SlideShare a Scribd company logo
Quantum Ar tificial Intelligence - Architecture
Presented by The Reddix Group, LLC
Mission Statement:
Creates an Enterprise Common
Operational Picture, that produces
Enhanced Situational Awareness!
DoD Quantum Artificial Intelligence (Q-AI)
IN NEAR REAL - TIME “FUTURE STATE”
Potential National Security Threats - Part 1
DISASTER
SCENARIOS
CRIME
Example : product piracy, cyber attacks
AMENDMENTS TO THE LAW
Example : GDPR (2018)
INFRASTRUCTURE ISSUES
Example : power outages or network crashes
NATURAL DISASTERS
Example : earthquakes, floods
RESOURCE CONSTRAINTS
Example : loss of suppliers
LOSSES DUE TO ACCIDENTS
Examples : fire, machinery issues
HEALTH-RELATED ISSUES
Example : Flu season or any pandemics
SOCIAL & POLITICAL UNREST
Example : strikes, political upheavals, attacks
Potential National Security Threats - Part 2
Storm Damage Theft or Robbery Power Outages Viral Outbreak Technical Failure
Natural Disaster Cyber Attack Human Error Fire Accident Water Shortage
Texas Power Outages
Jackson, MS Water Shortage
Colonial Pipeline Ransomware Attack
Space
Weaponization
The Aim of Q-AI
Learning - improvements in the
deep learning training process!
Decision Problems - based on
Hamiltonian time evolution can
solve problems faster than
random walks!
Search – most search algorithms
are designed for classical
computing
Game Theory – can overcome
critical problems in quantum
communications and
implementations of Q-AI!
Open-Source modeling
and training frameworks
Substantial and skilled
developer ecosystem
Less error-prone and
more powerful computing
systems
Compelling applications
that outperforms classical
computing
Critical Milestones
Enhanced Situational Awareness (ESA)
Q-AI Plan of Attack
ALGORITHM PROCESS PRIORITIZATION IN-MEMORY - IT INTEGRATION MANAGEMENT
Risk
Assessment
DoD Impact
Analysis
Program
Assessment
Program
Design
Strategy
Design
Implementation
Program
Review
Resilience program
management
Processes and activities
Crisis teams
Business resumption
High availability
Recovery
Streamline IT
infrastructure
High availability
design
High availability
servers
Data replication
Database and software
design
Maturity model
Model ROI
Create program
roadmap
Outage impact
Risks,
vulnerabilities,
threats
1. People
2. Processes
3. Plans
4. Strategies
5. Networks
6. Platforms
7. Facilities
Awareness, review, change management, regular briefings
Current capabilities Expected recovery time
Quantum
Artificial
Intelligence
Management
Q-AI Data Readiness
Labeling data is a significant expense and bottleneck for Machine Learning
and Natural Language Processing (NLP) development. Current approaches,
such as manually labeling data through crowdsourcing and internal labeling
efforts, carry significant drawbacks including high cost, extensive time and
resource consumption, and low consistency and accuracy. Jaxon is a semi-
supervised training platform that amplifies a small number of human-
provided labels into full-scale training datasets and high-quality models for
text-oriented machine learning applications.
Jaxon brings together several open and proprietary techniques for effective
sparse-data training. These techniques incorporate knowledge from large
unlabeled corpora, human domain experts, and previously-trained models
and machine learning assets in order to drastically reduce the demand for
human labeling and annotation while improving model quality.
Quantum
Artificial
Intelligence
Management
Q-AI Application
Development
With the growth of cloud computing, more ingenious
cyberthreats, and the need for fast and easily changeable
applications, agencies are realizing that the traditional
method of application development does not serve their
needs. For more agencies, the answer is microservices. This
application development approach breaks applications into
smaller components for development.
Quantum
Artificial
Intelligence
Management
Q-AI Testing and
Evaluation
Testing & Evaluation (T&E) – There are so many things that
can go wrong during data transportation: Data can be
corrupted, hit bottlenecks causing latency, or data sources
may conflict generating duplicate or incorrect data,
eliminating duplicates and incompatible data types, to
obfuscate sensitive information while not missing critical data.
Preparing Quantum Datasets for Q-AI
Preparing
Q-AI Datasets
1
2
3
4
5
Processes, recovery
times, resource
requirements
Threat analysis,
risk exposure,
threat scenarios
Continuity, strategy, key
resources, alternatives,
service methods, and
recovery methods
Procedures
Plan validation
Convert Q-AI data to the quantum dataset
Q-AI data can be represented as a multi-
dimensional array of numbers which is called as
quantum tensors. TensorFlow processes these
tensors in order to represent, create a dataset for
further use.
01
Choose Q-AI neural network models
Based on the Q-AI data structure, Q-AI
neural network models are selected. The
aim is to perform Q-AI processing in order
to extract information hidden in an
entangled state.
02
Sample or Average
Measurement of Q-AI states extract
classical information in the form of
samples from the classical
distribution. The values are
obtained from the Q-AI state itself.
03
Evaluate a classical neural networks model
Since Q-AI data is now converted into classical
data, deep learning techniques are used to learn
the correlation between data.
04
Exercising & Testing
Its main purpose is to validate the
Q-AI continuity strategy, activities,
assumptions regarding usefulness
and security levels.
05
Continued Q-AI Maintenance Plan
This phase maintain the Q-AI
algorithms in a constant ready-
state. The maintenance process of
a Q-AI ecosystem is constant and
dynamic.
06
Q-AI Application Development Framework
LEARN / OPTIMIZE
UPDATE
Q-AI before & after an events
AGGREGATE / LABEL / OPTIMIZATION
UTILIZE
Train the Q-AI in a crisis or exercise
EXPLORE / TRANSFORM / REALTIME
STRUCTURE
Decide on how to structure the Q-AI
MOVE / STORE / COLLECT
Q-AI PLAN
Build ML template & get started
Hierarchy of Needs KEY TO SUCCESS
Q-AI
GigaSpaces’s InsightEdge was designed to help enterprises seamlessly accelerate and scale their
mission
critical, time-sensitive applications and services. This distributed in-memory software platform
can ingest, process and store large volumes of any data type, and ensures low latency performance
dynamic scale across all environments. Customers leverage InsightEdge to power open banking
initiatives, real time fraud and risk analysis, customer 360, analytics and BI on fresh data and more.
The InsightEdge platform integrates to siloed operational data stores and to the enterprise’s systems
of record with a single click (no-code connect), aggregating data in a low-latency data fabric. The
dynamically scaling Data Integration Hub offloads API access from the enterprise’s data stores (on-
premise and cloud) and delivers rapid application response times to internal and external customers
no matter the load while ensuring always-on services. The ability to collocate business logic with data
in memory and perform dynamic server-side aggregations, reduces the movement of data to the client
and delivers extreme performance.
Q-AI: IN-MEMORY SOLUTION
Q-AI GigaSpaces: Orchestration
1
3
Q-AI GigaSpaces: Data Flows
1
4
Q-AI GigaSpaces: Cloud & Datacenter Integration
1
6
Q-AI GigaSpaces: AI/ML
Q-AI GigaSpaces: How To Run Microservices
CASE
STUDY:
• Railway corporation runs predictive
analytics on its fleet of trains in real-time
BUSINESS CHALLENGE:
• Trains location heatmap
• Correlating fuel consumption, temperature,
weather and road conditions
• Bad weather alerts filter
• Real-time enriched data with external data
TECHNICAL CHALLENGE:
• Improve train performance and reduce downtime with
real-time visibility of 10Ks trains
• Reduce maintenance costs by up to 75% per mile
• Faster time to market of new online services
RESULTS:
TRANSPORTATION/
IOT
Predictive Maintenance
Reduce maintenance costs by up to 75% per mile
Q-AI GigaSpaces: Example
Reddix Group - Quantum AI - Presentation
Q-AI Resource Requirements
Q-AI Build Cycle
ASSESSMENTS
Development & implementation of test
scenarios, staff training, Gap analysis
ANALYSIS
Identify, Risk assessment,
Business impact analysis
DEVELOP
Strategy review &
implementation, Plan
development
INTEGRATION
Coordination with
external organizations &
companies
MAINTENANCE
Change management,
Scheduling, Financial audit
management
PROJECT STARTS
Project management & awareness,
leadership, basic development
Q-AI Model Development Flow
ANALYZE
DESIGN
SOLUTIONS
IMPLEMENT
TEST AND
ACCEPT
Identify potential threats or
risks, impacted business
processes, warning and
communication process
Design or define addition
solutions, strategy,
documentation processes and
supplier dependencies
Initiate response checklist and
relocation strategies of critical
processes in the business
disruption.
Recovery time objectives,
test critical processes,
monitor primary and
alternate facility details.
Update key details and
associated processes as
deficiencies & inaccuracies
are identified.
MAINTAIN
DEVELOP DATA INPUTS
Determine the selection of
alternative Data Strategies available
for mitigate loss (testing scenarios).
02
03 05
01
04
IDENTIFY & ANALYZE
Identifies all significant AI
roles of risks, resources &
all critical processes.
IMPLEMENTATION PLANS
Here you can develop plans which
includes role allocation &
responsibilities in case of crisis.
DEFINE OBJECTIVES
What are the AI objectives,
defined value & cybersecurity
requirements.
BUILD TRAINING MODEL
Testing helps to create
awareness for execution in the
event of any disaster or risk.
06
ESTABLISH BENCHMARKS
It helps to create awareness among
managers, employees and partners
in company.
Test & Evaluation
Q-AI as a Component of Resilience Management
CRISIS MANAGEMENT
EMERGENCY PREPAREDNESS
Impact
Strategy
Plan
Training + Test
Emergency
Measures
Emergency
Operations
Resume
Normal
Operations
Q-AI
Q-AI Cyber Risk Analysis Steps
01
IDENTIFY RISKS
• Internal and external risks
• Direct and indirect risks
• Risks that can and cannot
be managed
02
EVALUATE RISKS
• Assess risk probability
• Assess impact
• Assigning and prioritizing risk
03
DESIGN POSSIBLE RISK SCENARIO
• IT failure and network collapse
• Building damage
• Delivery bottlenecks
• Loss of employees
04
SELECT RISK STRATEGIES
• Acceptance
• Transfer
• Avoidance
• Reduction
Strategic Q-AI Framework
Q-AI STRESS
TESTING
Define
Identify
Assess
impact
Design
changes
Execute
changes
Q-AI
CONTINUITY
MGMT.
Test &
maintain
Project
initiation
Identify
& impact
Design
measure
Implement
MODIFIES & CREATE VALUE SUSTAINS & PRESERVES VALUE
Reddix Group - Quantum AI - Presentation

More Related Content

PDF
Data Analytics and Artificial Intelligence in the era of Digital Transformation
PDF
Nasscom AI top 50 use cases
PDF
AIOps: Your DevOps Co-Pilot
PDF
Retrieval Augmented Generation in Practice: Scalable GenAI platforms with k8s...
PDF
𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬
PDF
stackconf 2022: Introduction to Vector Search with Weaviate
PDF
Chicago AWS Solutions Architect Mehdy Haghy recaps the new AI/ML releases and...
PPTX
Deep Learning Explained
Data Analytics and Artificial Intelligence in the era of Digital Transformation
Nasscom AI top 50 use cases
AIOps: Your DevOps Co-Pilot
Retrieval Augmented Generation in Practice: Scalable GenAI platforms with k8s...
𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬
stackconf 2022: Introduction to Vector Search with Weaviate
Chicago AWS Solutions Architect Mehdy Haghy recaps the new AI/ML releases and...
Deep Learning Explained

What's hot (20)

PDF
Best Practice on using Azure OpenAI Service
PDF
Landscape of AI/ML in 2023
PDF
Generative AI leverages algorithms to create various forms of content
PDF
Suresh Poopandi_Generative AI On AWS-MidWestCommunityDay-Final.pdf
PPTX
The Future of AI is Generative not Discriminative 5/26/2021
PDF
Gen AI Cognizant & AWS event presentation_12 Oct.pdf
PDF
Monitoring AI with AI
PPTX
Fine tuning large LMs
PDF
Unlocking the Power of Generative AI An Executive's Guide.pdf
PPTX
Machine Learning for Medical Image Analysis: What, where and how?
PDF
Generative AI for the rest of us
PPTX
Machine learning prediction of stock markets
PPTX
Cat and dog classification
PDF
Perspective on HPC-enabled AI
PDF
Intro to Amazon Web Services (AWS) and Gen AI
PDF
From Insights to Action, How to build and maintain a Data Driven Organization...
PDF
Edge intelligence
PPTX
Machine learning in Cyber Security
PDF
Artificial Intelligence Introduction & Business usecases
PPTX
Stock Price Prediction PPT
Best Practice on using Azure OpenAI Service
Landscape of AI/ML in 2023
Generative AI leverages algorithms to create various forms of content
Suresh Poopandi_Generative AI On AWS-MidWestCommunityDay-Final.pdf
The Future of AI is Generative not Discriminative 5/26/2021
Gen AI Cognizant & AWS event presentation_12 Oct.pdf
Monitoring AI with AI
Fine tuning large LMs
Unlocking the Power of Generative AI An Executive's Guide.pdf
Machine Learning for Medical Image Analysis: What, where and how?
Generative AI for the rest of us
Machine learning prediction of stock markets
Cat and dog classification
Perspective on HPC-enabled AI
Intro to Amazon Web Services (AWS) and Gen AI
From Insights to Action, How to build and maintain a Data Driven Organization...
Edge intelligence
Machine learning in Cyber Security
Artificial Intelligence Introduction & Business usecases
Stock Price Prediction PPT
Ad

Similar to Reddix Group - Quantum AI - Presentation (20)

PDF
quantum-leap-agentic-ai-in-quantum-computing.pdf
PDF
quantum-leap-agentic-ai-in-quantum-computing.pdf
PPTX
Artificial intelligence in industry
PDF
Dell AI Telecom Webinar
PDF
AI and Data Science.pdf
PDF
QuSandbox+NVIDIA Rapids
PDF
influence of AI in IS
PDF
AI at Scale in Enterprises
PDF
ADV Slides: Data Curation for Artificial Intelligence Strategies
PDF
Quantum Computing & AI: Unleashing the Future | USAII®
PDF
Defining a Practical Path to Artificial Intelligence
PPT
Quantum Intelligence: Responsible Human-AI Entities
PDF
Artificial Intelligence - AI For Everyone
PDF
Artificial Intelligence Overview Powerpoint Presentation Slides
PPTX
XMANAI Technical Project Overview
PPTX
AI in the Enterprise at Scale
PDF
Artificial Intelligence Overview PowerPoint Presentation Slides
PDF
Innovation report: Artificial Intelligence
PDF
Ai digital (without videos)
PDF
From Sci-Fi to Reality: The Impact of Artificial Intelligence on Everyday Life"
quantum-leap-agentic-ai-in-quantum-computing.pdf
quantum-leap-agentic-ai-in-quantum-computing.pdf
Artificial intelligence in industry
Dell AI Telecom Webinar
AI and Data Science.pdf
QuSandbox+NVIDIA Rapids
influence of AI in IS
AI at Scale in Enterprises
ADV Slides: Data Curation for Artificial Intelligence Strategies
Quantum Computing & AI: Unleashing the Future | USAII®
Defining a Practical Path to Artificial Intelligence
Quantum Intelligence: Responsible Human-AI Entities
Artificial Intelligence - AI For Everyone
Artificial Intelligence Overview Powerpoint Presentation Slides
XMANAI Technical Project Overview
AI in the Enterprise at Scale
Artificial Intelligence Overview PowerPoint Presentation Slides
Innovation report: Artificial Intelligence
Ai digital (without videos)
From Sci-Fi to Reality: The Impact of Artificial Intelligence on Everyday Life"
Ad

Recently uploaded (20)

PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Advanced IT Governance
PDF
GamePlan Trading System Review: Professional Trader's Honest Take
PPTX
Big Data Technologies - Introduction.pptx
PDF
NewMind AI Monthly Chronicles - July 2025
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
[발표본] 너의 과제는 클라우드에 있어_KTDS_김동현_20250524.pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
Modernizing your data center with Dell and AMD
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
Approach and Philosophy of On baking technology
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
Advanced methodologies resolving dimensionality complications for autism neur...
Advanced IT Governance
GamePlan Trading System Review: Professional Trader's Honest Take
Big Data Technologies - Introduction.pptx
NewMind AI Monthly Chronicles - July 2025
“AI and Expert System Decision Support & Business Intelligence Systems”
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
[발표본] 너의 과제는 클라우드에 있어_KTDS_김동현_20250524.pdf
Empathic Computing: Creating Shared Understanding
Mobile App Security Testing_ A Comprehensive Guide.pdf
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Modernizing your data center with Dell and AMD
Per capita expenditure prediction using model stacking based on satellite ima...
The AUB Centre for AI in Media Proposal.docx
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
Approach and Philosophy of On baking technology
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
The Rise and Fall of 3GPP – Time for a Sabbatical?

Reddix Group - Quantum AI - Presentation

  • 1. Quantum Ar tificial Intelligence - Architecture Presented by The Reddix Group, LLC
  • 2. Mission Statement: Creates an Enterprise Common Operational Picture, that produces Enhanced Situational Awareness! DoD Quantum Artificial Intelligence (Q-AI) IN NEAR REAL - TIME “FUTURE STATE”
  • 3. Potential National Security Threats - Part 1 DISASTER SCENARIOS CRIME Example : product piracy, cyber attacks AMENDMENTS TO THE LAW Example : GDPR (2018) INFRASTRUCTURE ISSUES Example : power outages or network crashes NATURAL DISASTERS Example : earthquakes, floods RESOURCE CONSTRAINTS Example : loss of suppliers LOSSES DUE TO ACCIDENTS Examples : fire, machinery issues HEALTH-RELATED ISSUES Example : Flu season or any pandemics SOCIAL & POLITICAL UNREST Example : strikes, political upheavals, attacks
  • 4. Potential National Security Threats - Part 2 Storm Damage Theft or Robbery Power Outages Viral Outbreak Technical Failure Natural Disaster Cyber Attack Human Error Fire Accident Water Shortage Texas Power Outages Jackson, MS Water Shortage Colonial Pipeline Ransomware Attack Space Weaponization
  • 5. The Aim of Q-AI Learning - improvements in the deep learning training process! Decision Problems - based on Hamiltonian time evolution can solve problems faster than random walks! Search – most search algorithms are designed for classical computing Game Theory – can overcome critical problems in quantum communications and implementations of Q-AI! Open-Source modeling and training frameworks Substantial and skilled developer ecosystem Less error-prone and more powerful computing systems Compelling applications that outperforms classical computing Critical Milestones Enhanced Situational Awareness (ESA)
  • 6. Q-AI Plan of Attack ALGORITHM PROCESS PRIORITIZATION IN-MEMORY - IT INTEGRATION MANAGEMENT Risk Assessment DoD Impact Analysis Program Assessment Program Design Strategy Design Implementation Program Review Resilience program management Processes and activities Crisis teams Business resumption High availability Recovery Streamline IT infrastructure High availability design High availability servers Data replication Database and software design Maturity model Model ROI Create program roadmap Outage impact Risks, vulnerabilities, threats 1. People 2. Processes 3. Plans 4. Strategies 5. Networks 6. Platforms 7. Facilities Awareness, review, change management, regular briefings Current capabilities Expected recovery time
  • 7. Quantum Artificial Intelligence Management Q-AI Data Readiness Labeling data is a significant expense and bottleneck for Machine Learning and Natural Language Processing (NLP) development. Current approaches, such as manually labeling data through crowdsourcing and internal labeling efforts, carry significant drawbacks including high cost, extensive time and resource consumption, and low consistency and accuracy. Jaxon is a semi- supervised training platform that amplifies a small number of human- provided labels into full-scale training datasets and high-quality models for text-oriented machine learning applications. Jaxon brings together several open and proprietary techniques for effective sparse-data training. These techniques incorporate knowledge from large unlabeled corpora, human domain experts, and previously-trained models and machine learning assets in order to drastically reduce the demand for human labeling and annotation while improving model quality.
  • 8. Quantum Artificial Intelligence Management Q-AI Application Development With the growth of cloud computing, more ingenious cyberthreats, and the need for fast and easily changeable applications, agencies are realizing that the traditional method of application development does not serve their needs. For more agencies, the answer is microservices. This application development approach breaks applications into smaller components for development.
  • 9. Quantum Artificial Intelligence Management Q-AI Testing and Evaluation Testing & Evaluation (T&E) – There are so many things that can go wrong during data transportation: Data can be corrupted, hit bottlenecks causing latency, or data sources may conflict generating duplicate or incorrect data, eliminating duplicates and incompatible data types, to obfuscate sensitive information while not missing critical data.
  • 10. Preparing Quantum Datasets for Q-AI Preparing Q-AI Datasets 1 2 3 4 5 Processes, recovery times, resource requirements Threat analysis, risk exposure, threat scenarios Continuity, strategy, key resources, alternatives, service methods, and recovery methods Procedures Plan validation Convert Q-AI data to the quantum dataset Q-AI data can be represented as a multi- dimensional array of numbers which is called as quantum tensors. TensorFlow processes these tensors in order to represent, create a dataset for further use. 01 Choose Q-AI neural network models Based on the Q-AI data structure, Q-AI neural network models are selected. The aim is to perform Q-AI processing in order to extract information hidden in an entangled state. 02 Sample or Average Measurement of Q-AI states extract classical information in the form of samples from the classical distribution. The values are obtained from the Q-AI state itself. 03 Evaluate a classical neural networks model Since Q-AI data is now converted into classical data, deep learning techniques are used to learn the correlation between data. 04 Exercising & Testing Its main purpose is to validate the Q-AI continuity strategy, activities, assumptions regarding usefulness and security levels. 05 Continued Q-AI Maintenance Plan This phase maintain the Q-AI algorithms in a constant ready- state. The maintenance process of a Q-AI ecosystem is constant and dynamic. 06
  • 11. Q-AI Application Development Framework LEARN / OPTIMIZE UPDATE Q-AI before & after an events AGGREGATE / LABEL / OPTIMIZATION UTILIZE Train the Q-AI in a crisis or exercise EXPLORE / TRANSFORM / REALTIME STRUCTURE Decide on how to structure the Q-AI MOVE / STORE / COLLECT Q-AI PLAN Build ML template & get started Hierarchy of Needs KEY TO SUCCESS Q-AI
  • 12. GigaSpaces’s InsightEdge was designed to help enterprises seamlessly accelerate and scale their mission critical, time-sensitive applications and services. This distributed in-memory software platform can ingest, process and store large volumes of any data type, and ensures low latency performance dynamic scale across all environments. Customers leverage InsightEdge to power open banking initiatives, real time fraud and risk analysis, customer 360, analytics and BI on fresh data and more. The InsightEdge platform integrates to siloed operational data stores and to the enterprise’s systems of record with a single click (no-code connect), aggregating data in a low-latency data fabric. The dynamically scaling Data Integration Hub offloads API access from the enterprise’s data stores (on- premise and cloud) and delivers rapid application response times to internal and external customers no matter the load while ensuring always-on services. The ability to collocate business logic with data in memory and perform dynamic server-side aggregations, reduces the movement of data to the client and delivers extreme performance. Q-AI: IN-MEMORY SOLUTION
  • 15. Q-AI GigaSpaces: Cloud & Datacenter Integration
  • 17. Q-AI GigaSpaces: How To Run Microservices
  • 18. CASE STUDY: • Railway corporation runs predictive analytics on its fleet of trains in real-time BUSINESS CHALLENGE: • Trains location heatmap • Correlating fuel consumption, temperature, weather and road conditions • Bad weather alerts filter • Real-time enriched data with external data TECHNICAL CHALLENGE: • Improve train performance and reduce downtime with real-time visibility of 10Ks trains • Reduce maintenance costs by up to 75% per mile • Faster time to market of new online services RESULTS: TRANSPORTATION/ IOT Predictive Maintenance Reduce maintenance costs by up to 75% per mile Q-AI GigaSpaces: Example
  • 21. Q-AI Build Cycle ASSESSMENTS Development & implementation of test scenarios, staff training, Gap analysis ANALYSIS Identify, Risk assessment, Business impact analysis DEVELOP Strategy review & implementation, Plan development INTEGRATION Coordination with external organizations & companies MAINTENANCE Change management, Scheduling, Financial audit management PROJECT STARTS Project management & awareness, leadership, basic development
  • 22. Q-AI Model Development Flow ANALYZE DESIGN SOLUTIONS IMPLEMENT TEST AND ACCEPT Identify potential threats or risks, impacted business processes, warning and communication process Design or define addition solutions, strategy, documentation processes and supplier dependencies Initiate response checklist and relocation strategies of critical processes in the business disruption. Recovery time objectives, test critical processes, monitor primary and alternate facility details. Update key details and associated processes as deficiencies & inaccuracies are identified. MAINTAIN
  • 23. DEVELOP DATA INPUTS Determine the selection of alternative Data Strategies available for mitigate loss (testing scenarios). 02 03 05 01 04 IDENTIFY & ANALYZE Identifies all significant AI roles of risks, resources & all critical processes. IMPLEMENTATION PLANS Here you can develop plans which includes role allocation & responsibilities in case of crisis. DEFINE OBJECTIVES What are the AI objectives, defined value & cybersecurity requirements. BUILD TRAINING MODEL Testing helps to create awareness for execution in the event of any disaster or risk. 06 ESTABLISH BENCHMARKS It helps to create awareness among managers, employees and partners in company. Test & Evaluation
  • 24. Q-AI as a Component of Resilience Management CRISIS MANAGEMENT EMERGENCY PREPAREDNESS Impact Strategy Plan Training + Test Emergency Measures Emergency Operations Resume Normal Operations Q-AI
  • 25. Q-AI Cyber Risk Analysis Steps 01 IDENTIFY RISKS • Internal and external risks • Direct and indirect risks • Risks that can and cannot be managed 02 EVALUATE RISKS • Assess risk probability • Assess impact • Assigning and prioritizing risk 03 DESIGN POSSIBLE RISK SCENARIO • IT failure and network collapse • Building damage • Delivery bottlenecks • Loss of employees 04 SELECT RISK STRATEGIES • Acceptance • Transfer • Avoidance • Reduction
  • 26. Strategic Q-AI Framework Q-AI STRESS TESTING Define Identify Assess impact Design changes Execute changes Q-AI CONTINUITY MGMT. Test & maintain Project initiation Identify & impact Design measure Implement MODIFIES & CREATE VALUE SUSTAINS & PRESERVES VALUE

Editor's Notes

  • #19: CSX IOT, Geospatial, MIPS offloading, Route optimization, mainframe offload, dynamic cargo manifest Our product is used to manage core of CSX business (trains and tracks) Our product allow them to ingest high velocity of train data and faster computation to avoid delays, make better use of tracks by real-time geo-spacial queries. Optimized usage of trains and tracks by crunching real-time data and track usage. - This is a use case of predictive maintenance. CSX in realtime ingests 100,000's of sensor samples from different trains. - Each sensor has temperature, vibration, humidity, windspeed, etc. including GSP coordinates. - This data is enhanced with weather information. By combining the sensor data and the weather information they can correlate it to different types of alerts. - This allows them to predict failures before they happen and change the parts on demand reducing maintenance costs by up to 75% per mile. - They initially tried to do this with Apache Storm and Hadoop. They had a 5 minute window with a lot of false positives and inaccurate predictions. - Since they moved to GigaSpaces and to a real-time capability and are getting much higher accuracy of predictions. Speed: 100X performance boost, simulation time reduced from 45 minutes to a few seconds 24,000 miles of track in 23 states Additional Satisfaction: Prod Since 2014 Ingestion: 1000’s Intermodals / Day, 55k / week NBC: Network Basic Classing. Train Route Simulations.  CRIS: Customer Relations Applications: ↓Mainframe Costs NAS: Notification & Shipping. Container Customer UX Predictive Maintenance: ↓ Maintenance cost: 75% / mile. Sensor Data: temperature, vibration, humidity, windspeed, GPS... TrainSpace- Trip Plan Automation: 100% GigaSpaces Logic & Code Optimized Combination: Yard, Car, Intermodal, Destination, Schedule