Vm-V -V t Vi(t) T Vm -Vm V + V0(t) - + Vi(t) - R C (Vm-V) + - t Vo(t) T V -2Vm+V
  • 22. Diode Application: Zener diode as shunt regulator 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 22 The use of the Zener diode as a regulator is very common. Steps to analyse Zener diode networks 1. Determine the state of the Zener diode by removing it from the network and calculating the voltage across the resulting open circuit 2. Substitute the appropriate equivalent circuit and solve for the desired unknowns + VD - Forward bias VD  0 + VK - + VD - + VD - - VZ + Reverse bias VZ <VD < 0 Breakdown VD = VZ
  • 23. 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 23 + V0 - R + VZ - IZ RL Vi + V0 - R + V - RL Vi L iL RR VR V  If V  VZ Then Zener is ON (breakdown region) If V < VZ Then Zener is OFF If diode is ON, then circuit shall be + V0 - R RL Vi VZ IR IZ IL ZZZ L Z i L ZZi Z LRZ ZO IVP RR V R V R V R VV I III VVV             11 Diode Application: Zener diode as shunt regulator
  • 24. 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 24 L iL RR VR V   If V  VZ Then Zener is ON (breakdown region) If V < VZ Then Zener is OFF If diode is ON, then circuit shall be sheetdataperascurrentdiodemaxiswhere soconstant,isas breakdowninONbetodiodeforresistanceLoadMin thus min minmin max min min ZMZMRL R L Z L L L L Zi Z L L iL ZO IIII I R V R V I R VV RV R RR VR VVV       + V0 - R + VZ - IZ RL Vi + V0 - R + V - RL Vi + V0 - R RL Vi VZ IR IZ IL Diode Application: Zener diode as shunt regulator
  • 25. Diode Application: Voltage-Multiplier Circuits 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 25 • Voltage multipliers use clamping action to increase peak rectified voltages without increasing the transformer’s voltage rating. • Multiplication factors of two, three, and four are common. • Voltage multipliers are used in high-voltage, low-current • applications such as cathode-ray tubes (CRTs) and particle accelerators
  • 26. Diode Application: Voltage-Multiplier Circuits 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 26 Half wave Voltage doubler t Vi(t) T Vm -Vm D1 C1 + Vi(t) - - 2Vm + D2 C2 t Vi(t) T Vm -Vm C1 + Vi(t) - + Vo(t) - C2 + - Vm+ Vm - - Vm + + - C1 + Vi(t) - - 2Vm + C2 Vm Half wave Voltage doubler operation: Positive half cycle Half wave Voltage doubler operation: Negative half cycle t Vi(t) T Vm -Vm
  • 27. Diode Application: Voltage-Multiplier Circuits 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 27 Full wave Voltage doubler Full wave Voltage doubler operation: Positive half cycle Full wave Voltage doubler operation: Negative half cycle t Vi(t) T Vm -Vm C1 D1 + 2Vm - C2 + Vi(t) - D2 t Vi(t) T Vm -Vm C1 D1 + - C2 + Vi(t) - D2 Vm + - t Vi(t) T Vm -Vm C1 D1 + - C2 + Vi(t) - D2 Vm - + + - Vm + - Vm + - Vm + - Vm
  • 28. Diode Application: Voltage-Multiplier Circuits 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 28 Voltage Tripler and Quadrupler t Vi(t) T Vm -Vm Vm + Vi(t) - D1 C2 D2 C3 D3 C4 D4 C1 + - + - 2Vm + - 2Vm + - 2Vm doubler Quadrupler Tripler
  • 29. Thanks 9/11/2017 REC 101 Unit I by Dr Naim R Kidwai, Professor & Dean, JIT Jahangirabad 29 Contact Dr Naim R Kidwai Professor & Dean JETGI, Faculty of Engineering Barabanki, (UP) Email: naim.kidwai@gmail.com Naim.Kidwai@jit.edu.in