SlideShare a Scribd company logo
GILLESANIA Engineering
Review & Training Center
September 2022
F2F Refresher
Week 4 ( PSAD )
Ref F2F Week 4 - Solution_unlocked.pdf
Next
1. Given the following data of the solid
circular pole shown:
  250 mm   0.45 kN
  3 m   100 mm
  3 kN
Weight of pole = 22 kg/m
Determine the maximum compressive
stress (MPa) at the base of the pole.
A. 0.954 B. 0.941
C. 0.806 D. 1.150
P
H
L
e
D
1. Given the following data of the solid
circular pole shown:
  250 mm   0.45 kN
  3 m   100 mm
  3 kN
Weight of pole = 22 kg/m
Determine the maximum compressive
stress (MPa) at the base of the pole.
A. 0.954 B. 0.941
C. 0.806 D. 1.150
P = 3
H=0.45
L=3
e=0.1
D=250
Wp
  22 9.81 3  647.46 N
  0.64746 kN
D=250
y
x


b
a
  3  0.64746  3.64746 kN
  0.45 3  3 0.1
  1.65 kN m
 !
 #  $

%
$

'(
 !
 $
3647.46
)
* 250 + $
1.65 10, 250/2
)
,* 250 *
 !
 $.. ./ 012
Next
2. Refer to the figure shown:
Given:  = 2 m
Bar diameter = 20 mm
Concrete cover, 3 = 65 mm
Length of extension bar, 4 = 80 mm
Radius of bend = 45#
’
= 20.7MPa; (
= 414 MPa
According to 412.6 of NSCP, Development
length 78 for deformed bars in tension
terminating in a standard hook shall not be
less than:
1.
(5#
4.17 
9
2. 8 5#
3. 150 mm
Determine the total length (m) of the bar.
A. 2.53 C. 2.87
B. 3.03 D. 3.36
a
L
b
Ldh
r
2. Refer to the figure shown:
Given:  = 2 m
Bar diameter = 20 mm
Concrete cover, 3 = 65 mm
Length of extension bar, 4 = 80 mm
Radius of bend = 45#

9
 20.7MPa; ( 414 MPa
According to 412.6 of NSCP, Development
length 78 for deformed bars in tension
terminating in a standard hook shall not be
less than:
1.
(5#
4.17 
9
2. 8 5#
3. 150 mm
Determine the total length (m) of the bar.
A. 2.53 C. 2.87
B. 3.03 D. 3.36
65
L = 2
b=80
Ldh
r=4db
db = 20mm

414 20
4.17 20.7
 436.4 mm
 8 20  160
← 78
;  4 20  80
x1
x2 x3
=  65  ;  +
+
 155
+  2000  1845
?  436.4
?  346.4
1845  346.4  2191.4
@; @;
4  80 4  80
#AB  2191.4  @ 80 2  2 80
#AB  2854 mm
$155
$ ;
 C. D/E F
Q2 C 46.08 14.81 28.94 9.68
$+
+
Ref F2F Week 4 - Solution_unlocked.pdf
Next
3. A 100-mm thick one-way slab is
reinforced with 12 mm bars spaced at
200 mm on centers. Given that 
9  20.7
MPa, (  275 MPa, compute the design
moment (kN-m) of the slab. Assume 20
mm concrete cover.
A. 10.82 C. 10.58
B. 11.75 D. 9.74
4  1000
ℎ

100
20
12‡ 5
5  100 $ 20 $ 12/2  74 mm
%#  )
* 12 +  113.1 mm+
%H 
1000%#
I
Consider 1 m slab width

1000 113.1
200
 565.5 mm+
Assuming steel yields:
3 
%H(
0.85
9
4

565.5 275
0.85 20.7 1000
3  8.838 mm
  3/J=  8.838/0.85
 10.4 mm ?
K
5  27.75 Tension controlled
L  M 5 $ 3/2  0.85
934 5 $ 3/2
 0.85 20.7 8.838 1000 74 $
8.838
2
L  10.82 kN m
NL  0.9 10.82  O. PQD RS F
T
Q3 D 21.01 18.68 35.53 23.23
Next
Situation 2 –
Dimensions:
3  4  5  0.4 m;   3.5 m
Footing width,   2 m
Effective depth = 500 mm
Uniform soil pressure
(from factored loads) = 196 kPa
Shear diagram:
 156.8 kN; U  761.2 kN;   -610.8 kN

9
 27.5 MPa; (  414 MPa
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
Shear = 0.75
7. Determine the required number of bars at
critical moment.
A. 10 B. 12 C. 11 D. 13
8. Determine the spacing of bars, in mm, at the
face of the column. Use 75 mm clear cover.
A. 90 B. 180 C. 95 D. 105
9. Determine the critical wide beam shear
stress, in MPa.
A. 1.02 B. 0.75 C. 0.81 D. 0.57
a b c d
W
column column
e
f
g
h
Situation 2 –
Dimensions:
3  4  5  0.4 m;   3.5 m
Footing width,   2 m
Effective depth = 500 mm
Uniform soil pressure
(from factored loads) = 196 kPa
Shear diagram:
 156.8 kN; U  761.2 kN;   -610.8 kN

9
 27.5 MPa; (  414 MPa
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
Shear = 0.75
0.4 0.4 3.5
2
column column
156.8
-610.8
761.2
h
0.4
wu
Solving for wu:
$610.8  VW 3.5  761.2
VW  392 kN/m
OR: 0  VW 0.4  156.8
VW  392 kN/m
OR: VW  XW 
VW  196 2  392 kN/m
Situation 2 –
Effective depth = 500 mm
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
Shear = 0.75
9. Determine the critical wide beam shear
stress, in MPa.
A. 1.02 B. 0.75 C. 0.81 D. 0.57
0.4 0.4 3.5
2
column column
156.8
-610.8
761.2
h
0.4
wu
VW  392 kN/m
deff=0.5
Y
W
Y
W  761.2 $ VW5
 761.2 $ 392 0.5
Y
W  565.2 kN
ZW[ 
Y
W
4[5
4
[

2000
mm
ZW[ 
565,200
2000 500
5  500 mm
ZW[  ]. /^/ 012
Q9 D 30.3 24.69 30.11 13.94
Situation 2 –
Effective depth = 500 mm
0.4 0.4 3.5
2
column column
156.8
-610.8
761.2
h
0.4
wu
VW  392 kN/m
4
[

2000
mm
5  500 mm
4  2000 mm
156.8
-610.8
761.2
0.4
x

156.8

0.4
156.8  610.8
  0.0817 m
0.4
A1
%=  =
+
0.4  0.0817 156.8
%=  37.765 kN m
0.4+x
156.8
-610.8
0.4-x=0.3183
A2
%+ 
=
+
0.3183 $610.8
%+  $97.21 kN m
610.8/VW
1.558
3.5 $ 1.558
 1.942
A3
A4
%? 
=
+ 1.558 $610.8  $475.81 kN m
%* 
=
+
1.942 761.2
%*  739.13 kN m
Situation 2 –
Effective depth = 500 mm
0.4 0.4 3.5
2
column column
0.4
VW  392 kN/m
4
[

2000
mm
5  500 mm
4  2000 mm
A1
%=  37.765 kN m
A2
%+  $97.21 kN m
A3
A4
%? 
 $475.81 kN m
%*  739.13 kN m
=
+
?
=  %=  QP. P^/ RS F
+  %=  %+  %?
 $/Q/. C^ RS F
?  +  %*  C]Q. DP RS F
Situation 2 – 
9
 27.5 MPa; (  414 MPa
Effective depth = 500 mm
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
7. Determine the required number of bars at
critical moment.
A. 10 B. 12 C. 11 D. 13
8. Determine the spacing of bars, in mm, at the
face of the column. Use 75 mm clear cover.
A. 90 B. 180 C. 95 D. 105
0.4 0.4 3.5
2
column column
0.4
5  500 mm
4  2000 mm
=
+
?
 $/Q/. C^ RS F
 C]Q. DP RS F
At critical moment:
W  +  535.26 kN m
_L 
W
N45+ 
535.26 10,
0.9 2000 500 +
 1.189 MPa
c 
0.85
9
(
1 $ 1 $
2_L
0.85
9
c  0.00295 cdeL  1.4/(  0.00338 ◄Use this
%H 
 QP. P^/ RS F
c45  0.00338 2000 500
%H  3380 mm+
f+ 
3380
)
* 20 +  10.75 use 11
Q7 C 15.88 42.88 28.94 11.42
Situation 2 – 
9
 27.5 MPa; (  414 MPa
Effective depth = 500 mm
Main bar diameter = 20 mm
Reduction factors: Moment = 0.90
8. Determine the spacing of bars, in mm, at the
face of the column. Use 75 mm clear cover.
A. 90 B. 180 C. 95 D. 105
0.4 0.4 3.5
2
column column
0.4
5  500 mm
4  2000 mm
=
+
?
 $/Q/. C^ RS F
 C]Q. DP RS F
cdeL  1.4/(  0.00338
 QP. P^/ RS F
%H  3380 mm+
f+ 
3380
)
* 20 +  10.75 use 11
75 75
20‡
2000
2000 $2 75 $20  1830 mm
gh3ijU, I 
1830
11 $ 1
 .DQ FF
Q8 B 21.49 18.97 28.56 30.01
Next
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
10. Compute the value of the maximum
ordinate of influence diagram of
member lm.
A. 1.5 C. 0.75
B. 0.5 D. 1.00
11. Compute the axial load in member lm
(kN) due to a standard wheel base 4.3
m apart, front wheel load = 72.4 kN
and rear wheel load = 19.6 kN.
A. 63.25 C C. 81.47 C
B. 63.25 T D. 81.47 T
12. Compute the axial load in member lm
(kN) due to a uniform moving load of
9.35 kN/m.
A. 74.8 C C. 52.6 T
B. 74.8 T D. 52.6 C
P
A
B C D
E
F G H I
J K
k k
s s s s
L
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
10. Compute the value of the maximum
ordinate of influence diagram of
member lm.
A. 1.5 C. 0.75
B. 0.5 D. 1.00
11. Compute the axial load in member lm
(kN) due to a standard wheel base 4.3
m apart, front wheel load = 72.4 kN
and rear wheel load = 19.6 kN.
A. 63.25 C C. 81.47 C
B. 63.25 TC D. 81.47 T
12. Compute the axial load in member lm
(kN) due to a uniform moving load of
9.35 kN/m.
A. 74.8 C C. 52.6 T
B. 74.8 T D. 52.6 C
A
B C D
E
F G H I
J K
k  45° k
4 4 4 4
8
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
10. Compute the value of the maximum
ordinate of influence diagram of
member lm.
A. 1.5 C. 0.75
B. 0.5 D. 1.00
A
B C D
E
F G H I
J K
k  45° k
4 4 4 4
8
h
FJK
a = 8 b = 8
L = 16
ℎ  4 tan 45°  4 m
q
q 
34


8 8
16
 4
r  $
q
ℎ
 $
4
4
 $.
Influence line for FJK:
Q10 D 13.17 23.81 22.75 39.59
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
11. Compute the axial load in member lm
(kN) due to a standard wheel base 4.3
m apart, front wheel load = 72.4 kN
and rear wheel load = 19.6 kN.
A. 63.25 C C. 81.47 C
B. 63.25 T D. 81.47 T
r  $1
Influence line for FJK:
A
B C D
E
F G H I
J K
k k
4 4 4 4
L
72.4 19.6
4.3
3.7
r=
r=
3.7

$1
8
r=  $0.4625
stu !
 72.4 $1  19.6 $0.4625
stu !
 D.. E^/ RS v
Q11 C 28.07 11.23 43.56 16.17
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
12. Compute the axial load in member lm
(kN) due to a uniform moving load of
9.35 kN/m.
A. 74.8 C C. 52.6 T
B. 74.8 T D. 52.6 C
r  $1
Influence line for FJK:
A
B C D
E
F G H I
J K
k k
4 4 4 4
L
w = 9.35 kN/m
Situation 3 - The bridge truss shown in
the figure is subjected to moving
loads,   8 m, I  4 m,   0 kN,
k 45°.
12. Compute the axial load in member lm
(kN) due to a uniform moving load of
9.35 kN/m.
A. 74.8 C C. 52.6 T
B. 74.8 T D. 52.6 C
r  $1
Influence line for FJK:
A
B C D
E
F G H I
J K
k k
4 4 4 4
L
w = 9.35 kN/m
% 
1
2
16 $1  $D
stu !
 V%  9.35 $8
 PE. D RS v
Q12 A 43.08 21.59 15.68 18.78
Next
Situation 6 - The pile footing supports a
column, 600 mm 600 mm at the center.
The piles are precast concrete with 350
mm 350 mm dimension. Given:
Net load on the footing at Ultimate
Condition:
W  2700 kN; Ww 108 kN-m
W(  165 kN-m
Effective depth of the footing = 400 mm
Dimensions: 3  0.6 m   1.2 m
4  1 m 5  0.6 m
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
19. Determine the critical punching shear
stress (MPa) of one pile due to axial load.
A. 0.54 B. 0.68 C. 0.25 D. 0.33
20. Determine the punching shear stress (MPa)
of the column due to axial load.
A. 1.5 B. 2.0 C. 2.5 D. 3.0
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5
x
y
a
b
b
a
d d
c
c
Situation 6 - The pile footing supports a
column, 600 mm 600 mm at the center.
The piles are precast concrete with 350
mm 350 mm dimension. Given:
Net load on the footing at Ultimate
Condition:
W  2700 kN; Ww 108 kN-m
W(  165 kN-m
Effective depth of the footing = 400 mm
Dimensions: 3  0.6 m   1.2 m
4  1 m 5  0.6 m
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
19. Determine the critical punching shear
stress (MPa) of one pile due to axial load.
A. 0.54 B. 0.68 C. 0.25 D. 0.33
20. Determine the punching shear stress (MPa)
of the column due to axial load.
A. 1.5 B. 2.0 C. 2.5 D. 3.0
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5
x
y
0.6
0.6
1
1
0.6
1.2 1.2
0.6
Pu = 2700
Part 1: due to axial load only
_ 
W
f

2700
9
 300 kN
350+400
350+400
 Y
W
ZW 
Y
W
4x5

300,000
4 750 400
 ]. C/ 012
Q19 C 23.52 20.81 20.81 33.88
Situation 6 - The pile footing supports a
column, 600 mm 600 mm at the center.
The piles are precast concrete with 350
mm 350 mm dimension. Given:
Net load on the footing at Ultimate
Condition:
W  2700 kN; Ww 108 kN-m
W(  165 kN-m
Effective depth of the footing = 400 mm
Dimensions: 3  0.6 m   1.2 m
4  1 m 5  0.6 m
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
19. Determine the critical punching shear
stress (MPa) of one pile due to axial load.
A. 0.54 B. 0.68 C. 0.25 D. 0.33
20. Determine the punching shear stress (MPa)
of the column due to axial load.
A. 1.5 B. 2.0 C. 2.5 D. 3.0
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5
x
y
0.6
0.6
1
1
0.6
1.2 1.2
0.6
Pu = 2700
Part 2: due to axial load only
600+400
600+400
_ 
 300 kN
ZW 
Y
W
4x5

2,400,000
4 1000 400
 .. / 012
Y
W  W $ _  2700 $ 300  2400 kN
Q20 A 24.1 33.3 28.36 13.36
Situation 6 –
Effective depth of the footing = 400 mm
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5 x
y
0.6
0.6
1
1
0.6
1.2 1.2
0.6
Pu = 2700
Mux = 108
Muy = 165
A
B
C
D
E
F
G
H
I
350+400
350+400
_ 
W
f
y
Wwz
Σz+ y
W(
Σ+
_ | 
2700
9

108 1
1 + 6

165 1.2
1.2 + 6
_ |  340.92 kN  Y
W
ZW 
Y
W
4x5

340,920
4 750 400
 ]. CDE 012
On the heavily loaded pile:
Situation 6 –
Effective depth of the footing = 400 mm
Strength Reduction Factor
For shear = 0.75; For moment = 0.90
21. Determine the critical punching shear
stress (MPa) due to axial and moment
loads of the pile cap.
A. 2.0 B. 3.0 C. 1.5 D. 2.5 x
y
0.6
0.6
1
1
0.6
1.2 1.2
0.6
Pu = 2700
Mux = 108
Muy = 165
A
B
C
D
E
F
G
H
I
ZW 
 ]. CDE 012
On the heavily loaded pile:
On the column:
_ } 
2700
9
 0  0  300 kN
600+400
600+400
ZW 
Y
W
4x5

2,400,000
4 1000 400
 .. / 012
Y
W  W $ _ }  2700 $ 300  2400 kN
_ 
W
f
y
Wwz
Σz+ y
W(
Σ+
  0; z  0
Q21 C 22.75 25.17 24.2 26.91
Next
Situation 8 – For the rectangular tied column
shown in the figure.
Given:

9
 27.5 MPa mL  0.80
(  414 MPa _L  0.205
Reinforcement steel ratio, c  0.05
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
25. How many 20 mm diameter bars are
required for the rectangular tied column?
A. 40 B. 36 C. 30 D. 28
26. What is the maximum nominal axial load
L (kN) that the column could carry?
A. 7542 B. 5354 C. 8238 D. 9236
27. If reinforcement steel ratio, c  0.03,
what is the required length (mm) of the
long side of the column?
A. 620 B. 700 C. 650 D. 670
Situation 8 – For the rectangular tied column
shown in the figure.
Given:

9
 27.5 MPa mL  0.80
(  414 MPa _L  0.205
Reinforcement steel ratio, c  0.05
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
25. How many 20 mm diameter bars are
required for the rectangular tied column?
A. 40 B. 36 C. 30 D. 28
%  600 400  240,000 mm+
%H  c%  0.05 240,000
%H  12,000 mm+
f+ 
12000
)
*
20 +  38.2 Use 40
Q25 A 27.98 24.1 20.72 26.23
Situation 8 – For the rectangular tied column
shown in the figure.
Given:

9
 27.5 MPa mL  0.80
(  414 MPa _L  0.205
Reinforcement steel ratio, c  0.05
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
26. What is the maximum nominal axial load
L (kN) that the column could carry?
A. 7542 B. 5354 C. 8238 D. 9236
%  600 400  240,000 mm+
x  0.85
9 % $ %H (%H
x  0.85 27.5 240,000 $ 12,000
%H  12,000 mm+
 414 12,000
x 
L  0.8x  D, CQD RS
10,297,500 N  10,297.5 kN
Q26 C 24.1 35.14 29.53 9.97
Situation 8 –
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
27. If reinforcement steel ratio, c  0.03,
what is the required length (mm) of the
long side of the column?
A. 620 B. 700 C. 650 D. 670
%  240,000 mm+
ℎ  400 mm c  0.03
L  mL
9%  0.8 27.5 240,000
L  5280 kN
L  L  _L
9%ℎ
 0.205 27.5 240000 400
mL  0.8 _L  0.205
L  541.2 kN m
€  ]. D
‚  ]. C]/
€  ]. PC
% 
L
mL
9 
5,280,000
0.72 27.5
 266,667 mm+
%  4ℎ  4 400  266,667 mm+
4  ^^^. P FF Q27 D 19.17 25.75 31.46 22.17
Situation 8 –
Dimensions (4 ℎ) = 600 mm x 400 mm
Strength reduction factor = 0.65
27. If reinforcement steel ratio, c  0.03,
what is the required length (mm) of the
long side of the column?
A. 620 B. 700 C. 650 D. 670
ℎ  400 mm
c  0.03
€  ]. D
‚  ]. C]/
€  ]. PC
% 
 266,667 mm+
4  ^^^. P FF
‚


].
.D/
L  5280 kN L  541.2 kN m
L  L  _L
9
%ℎ
L  0.185 27.5 266,667 400
L  /EC. P RS F
Next
Situation 4 – The beam ƒM shown is
supported by a quarter-circular arc %M
having a radius of 4 m. The frame is pin-
supported at %, ƒ and M. The pins at % and
ƒ are in single shear while the pin at M is
in double shear. Allowable shear stress of
the pin is 112 MPa. V  3 kN/m.
13. Determine the minimum diameter (mm)
of the pin at ƒ.
A. 10 B. 12 C. 8 D. 6
14. Determine the minimum diameter (mm)
of the pin at M.
A. 8 B. 6 C. 12 D. 10
15. Determine the resultant reaction (kN) at
%.
A. 12 B. 8.49 C. 9.36 D. 6
A
B
C
w
R
Situation 4 – The beam ƒM shown is
supported by a quarter-circular arc %M
having a radius of 4 m. The frame is pin-
supported at %, ƒ and M. The pins at % and
ƒ are in single shear while the pin at M is
in double shear. Allowable shear stress of
the pin is 112 MPa. V  3 kN/m.
A
B
C
w = 3 kN/m
4 m
4
m
Av
Ah
Bh
Bv
Σ„  0
3 4 4/2 $ %8 4  0
%8  6 kN
Σs8  0
ƒ8  %8  6 kN
6
6
Situation 4 – The beam ƒM shown is
supported by a quarter-circular arc %M
having a radius of 4 m. The frame is pin-
supported at %, ƒ and M. The pins at % and
ƒ are in single shear while the pin at M is
in double shear. Allowable shear stress of
the pin is 112 MPa. V  3 kN/m.
13. Determine the minimum diameter (mm)
of the pin at ƒ.
A. 10 B. 12 C. 8 D. 6
14. Determine the minimum diameter (mm)
of the pin at M.
A. 8 B. 6 C. 12 D. 10
15. Determine the resultant reaction (kN) at
%.
A. 12 B. 8.49 C. 9.36 D. 6
A
B C
w = 3 kN/m
4 m
Av
Ah
Bh
Bv
6
6
Cv
Ch
C
Cv
Ch
In beam BC:
3 4 4/2
Σ„  0 $ M 4  0
M  6 kN
Σs8  0 M8  ƒ8  6 kN
6
6
 ƒ
6
6
6
6
_„  6+  6+
_„  8.48 kN
_|  _q  _„  8.48 kN
Diameter of pin @ B (single shear):
 
_„
% eL
† 112 MPa
% eLdeL

8480
112
 75.71 mm+
)
*
5 eL
+
 75.71
5 eLdeL
 9.82 mm
use 10 mm
Q13 A 40.17 21.88 26.23 11.13
Q15 B 17.23 39.79 17.23 25.07
Situation 4 – The beam ƒM shown is
supported by a quarter-circular arc %M
having a radius of 4 m. The frame is pin-
supported at %, ƒ and M. The pins at % and
ƒ are in single shear while the pin at M is
in double shear. Allowable shear stress of
the pin is 112 MPa. V  3 kN/m.
14. Determine the minimum diameter (mm)
of the pin at M.
A. 8 B. 6 C. 12 D. 10
15. Determine the resultant reaction (kN) at
%.
A. 12 B. 8.49 C. 9.36 D. 6
A
B C
w = 3 kN/m
4 m
Av
Ah
Bh
Bv
6
6
Cv
Ch
C
Cv
Ch
6
6
6
6
6
6
_„  6+  6+
_„  8.48 kN
_|  _q  _„  8.48 kN
Diameter of pin @ C (double shear):
 
_
2% eL
† 112 MPa
% eLdeL

8480
112 2
 37.9 mm+
)
*
5 eL
+
 37.9 5 eLdeL
 6.9 mm use 8 mm
Q14 A 29.82 31.56 18.59 19.55
Next
Situation 7 – A flag pole is supported by tension
wires %ƒ, %M and % to resist an uplift force
of 185 N acting on the axis of the pole. In
this problem, 3  3 m, 4  4 m and ℎ  12
m.
22. Calculate the tension (kN) in wire %ƒ.
A. 82.46 C. 47.43
B. 65.00 D. 58.42
23. Calculate the tension (kN) in wire %M.
A. 58.42 C. 65.00
B. 47.43 D. 82.46
24. Calculate the tension (kN) in wire %.
A. 47.43 C. 58.42
B. 82.46 D. 65.00
z

‡
%
ƒ

M
3
4
3
4
Situation 7 – A flag pole is supported by tension
wires %ƒ, %M and % to resist an uplift force
of 185 N acting on the axis of the pole. In
this problem, 3  3 m, 4  4 m and ℎ  12
m.
22. Calculate the tension (kN) in wire %ƒ.
A. 82.46 C. 47.43
B. 65.00 D. 58.42
23. Calculate the tension (kN) in wire %M.
A. 58.42 C. 65.00
B. 47.43 D. 82.46
24. Calculate the tension (kN) in wire %.
A. 47.43 C. 58.42
B. 82.46 D. 65.00
z

‡
%
ƒ

M
3
4
3
4
12
Situation 7 – A flag pole is supported by tension
wires %ƒ, %M and % to resist an uplift force
of 185 N acting on the axis of the pole. In
this problem, 3  3 m, 4  4 m and ℎ  12
m.
z

‡
%
ƒ

M
3
4
3
4
  185 f
ˆ„
ˆq
ˆ‰
%ƒ 
Using matrix:
3i  0Š 12
$ 12‹ %ƒ  153
%M  $4i  3Š $ 12‹ %M  13
%  0i $ 4Š $ 12‹ %  160
3Œ% 
?
=?

=?
Ž=+
=?
Ž*
=?
?
=?
Ž=+
=?

=,
Ž*
=,
Ž=+
=,
3Œƒ 
0
0
185
$Trn Inv MatA MatB
ˆ„  82.462 kN
ˆq  65 kN
ˆ‰  47.43 kN
Situation 7 – A flag pole is supported by tension
wires %ƒ, %M and % to resist an uplift force
of 185 N acting on the axis of the pole. In
this problem, 3  3 m, 4  4 m and ℎ  12
m.
22. Calculate the tension (kN) in wire %ƒ.
A. 82.46 C. 47.43
B. 65.00 D. 58.42
23. Calculate the tension (kN) in wire %M.
A. 58.42 C. 65.00
B. 47.43 D. 82.46
24. Calculate the tension (kN) in wire %.
A. 47.43 C. 58.42
B. 82.46 D. 65.00
z

‡
%
ƒ

M
3
4
3
4
  185 f
ˆ„
ˆq
ˆ‰
12
$Trn Inv MatA MatB
ˆ„  82.462 kN
ˆq  65 kN
ˆq  47.43 kN
Q22 A 30.69 25.27 26.72 16.46
Q23 C 23.62 24.88 33.01 17.62
Q24 A 34.17 19.75 24.98 20.33
Next
Situation 9 – Refer to the Figure shown.
Given:
ℎ=  125 mm; ℎ+  475 mm;   60 mm
Clear concrete cover = 40 mm
Tension bars, %H  8 – 28 mm diameter
Compression bars, %H
9
 4 – 28 mm diameter
Stirrups = 12 mm diameter
Concrete 28-day compressive strength = 28 MPa
Steel strength, (8  275 MPa
Reduction factor for shear = 0.75
28. What is minimum beam width “4” (mm) based on
spacing and concrete cover according to NSCP.
A. 300 B. 320 C. 280 D. 340
29. Given: Factored shear, Y
W  480 kN
Spacing of 4 legs of stirrups = 160 mm
How much is the minimum beam width “4” (mm)?
A. 350 B. 600 C. 550 D. 500
30. Given: Factored shear, Y
W  480 kN
Spacing of 2 legs of stirrups = 70 mm
How much is the minimum beam width “4” (mm)?
A. 400 B. 450 C. 375 D. 425
h1
h2
c
b
Situation 9 – Refer to the Figure shown.
Given:
ℎ=  125 mm; ℎ+  475 mm;   60 mm
Clear concrete cover = 40 mm
Tension bars, %H  8 – 28 mm diameter
Compression bars, %H
9
 4 – 28 mm diameter
Stirrups = 12 mm diameter
Concrete 28-day compressive strength = 28 MPa
Steel strength, (8  275 MPa
Reduction factor for shear = 0.75
28. What is minimum beam width “4” (mm) based on
spacing and concrete cover according to NSCP.
A. 300 B. 320 C. 280 D. 340
125
475
60
bw
40
40
40
40
x
  largest of 5#, 25 mm and *
?5A
  28 mm
4[ œ
 40 2  12 2
←12‡
5#  28 mm
 28 4  28 3
4[ œ
 Q]] FF
Q28 A 45.5 23.52 18.97 11.23
Situation 9 – Refer to the Figure shown.
Stirrups = 12 mm diameter
Concrete 28-day compressive strength = 28 MPa
Steel strength, (8  275 MPa
Reduction factor for shear = 0.75
29. Given: Factored shear, Y
W  480 kN
Spacing of 4 legs of stirrups = 160 mm
How much is the minimum beam width “4” (mm)?
A. 350 B. 600 C. 550 D. 500
125
475
60
bw
40
40
40
40
←12‡
d
5  125  475 $ 40  12  28/2  60/2
5  504 mm
%  4 )
* 12 +  452.4 mm+
Y
H 
% (5
I

452.4 275 504
160
 391.89 kN
Y
L  Y
W/N  480/0.75  640 kN
Y
  Y
L $ Y
H  640 $ 391.89  248.11 kN
Y
  0.17 
9
4[5
4[deL

ž 248.11 kN
248,110
0.17 28 504
4[deL
 /EP. Q FF
Q29 C 19.36 15.68 46.37 17.81
Situation 9 – Refer to the Figure shown.
Stirrups = 12 mm diameter
Concrete 28-day compressive strength = 28 MPa
Steel strength, (8  275 MPa
Reduction factor for shear = 0.75
30. Given: Factored shear, Y
W  480 kN
Spacing of 2 legs of stirrups = 70 mm
How much is the minimum beam width “4” (mm)?
A. 400 B. 450 C. 375 D. 425
125
475
60
bw
40
40
40
40
←12‡
d
5  504 mm
%  2 )
*
12 +  226.2 mm+
Y
H 
% (5
I

226.2 275 504
70
 447.88 kN
Y
L  Y
W/N  480/0.75  640 kN
Y
  Y
L $ Y
H  640 $ 447.88  192.12 kN
Y
  0.17 
9
4[5
4[deL

ž 192.12 kN
192,120
0.17 28 504
4[deL
 ECE FF
Q30 D 13.94 15.3 27.98 41.63
Next
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
4. Determine the axial force (kN) in
member '.
A. 4 T C. 6 T
B. 4 C D. 6 C
5. Determine the axial force (kN) in
member lŸ.
A. 3.35 T C. 7.83 C
B. 3.35 C D. 7.83 T
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P P P P P
s s s s s s
h
A
B C D E F
G
H I J
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
4. Determine the axial force (kN) in
member '.
A. 4 T C. 6 T
B. 4 C D. 6 C
5. Determine the axial force (kN) in
member lŸ.
A. 3.35 T C. 7.83 C
B. 3.35 C D. 7.83 T
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P P P P P
s s s s s s
h
A
B C D E F
G
H I J
R=2.5P R=2.5P
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
4. Determine the axial force (kN) in
member '.
A. 4 T C. 6 T
B. 4 C D. 6 C
5. Determine the axial force (kN) in
member lŸ.
A. 3.35 T C. 7.83 C
B. 3.35 C D. 7.83 T
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P P P P P
s s s s s s
h
A
B C D E F
G
H I J
R=2.5P R=2.5P
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
4. Determine the axial force (kN) in
member '.
A. 4 T C. 6 T
B. 4 C D. 6 C
5. Determine the axial force (kN) in
member lŸ.
A. 3.35 T C. 7.83 C
B. 3.35 C D. 7.83 T
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P=2
s s=3 s
h=6
D E F
G
I J
R=2.5P=5
FIJ = FHI
FJE
FEF
k
k
tan k  6/3 k  63.43°
Σs  0
st} sin 63.43°  2 $ 5  0
st}  Q. Q/ RS T
Σ}  0
s¡t 6  2 3 $ 5 6  0
s¡t  E RS C  s¡¢
Q4 B 13.07 60.41 13.17 13.17
Q5 A 55.37 19.46 11.71 13.26
Situation 1 – Refer to the truss shown:
Given: I = 3 m; ℎ = 6 m;  = 2 kN
6. Determine the axial force (kN) in
member 'Ÿ.
A. 12.3 C C. 1.12 T
B. 12.3 T D. 1.12 C
P P P P P=2
s s s s s s
h
A
B C D E F
G
H I J
R=2.5P R=5
2 2
s s=3
6
D E F
G
I J
R=5
k
FIE
Σs  0
s¡} sin 63.43°
k  63.43°
k
 2  2 $ 5  0
s¡}  .. ..D RS C
Q6 D 10.45 16.46 27.59 45.11
Next
Situation 5 - A man weighing 1.2 kN walks
through a log of wood 250 mm in
diameter and simply supported at a
length of 3 m.
16. What is the maximum shear (kN)?
A. 0.6 B. 0.8 C. 1.2 D. 1.8
17. What is the maximum moment (kN-m)?
A. 1.5 B. 0.8 C. 1.2 D. 0.9
18. If the log is replaced with 300 mm wide
by 100 mm thick section of wood, what
is the maximum weight of a man can
walk through the log if the allowable
flexural stress, s#  4.2 MPa?
A. 4.1 B. 2.4 C. 2.8 D. 3.2
P = 1.2 kN
L = 3
D=250
A B
Maximum shear
Situation 5 - A man weighing 1.2 kN walks
through a log of wood 250 mm in
diameter and simply supported at a
length of 3 m.
16. What is the maximum shear (kN)?
A. 0.6 B. 0.8 C. 1.2 D. 1.8
17. What is the maximum moment (kN-m)?
A. 1.5 B. 0.8 C. 1.2 D. 0.9
18. If the log is replaced with 300 mm wide
by 100 mm thick section of wood, what
is the maximum weight of a man can
walk through the log if the allowable
flexural stress, s#  4.2 MPa?
A. 4.1 B. 2.4 C. 2.8 D. 3.2
P = 1.2 kN
L = 3
D=250
A B
Maximum shear
Y
dAw   .. C RS
Maximum moment:
L/2 L/2
dAw 

4

 ]. O RS F
Q16 C 28.75 6.97 50.24 13.75
Q17 D 10.45 9.78 14.62 64.76
Situation 5 - A man weighing 1.2 kN walks
through a log of wood 250 mm in
diameter and simply supported at a
length of 3 m.
16. What is the maximum shear (kN)?
A. 0.6 B. 0.8 C. 1.2 D. 1.8
17. What is the maximum moment (kN-m)?
A. 1.5 B. 0.8 C. 1.2 D. 0.9
18. If the log is replaced with 300 mm wide
by 100 mm thick section of wood, what
is the maximum weight of a man can
walk through the log if the allowable
flexural stress, s#  4.2 MPa?
A. 4.1 B. 2.4 C. 2.8 D. 3.2
L = 3
D=250
A B
Maximum shear
Y
dAw   .. C RS
Maximum moment:
P
L/2 L/2
dAw 

4

 ]. O RS F
Part 3:
4  300
5  100
# 
6
45+ † 4.2
dAw 
4.2 300 100 +
6
 2,100,000 N mm
dAw  2.1 kN m
de7 

4
† 2.1 kN m
dAw 
4 2.1
3
 C. D RS
Q18 C 14.71 21.3 44.05 19.07
Next
Situation 10 - Refer to the figure
shown.
The stresses in a bar subjected to
uniaxial stress is plotted as shown.
Given, 3  40 MPa.
31. Determine the maximum normal
stress (MPa).
A. 50 C. 80
B. 60 D. 40
32. Determine the maximum shear
stress (MPa).
A. 40 C. 60
B. 20 D. 80
33. What angle does the maximum
shear stress occur from the origin.
A. 90° C. 60°
B. 30° D. 45°
£
¤
a a

z

z
40
40
Maximum normal stress:
£dAw  80 MPa
Maximum shear stress:
¤dAw
¤dAw  40 MPa
£dAw
90°
45°
z
z
Q31 C 2.03 3.39 73.86 20.23
Q32 A 77.06 3.1 6.49 12.97
Q33 D 33.98 3.48 4.74 57.5
???

More Related Content

PDF
Steel Design 6th Edition Segui Solutions Manual
PDF
PDF
Moment Distribution Method
PDF
Solution of Chapter- 05 - stresses in beam - Strength of Materials by Singer
PPT
Simple stress
PDF
Sasoli1
PDF
Chapter 2-analysis of statically determinate structures
PDF
01 01 chapgere[1]
Steel Design 6th Edition Segui Solutions Manual
Moment Distribution Method
Solution of Chapter- 05 - stresses in beam - Strength of Materials by Singer
Simple stress
Sasoli1
Chapter 2-analysis of statically determinate structures
01 01 chapgere[1]

What's hot (20)

DOCX
Friction full
PPTX
Geotech2.pptx
PDF
Flexural design of beam...PRC-I
PDF
Chapter 5-cables and arches
PDF
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
PDF
Horizontal curves pdf
PDF
Homework 1 (solution )
PDF
Chapter 07 in som
DOC
Examples on stress distribution
PPT
Geo Technical Engineering (computing lateral earth pressure)
PDF
Design for flexure and shear (rectangular & square section)
PDF
Specific Gravity & Absorption of Aggregate (Coarse & Fine) | Jameel Academy
PPTX
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
DOC
Examples on total consolidation
PDF
Problems on piles and deep footing
PPTX
Simple and Compound Interest
PDF
Simple Stress: Normal Stress
PDF
Ge 105 lecture 3 (LEVELING ADJUSTMENT) by: Broddett B. Abatayo
PDF
6161103 3.4 three dimensional force systems
Friction full
Geotech2.pptx
Flexural design of beam...PRC-I
Chapter 5-cables and arches
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Horizontal curves pdf
Homework 1 (solution )
Chapter 07 in som
Examples on stress distribution
Geo Technical Engineering (computing lateral earth pressure)
Design for flexure and shear (rectangular & square section)
Specific Gravity & Absorption of Aggregate (Coarse & Fine) | Jameel Academy
Numerical Problem and solution on Bearing Capacity ( Terzaghi and Meyerhof T...
Examples on total consolidation
Problems on piles and deep footing
Simple and Compound Interest
Simple Stress: Normal Stress
Ge 105 lecture 3 (LEVELING ADJUSTMENT) by: Broddett B. Abatayo
6161103 3.4 three dimensional force systems
Ad

Similar to Ref F2F Week 4 - Solution_unlocked.pdf (20)

DOC
10346 07 08 examination paper
PDF
Possible solution struct_hub_design assessment
PDF
Mechanics of solids 1 lecture-1
PPSX
4 transvere shear-asgn
PDF
Chapter02.pdf
PDF
Chapter02.pdf
PDF
Chapter02.pdf
PDF
STRENGTH OF MATERIALS SOLUTION MANUAL-6.pdf
DOC
New grid design
PDF
Footing design
PDF
Assignment 3
DOCX
Design of isolated footing by ACI code
PPTX
column subjected to bending_numerical.pptx
PDF
SOM-U-4-Combined-Notes.pdf engineering f
PDF
Formulas for RCC.pdf
PDF
تصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdf
PDF
Lecture 05 som 27.02.2021
PPTX
Strength example 1 5
PDF
Engineering Vibration 4th Edition Inman Solutions Manual
10346 07 08 examination paper
Possible solution struct_hub_design assessment
Mechanics of solids 1 lecture-1
4 transvere shear-asgn
Chapter02.pdf
Chapter02.pdf
Chapter02.pdf
STRENGTH OF MATERIALS SOLUTION MANUAL-6.pdf
New grid design
Footing design
Assignment 3
Design of isolated footing by ACI code
column subjected to bending_numerical.pptx
SOM-U-4-Combined-Notes.pdf engineering f
Formulas for RCC.pdf
تصميم المنشآت المعنديه - د-سعد الدين مصطفي.pdf
Lecture 05 som 27.02.2021
Strength example 1 5
Engineering Vibration 4th Edition Inman Solutions Manual
Ad

Recently uploaded (20)

PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Strings in CPP - Strings in C++ are sequences of characters used to store and...
PDF
Digital Logic Computer Design lecture notes
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
OOP with Java - Java Introduction (Basics)
PDF
composite construction of structures.pdf
PPTX
web development for engineering and engineering
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
Well-logging-methods_new................
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPT
Mechanical Engineering MATERIALS Selection
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Strings in CPP - Strings in C++ are sequences of characters used to store and...
Digital Logic Computer Design lecture notes
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
OOP with Java - Java Introduction (Basics)
composite construction of structures.pdf
web development for engineering and engineering
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
CYBER-CRIMES AND SECURITY A guide to understanding
Foundation to blockchain - A guide to Blockchain Tech
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
Well-logging-methods_new................
bas. eng. economics group 4 presentation 1.pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Mechanical Engineering MATERIALS Selection
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx

Ref F2F Week 4 - Solution_unlocked.pdf

  • 1. GILLESANIA Engineering Review & Training Center September 2022 F2F Refresher Week 4 ( PSAD )
  • 4. 1. Given the following data of the solid circular pole shown: 250 mm 0.45 kN 3 m 100 mm 3 kN Weight of pole = 22 kg/m Determine the maximum compressive stress (MPa) at the base of the pole. A. 0.954 B. 0.941 C. 0.806 D. 1.150 P H L e D
  • 5. 1. Given the following data of the solid circular pole shown: 250 mm 0.45 kN 3 m 100 mm 3 kN Weight of pole = 22 kg/m Determine the maximum compressive stress (MPa) at the base of the pole. A. 0.954 B. 0.941 C. 0.806 D. 1.150 P = 3 H=0.45 L=3 e=0.1 D=250 Wp 22 9.81 3 647.46 N 0.64746 kN D=250 y x b a 3 0.64746 3.64746 kN 0.45 3 3 0.1 1.65 kN m ! # $ % $ '( ! $ 3647.46 ) * 250 + $ 1.65 10, 250/2 ) ,* 250 * ! $.. ./ 012
  • 7. 2. Refer to the figure shown: Given: = 2 m Bar diameter = 20 mm Concrete cover, 3 = 65 mm Length of extension bar, 4 = 80 mm Radius of bend = 45# ’ = 20.7MPa; ( = 414 MPa According to 412.6 of NSCP, Development length 78 for deformed bars in tension terminating in a standard hook shall not be less than: 1. (5# 4.17 9 2. 8 5# 3. 150 mm Determine the total length (m) of the bar. A. 2.53 C. 2.87 B. 3.03 D. 3.36 a L b Ldh r
  • 8. 2. Refer to the figure shown: Given: = 2 m Bar diameter = 20 mm Concrete cover, 3 = 65 mm Length of extension bar, 4 = 80 mm Radius of bend = 45# 9 20.7MPa; ( 414 MPa According to 412.6 of NSCP, Development length 78 for deformed bars in tension terminating in a standard hook shall not be less than: 1. (5# 4.17 9 2. 8 5# 3. 150 mm Determine the total length (m) of the bar. A. 2.53 C. 2.87 B. 3.03 D. 3.36 65 L = 2 b=80 Ldh r=4db db = 20mm 414 20 4.17 20.7 436.4 mm 8 20 160 ← 78 ; 4 20 80 x1 x2 x3 = 65 ; + + 155 + 2000 1845 ? 436.4 ? 346.4 1845 346.4 2191.4 @; @; 4 80 4 80 #AB 2191.4 @ 80 2 2 80 #AB 2854 mm $155 $ ; C. D/E F Q2 C 46.08 14.81 28.94 9.68 $+ +
  • 10. Next
  • 11. 3. A 100-mm thick one-way slab is reinforced with 12 mm bars spaced at 200 mm on centers. Given that 9 20.7 MPa, ( 275 MPa, compute the design moment (kN-m) of the slab. Assume 20 mm concrete cover. A. 10.82 C. 10.58 B. 11.75 D. 9.74 4 1000 ℎ 100 20 12‡ 5 5 100 $ 20 $ 12/2 74 mm %# ) * 12 + 113.1 mm+ %H 1000%# I Consider 1 m slab width 1000 113.1 200 565.5 mm+ Assuming steel yields: 3 %H( 0.85 9 4 565.5 275 0.85 20.7 1000 3 8.838 mm 3/J= 8.838/0.85 10.4 mm ? K 5 27.75 Tension controlled L M 5 $ 3/2 0.85 934 5 $ 3/2 0.85 20.7 8.838 1000 74 $ 8.838 2 L 10.82 kN m NL 0.9 10.82 O. PQD RS F T Q3 D 21.01 18.68 35.53 23.23
  • 12. Next
  • 13. Situation 2 – Dimensions: 3 4 5 0.4 m; 3.5 m Footing width, 2 m Effective depth = 500 mm Uniform soil pressure (from factored loads) = 196 kPa Shear diagram: 156.8 kN; U 761.2 kN; -610.8 kN 9 27.5 MPa; ( 414 MPa Main bar diameter = 20 mm Reduction factors: Moment = 0.90 Shear = 0.75 7. Determine the required number of bars at critical moment. A. 10 B. 12 C. 11 D. 13 8. Determine the spacing of bars, in mm, at the face of the column. Use 75 mm clear cover. A. 90 B. 180 C. 95 D. 105 9. Determine the critical wide beam shear stress, in MPa. A. 1.02 B. 0.75 C. 0.81 D. 0.57 a b c d W column column e f g h
  • 14. Situation 2 – Dimensions: 3 4 5 0.4 m; 3.5 m Footing width, 2 m Effective depth = 500 mm Uniform soil pressure (from factored loads) = 196 kPa Shear diagram: 156.8 kN; U 761.2 kN; -610.8 kN 9 27.5 MPa; ( 414 MPa Main bar diameter = 20 mm Reduction factors: Moment = 0.90 Shear = 0.75 0.4 0.4 3.5 2 column column 156.8 -610.8 761.2 h 0.4 wu Solving for wu: $610.8 VW 3.5 761.2 VW 392 kN/m OR: 0 VW 0.4 156.8 VW 392 kN/m OR: VW XW VW 196 2 392 kN/m
  • 15. Situation 2 – Effective depth = 500 mm Main bar diameter = 20 mm Reduction factors: Moment = 0.90 Shear = 0.75 9. Determine the critical wide beam shear stress, in MPa. A. 1.02 B. 0.75 C. 0.81 D. 0.57 0.4 0.4 3.5 2 column column 156.8 -610.8 761.2 h 0.4 wu VW 392 kN/m deff=0.5 Y W Y W 761.2 $ VW5 761.2 $ 392 0.5 Y W 565.2 kN ZW[ Y W 4[5 4 [ 2000 mm ZW[ 565,200 2000 500 5 500 mm ZW[ ]. /^/ 012 Q9 D 30.3 24.69 30.11 13.94
  • 16. Situation 2 – Effective depth = 500 mm 0.4 0.4 3.5 2 column column 156.8 -610.8 761.2 h 0.4 wu VW 392 kN/m 4 [ 2000 mm 5 500 mm 4 2000 mm 156.8 -610.8 761.2 0.4 x 156.8 0.4 156.8 610.8 0.0817 m 0.4 A1 %= = + 0.4 0.0817 156.8 %= 37.765 kN m 0.4+x 156.8 -610.8 0.4-x=0.3183 A2 %+ = + 0.3183 $610.8 %+ $97.21 kN m 610.8/VW 1.558 3.5 $ 1.558 1.942 A3 A4 %? = + 1.558 $610.8 $475.81 kN m %* = + 1.942 761.2 %* 739.13 kN m
  • 17. Situation 2 – Effective depth = 500 mm 0.4 0.4 3.5 2 column column 0.4 VW 392 kN/m 4 [ 2000 mm 5 500 mm 4 2000 mm A1 %= 37.765 kN m A2 %+ $97.21 kN m A3 A4 %? $475.81 kN m %* 739.13 kN m = + ? = %= QP. P^/ RS F + %= %+ %? $/Q/. C^ RS F ? + %* C]Q. DP RS F
  • 18. Situation 2 – 9 27.5 MPa; ( 414 MPa Effective depth = 500 mm Main bar diameter = 20 mm Reduction factors: Moment = 0.90 7. Determine the required number of bars at critical moment. A. 10 B. 12 C. 11 D. 13 8. Determine the spacing of bars, in mm, at the face of the column. Use 75 mm clear cover. A. 90 B. 180 C. 95 D. 105 0.4 0.4 3.5 2 column column 0.4 5 500 mm 4 2000 mm = + ? $/Q/. C^ RS F C]Q. DP RS F At critical moment: W + 535.26 kN m _L W N45+ 535.26 10, 0.9 2000 500 + 1.189 MPa c 0.85 9 ( 1 $ 1 $ 2_L 0.85 9 c 0.00295 cdeL 1.4/( 0.00338 ◄Use this %H QP. P^/ RS F c45 0.00338 2000 500 %H 3380 mm+ f+ 3380 ) * 20 + 10.75 use 11 Q7 C 15.88 42.88 28.94 11.42
  • 19. Situation 2 – 9 27.5 MPa; ( 414 MPa Effective depth = 500 mm Main bar diameter = 20 mm Reduction factors: Moment = 0.90 8. Determine the spacing of bars, in mm, at the face of the column. Use 75 mm clear cover. A. 90 B. 180 C. 95 D. 105 0.4 0.4 3.5 2 column column 0.4 5 500 mm 4 2000 mm = + ? $/Q/. C^ RS F C]Q. DP RS F cdeL 1.4/( 0.00338 QP. P^/ RS F %H 3380 mm+ f+ 3380 ) * 20 + 10.75 use 11 75 75 20‡ 2000 2000 $2 75 $20 1830 mm gh3ijU, I 1830 11 $ 1 .DQ FF Q8 B 21.49 18.97 28.56 30.01
  • 20. Next
  • 21. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 10. Compute the value of the maximum ordinate of influence diagram of member lm. A. 1.5 C. 0.75 B. 0.5 D. 1.00 11. Compute the axial load in member lm (kN) due to a standard wheel base 4.3 m apart, front wheel load = 72.4 kN and rear wheel load = 19.6 kN. A. 63.25 C C. 81.47 C B. 63.25 T D. 81.47 T 12. Compute the axial load in member lm (kN) due to a uniform moving load of 9.35 kN/m. A. 74.8 C C. 52.6 T B. 74.8 T D. 52.6 C P A B C D E F G H I J K k k s s s s L
  • 22. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 10. Compute the value of the maximum ordinate of influence diagram of member lm. A. 1.5 C. 0.75 B. 0.5 D. 1.00 11. Compute the axial load in member lm (kN) due to a standard wheel base 4.3 m apart, front wheel load = 72.4 kN and rear wheel load = 19.6 kN. A. 63.25 C C. 81.47 C B. 63.25 TC D. 81.47 T 12. Compute the axial load in member lm (kN) due to a uniform moving load of 9.35 kN/m. A. 74.8 C C. 52.6 T B. 74.8 T D. 52.6 C A B C D E F G H I J K k 45° k 4 4 4 4 8
  • 23. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 10. Compute the value of the maximum ordinate of influence diagram of member lm. A. 1.5 C. 0.75 B. 0.5 D. 1.00 A B C D E F G H I J K k 45° k 4 4 4 4 8 h FJK a = 8 b = 8 L = 16 ℎ 4 tan 45° 4 m q q 34 8 8 16 4 r $ q ℎ $ 4 4 $. Influence line for FJK: Q10 D 13.17 23.81 22.75 39.59
  • 24. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 11. Compute the axial load in member lm (kN) due to a standard wheel base 4.3 m apart, front wheel load = 72.4 kN and rear wheel load = 19.6 kN. A. 63.25 C C. 81.47 C B. 63.25 T D. 81.47 T r $1 Influence line for FJK: A B C D E F G H I J K k k 4 4 4 4 L 72.4 19.6 4.3 3.7 r= r= 3.7 $1 8 r= $0.4625 stu ! 72.4 $1 19.6 $0.4625 stu ! D.. E^/ RS v Q11 C 28.07 11.23 43.56 16.17
  • 25. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 12. Compute the axial load in member lm (kN) due to a uniform moving load of 9.35 kN/m. A. 74.8 C C. 52.6 T B. 74.8 T D. 52.6 C r $1 Influence line for FJK: A B C D E F G H I J K k k 4 4 4 4 L w = 9.35 kN/m
  • 26. Situation 3 - The bridge truss shown in the figure is subjected to moving loads, 8 m, I 4 m, 0 kN, k 45°. 12. Compute the axial load in member lm (kN) due to a uniform moving load of 9.35 kN/m. A. 74.8 C C. 52.6 T B. 74.8 T D. 52.6 C r $1 Influence line for FJK: A B C D E F G H I J K k k 4 4 4 4 L w = 9.35 kN/m % 1 2 16 $1 $D stu ! V% 9.35 $8 PE. D RS v Q12 A 43.08 21.59 15.68 18.78
  • 27. Next
  • 28. Situation 6 - The pile footing supports a column, 600 mm 600 mm at the center. The piles are precast concrete with 350 mm 350 mm dimension. Given: Net load on the footing at Ultimate Condition: W 2700 kN; Ww 108 kN-m W( 165 kN-m Effective depth of the footing = 400 mm Dimensions: 3 0.6 m 1.2 m 4 1 m 5 0.6 m Strength Reduction Factor For shear = 0.75; For moment = 0.90 19. Determine the critical punching shear stress (MPa) of one pile due to axial load. A. 0.54 B. 0.68 C. 0.25 D. 0.33 20. Determine the punching shear stress (MPa) of the column due to axial load. A. 1.5 B. 2.0 C. 2.5 D. 3.0 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y a b b a d d c c
  • 29. Situation 6 - The pile footing supports a column, 600 mm 600 mm at the center. The piles are precast concrete with 350 mm 350 mm dimension. Given: Net load on the footing at Ultimate Condition: W 2700 kN; Ww 108 kN-m W( 165 kN-m Effective depth of the footing = 400 mm Dimensions: 3 0.6 m 1.2 m 4 1 m 5 0.6 m Strength Reduction Factor For shear = 0.75; For moment = 0.90 19. Determine the critical punching shear stress (MPa) of one pile due to axial load. A. 0.54 B. 0.68 C. 0.25 D. 0.33 20. Determine the punching shear stress (MPa) of the column due to axial load. A. 1.5 B. 2.0 C. 2.5 D. 3.0 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y 0.6 0.6 1 1 0.6 1.2 1.2 0.6 Pu = 2700 Part 1: due to axial load only _ W f 2700 9 300 kN 350+400 350+400 Y W ZW Y W 4x5 300,000 4 750 400 ]. C/ 012 Q19 C 23.52 20.81 20.81 33.88
  • 30. Situation 6 - The pile footing supports a column, 600 mm 600 mm at the center. The piles are precast concrete with 350 mm 350 mm dimension. Given: Net load on the footing at Ultimate Condition: W 2700 kN; Ww 108 kN-m W( 165 kN-m Effective depth of the footing = 400 mm Dimensions: 3 0.6 m 1.2 m 4 1 m 5 0.6 m Strength Reduction Factor For shear = 0.75; For moment = 0.90 19. Determine the critical punching shear stress (MPa) of one pile due to axial load. A. 0.54 B. 0.68 C. 0.25 D. 0.33 20. Determine the punching shear stress (MPa) of the column due to axial load. A. 1.5 B. 2.0 C. 2.5 D. 3.0 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y 0.6 0.6 1 1 0.6 1.2 1.2 0.6 Pu = 2700 Part 2: due to axial load only 600+400 600+400 _ 300 kN ZW Y W 4x5 2,400,000 4 1000 400 .. / 012 Y W W $ _ 2700 $ 300 2400 kN Q20 A 24.1 33.3 28.36 13.36
  • 31. Situation 6 – Effective depth of the footing = 400 mm Strength Reduction Factor For shear = 0.75; For moment = 0.90 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y 0.6 0.6 1 1 0.6 1.2 1.2 0.6 Pu = 2700 Mux = 108 Muy = 165 A B C D E F G H I 350+400 350+400 _ W f y Wwz Σz+ y W( Σ+ _ | 2700 9 108 1 1 + 6 165 1.2 1.2 + 6 _ | 340.92 kN Y W ZW Y W 4x5 340,920 4 750 400 ]. CDE 012 On the heavily loaded pile:
  • 32. Situation 6 – Effective depth of the footing = 400 mm Strength Reduction Factor For shear = 0.75; For moment = 0.90 21. Determine the critical punching shear stress (MPa) due to axial and moment loads of the pile cap. A. 2.0 B. 3.0 C. 1.5 D. 2.5 x y 0.6 0.6 1 1 0.6 1.2 1.2 0.6 Pu = 2700 Mux = 108 Muy = 165 A B C D E F G H I ZW ]. CDE 012 On the heavily loaded pile: On the column: _ } 2700 9 0 0 300 kN 600+400 600+400 ZW Y W 4x5 2,400,000 4 1000 400 .. / 012 Y W W $ _ } 2700 $ 300 2400 kN _ W f y Wwz Σz+ y W( Σ+ 0; z 0 Q21 C 22.75 25.17 24.2 26.91
  • 33. Next
  • 34. Situation 8 – For the rectangular tied column shown in the figure. Given: 9 27.5 MPa mL 0.80 ( 414 MPa _L 0.205 Reinforcement steel ratio, c 0.05 Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 25. How many 20 mm diameter bars are required for the rectangular tied column? A. 40 B. 36 C. 30 D. 28 26. What is the maximum nominal axial load L (kN) that the column could carry? A. 7542 B. 5354 C. 8238 D. 9236 27. If reinforcement steel ratio, c 0.03, what is the required length (mm) of the long side of the column? A. 620 B. 700 C. 650 D. 670
  • 35. Situation 8 – For the rectangular tied column shown in the figure. Given: 9 27.5 MPa mL 0.80 ( 414 MPa _L 0.205 Reinforcement steel ratio, c 0.05 Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 25. How many 20 mm diameter bars are required for the rectangular tied column? A. 40 B. 36 C. 30 D. 28 % 600 400 240,000 mm+ %H c% 0.05 240,000 %H 12,000 mm+ f+ 12000 ) * 20 + 38.2 Use 40 Q25 A 27.98 24.1 20.72 26.23
  • 36. Situation 8 – For the rectangular tied column shown in the figure. Given: 9 27.5 MPa mL 0.80 ( 414 MPa _L 0.205 Reinforcement steel ratio, c 0.05 Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 26. What is the maximum nominal axial load L (kN) that the column could carry? A. 7542 B. 5354 C. 8238 D. 9236 % 600 400 240,000 mm+ x 0.85 9 % $ %H (%H x 0.85 27.5 240,000 $ 12,000 %H 12,000 mm+ 414 12,000 x L 0.8x D, CQD RS 10,297,500 N 10,297.5 kN Q26 C 24.1 35.14 29.53 9.97
  • 37. Situation 8 – Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 27. If reinforcement steel ratio, c 0.03, what is the required length (mm) of the long side of the column? A. 620 B. 700 C. 650 D. 670 % 240,000 mm+ ℎ 400 mm c 0.03 L mL 9% 0.8 27.5 240,000 L 5280 kN L L _L 9%ℎ 0.205 27.5 240000 400 mL 0.8 _L 0.205 L 541.2 kN m € ]. D ‚ ]. C]/ € ]. PC % L mL 9 5,280,000 0.72 27.5 266,667 mm+ % 4ℎ 4 400 266,667 mm+ 4 ^^^. P FF Q27 D 19.17 25.75 31.46 22.17
  • 38. Situation 8 – Dimensions (4 ℎ) = 600 mm x 400 mm Strength reduction factor = 0.65 27. If reinforcement steel ratio, c 0.03, what is the required length (mm) of the long side of the column? A. 620 B. 700 C. 650 D. 670 ℎ 400 mm c 0.03 € ]. D ‚ ]. C]/ € ]. PC % 266,667 mm+ 4 ^^^. P FF ‚  ]. .D/ L 5280 kN L 541.2 kN m L L _L 9 %ℎ L 0.185 27.5 266,667 400 L /EC. P RS F
  • 39. Next
  • 40. Situation 4 – The beam ƒM shown is supported by a quarter-circular arc %M having a radius of 4 m. The frame is pin- supported at %, ƒ and M. The pins at % and ƒ are in single shear while the pin at M is in double shear. Allowable shear stress of the pin is 112 MPa. V 3 kN/m. 13. Determine the minimum diameter (mm) of the pin at ƒ. A. 10 B. 12 C. 8 D. 6 14. Determine the minimum diameter (mm) of the pin at M. A. 8 B. 6 C. 12 D. 10 15. Determine the resultant reaction (kN) at %. A. 12 B. 8.49 C. 9.36 D. 6 A B C w R
  • 41. Situation 4 – The beam ƒM shown is supported by a quarter-circular arc %M having a radius of 4 m. The frame is pin- supported at %, ƒ and M. The pins at % and ƒ are in single shear while the pin at M is in double shear. Allowable shear stress of the pin is 112 MPa. V 3 kN/m. A B C w = 3 kN/m 4 m 4 m Av Ah Bh Bv Σ„ 0 3 4 4/2 $ %8 4 0 %8 6 kN Σs8 0 ƒ8 %8 6 kN 6 6
  • 42. Situation 4 – The beam ƒM shown is supported by a quarter-circular arc %M having a radius of 4 m. The frame is pin- supported at %, ƒ and M. The pins at % and ƒ are in single shear while the pin at M is in double shear. Allowable shear stress of the pin is 112 MPa. V 3 kN/m. 13. Determine the minimum diameter (mm) of the pin at ƒ. A. 10 B. 12 C. 8 D. 6 14. Determine the minimum diameter (mm) of the pin at M. A. 8 B. 6 C. 12 D. 10 15. Determine the resultant reaction (kN) at %. A. 12 B. 8.49 C. 9.36 D. 6 A B C w = 3 kN/m 4 m Av Ah Bh Bv 6 6 Cv Ch C Cv Ch In beam BC: 3 4 4/2 Σ„ 0 $ M 4 0 M 6 kN Σs8 0 M8 ƒ8 6 kN 6 6 ƒ 6 6 6 6 _„ 6+ 6+ _„ 8.48 kN _| _q _„ 8.48 kN Diameter of pin @ B (single shear): _„ % eL † 112 MPa % eLdeL 8480 112 75.71 mm+ ) * 5 eL + 75.71 5 eLdeL 9.82 mm use 10 mm Q13 A 40.17 21.88 26.23 11.13 Q15 B 17.23 39.79 17.23 25.07
  • 43. Situation 4 – The beam ƒM shown is supported by a quarter-circular arc %M having a radius of 4 m. The frame is pin- supported at %, ƒ and M. The pins at % and ƒ are in single shear while the pin at M is in double shear. Allowable shear stress of the pin is 112 MPa. V 3 kN/m. 14. Determine the minimum diameter (mm) of the pin at M. A. 8 B. 6 C. 12 D. 10 15. Determine the resultant reaction (kN) at %. A. 12 B. 8.49 C. 9.36 D. 6 A B C w = 3 kN/m 4 m Av Ah Bh Bv 6 6 Cv Ch C Cv Ch 6 6 6 6 6 6 _„ 6+ 6+ _„ 8.48 kN _| _q _„ 8.48 kN Diameter of pin @ C (double shear): _ 2% eL † 112 MPa % eLdeL 8480 112 2 37.9 mm+ ) * 5 eL + 37.9 5 eLdeL 6.9 mm use 8 mm Q14 A 29.82 31.56 18.59 19.55
  • 44. Next
  • 45. Situation 7 – A flag pole is supported by tension wires %ƒ, %M and % to resist an uplift force of 185 N acting on the axis of the pole. In this problem, 3 3 m, 4 4 m and ℎ 12 m. 22. Calculate the tension (kN) in wire %ƒ. A. 82.46 C. 47.43 B. 65.00 D. 58.42 23. Calculate the tension (kN) in wire %M. A. 58.42 C. 65.00 B. 47.43 D. 82.46 24. Calculate the tension (kN) in wire %. A. 47.43 C. 58.42 B. 82.46 D. 65.00 z ‡ % ƒ M 3 4 3 4
  • 46. Situation 7 – A flag pole is supported by tension wires %ƒ, %M and % to resist an uplift force of 185 N acting on the axis of the pole. In this problem, 3 3 m, 4 4 m and ℎ 12 m. 22. Calculate the tension (kN) in wire %ƒ. A. 82.46 C. 47.43 B. 65.00 D. 58.42 23. Calculate the tension (kN) in wire %M. A. 58.42 C. 65.00 B. 47.43 D. 82.46 24. Calculate the tension (kN) in wire %. A. 47.43 C. 58.42 B. 82.46 D. 65.00 z ‡ % ƒ M 3 4 3 4 12
  • 47. Situation 7 – A flag pole is supported by tension wires %ƒ, %M and % to resist an uplift force of 185 N acting on the axis of the pole. In this problem, 3 3 m, 4 4 m and ℎ 12 m. z ‡ % ƒ M 3 4 3 4 185 f ˆ„ ˆq ˆ‰ %ƒ Using matrix: 3i 0Š 12 $ 12‹ %ƒ 153 %M $4i 3Š $ 12‹ %M 13 % 0i $ 4Š $ 12‹ % 160 3Œ% ? =? =? Ž=+ =? Ž* =? ? =? Ž=+ =? =, Ž* =, Ž=+ =, 3Œƒ 0 0 185 $Trn Inv MatA MatB ˆ„ 82.462 kN ˆq 65 kN ˆ‰ 47.43 kN
  • 48. Situation 7 – A flag pole is supported by tension wires %ƒ, %M and % to resist an uplift force of 185 N acting on the axis of the pole. In this problem, 3 3 m, 4 4 m and ℎ 12 m. 22. Calculate the tension (kN) in wire %ƒ. A. 82.46 C. 47.43 B. 65.00 D. 58.42 23. Calculate the tension (kN) in wire %M. A. 58.42 C. 65.00 B. 47.43 D. 82.46 24. Calculate the tension (kN) in wire %. A. 47.43 C. 58.42 B. 82.46 D. 65.00 z ‡ % ƒ M 3 4 3 4 185 f ˆ„ ˆq ˆ‰ 12 $Trn Inv MatA MatB ˆ„ 82.462 kN ˆq 65 kN ˆq 47.43 kN Q22 A 30.69 25.27 26.72 16.46 Q23 C 23.62 24.88 33.01 17.62 Q24 A 34.17 19.75 24.98 20.33
  • 49. Next
  • 50. Situation 9 – Refer to the Figure shown. Given: ℎ= 125 mm; ℎ+ 475 mm; 60 mm Clear concrete cover = 40 mm Tension bars, %H 8 – 28 mm diameter Compression bars, %H 9 4 – 28 mm diameter Stirrups = 12 mm diameter Concrete 28-day compressive strength = 28 MPa Steel strength, (8 275 MPa Reduction factor for shear = 0.75 28. What is minimum beam width “4” (mm) based on spacing and concrete cover according to NSCP. A. 300 B. 320 C. 280 D. 340 29. Given: Factored shear, Y W 480 kN Spacing of 4 legs of stirrups = 160 mm How much is the minimum beam width “4” (mm)? A. 350 B. 600 C. 550 D. 500 30. Given: Factored shear, Y W 480 kN Spacing of 2 legs of stirrups = 70 mm How much is the minimum beam width “4” (mm)? A. 400 B. 450 C. 375 D. 425 h1 h2 c b
  • 51. Situation 9 – Refer to the Figure shown. Given: ℎ= 125 mm; ℎ+ 475 mm; 60 mm Clear concrete cover = 40 mm Tension bars, %H 8 – 28 mm diameter Compression bars, %H 9 4 – 28 mm diameter Stirrups = 12 mm diameter Concrete 28-day compressive strength = 28 MPa Steel strength, (8 275 MPa Reduction factor for shear = 0.75 28. What is minimum beam width “4” (mm) based on spacing and concrete cover according to NSCP. A. 300 B. 320 C. 280 D. 340 125 475 60 bw 40 40 40 40 x largest of 5#, 25 mm and * ?5A 28 mm 4[ œ 40 2 12 2 ←12‡ 5# 28 mm 28 4 28 3 4[ œ Q]] FF Q28 A 45.5 23.52 18.97 11.23
  • 52. Situation 9 – Refer to the Figure shown. Stirrups = 12 mm diameter Concrete 28-day compressive strength = 28 MPa Steel strength, (8 275 MPa Reduction factor for shear = 0.75 29. Given: Factored shear, Y W 480 kN Spacing of 4 legs of stirrups = 160 mm How much is the minimum beam width “4” (mm)? A. 350 B. 600 C. 550 D. 500 125 475 60 bw 40 40 40 40 ←12‡ d 5 125 475 $ 40 12 28/2 60/2 5 504 mm % 4 ) * 12 + 452.4 mm+ Y H % (5 I 452.4 275 504 160 391.89 kN Y L Y W/N 480/0.75 640 kN Y Y L $ Y H 640 $ 391.89 248.11 kN Y 0.17 9 4[5 4[deL ž 248.11 kN 248,110 0.17 28 504 4[deL /EP. Q FF Q29 C 19.36 15.68 46.37 17.81
  • 53. Situation 9 – Refer to the Figure shown. Stirrups = 12 mm diameter Concrete 28-day compressive strength = 28 MPa Steel strength, (8 275 MPa Reduction factor for shear = 0.75 30. Given: Factored shear, Y W 480 kN Spacing of 2 legs of stirrups = 70 mm How much is the minimum beam width “4” (mm)? A. 400 B. 450 C. 375 D. 425 125 475 60 bw 40 40 40 40 ←12‡ d 5 504 mm % 2 ) * 12 + 226.2 mm+ Y H % (5 I 226.2 275 504 70 447.88 kN Y L Y W/N 480/0.75 640 kN Y Y L $ Y H 640 $ 447.88 192.12 kN Y 0.17 9 4[5 4[deL ž 192.12 kN 192,120 0.17 28 504 4[deL ECE FF Q30 D 13.94 15.3 27.98 41.63
  • 54. Next
  • 55. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 4. Determine the axial force (kN) in member '. A. 4 T C. 6 T B. 4 C D. 6 C 5. Determine the axial force (kN) in member lŸ. A. 3.35 T C. 7.83 C B. 3.35 C D. 7.83 T 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P P P P P s s s s s s h A B C D E F G H I J
  • 56. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 4. Determine the axial force (kN) in member '. A. 4 T C. 6 T B. 4 C D. 6 C 5. Determine the axial force (kN) in member lŸ. A. 3.35 T C. 7.83 C B. 3.35 C D. 7.83 T 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P P P P P s s s s s s h A B C D E F G H I J R=2.5P R=2.5P
  • 57. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 4. Determine the axial force (kN) in member '. A. 4 T C. 6 T B. 4 C D. 6 C 5. Determine the axial force (kN) in member lŸ. A. 3.35 T C. 7.83 C B. 3.35 C D. 7.83 T 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P P P P P s s s s s s h A B C D E F G H I J R=2.5P R=2.5P
  • 58. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 4. Determine the axial force (kN) in member '. A. 4 T C. 6 T B. 4 C D. 6 C 5. Determine the axial force (kN) in member lŸ. A. 3.35 T C. 7.83 C B. 3.35 C D. 7.83 T 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P=2 s s=3 s h=6 D E F G I J R=2.5P=5 FIJ = FHI FJE FEF k k tan k 6/3 k 63.43° Σs 0 st} sin 63.43° 2 $ 5 0 st} Q. Q/ RS T Σ} 0 s¡t 6 2 3 $ 5 6 0 s¡t E RS C s¡¢ Q4 B 13.07 60.41 13.17 13.17 Q5 A 55.37 19.46 11.71 13.26
  • 59. Situation 1 – Refer to the truss shown: Given: I = 3 m; ℎ = 6 m; = 2 kN 6. Determine the axial force (kN) in member 'Ÿ. A. 12.3 C C. 1.12 T B. 12.3 T D. 1.12 C P P P P P=2 s s s s s s h A B C D E F G H I J R=2.5P R=5 2 2 s s=3 6 D E F G I J R=5 k FIE Σs 0 s¡} sin 63.43° k 63.43° k 2 2 $ 5 0 s¡} .. ..D RS C Q6 D 10.45 16.46 27.59 45.11
  • 60. Next
  • 61. Situation 5 - A man weighing 1.2 kN walks through a log of wood 250 mm in diameter and simply supported at a length of 3 m. 16. What is the maximum shear (kN)? A. 0.6 B. 0.8 C. 1.2 D. 1.8 17. What is the maximum moment (kN-m)? A. 1.5 B. 0.8 C. 1.2 D. 0.9 18. If the log is replaced with 300 mm wide by 100 mm thick section of wood, what is the maximum weight of a man can walk through the log if the allowable flexural stress, s# 4.2 MPa? A. 4.1 B. 2.4 C. 2.8 D. 3.2 P = 1.2 kN L = 3 D=250 A B Maximum shear
  • 62. Situation 5 - A man weighing 1.2 kN walks through a log of wood 250 mm in diameter and simply supported at a length of 3 m. 16. What is the maximum shear (kN)? A. 0.6 B. 0.8 C. 1.2 D. 1.8 17. What is the maximum moment (kN-m)? A. 1.5 B. 0.8 C. 1.2 D. 0.9 18. If the log is replaced with 300 mm wide by 100 mm thick section of wood, what is the maximum weight of a man can walk through the log if the allowable flexural stress, s# 4.2 MPa? A. 4.1 B. 2.4 C. 2.8 D. 3.2 P = 1.2 kN L = 3 D=250 A B Maximum shear Y dAw .. C RS Maximum moment: L/2 L/2 dAw 4 ]. O RS F Q16 C 28.75 6.97 50.24 13.75 Q17 D 10.45 9.78 14.62 64.76
  • 63. Situation 5 - A man weighing 1.2 kN walks through a log of wood 250 mm in diameter and simply supported at a length of 3 m. 16. What is the maximum shear (kN)? A. 0.6 B. 0.8 C. 1.2 D. 1.8 17. What is the maximum moment (kN-m)? A. 1.5 B. 0.8 C. 1.2 D. 0.9 18. If the log is replaced with 300 mm wide by 100 mm thick section of wood, what is the maximum weight of a man can walk through the log if the allowable flexural stress, s# 4.2 MPa? A. 4.1 B. 2.4 C. 2.8 D. 3.2 L = 3 D=250 A B Maximum shear Y dAw .. C RS Maximum moment: P L/2 L/2 dAw 4 ]. O RS F Part 3: 4 300 5 100 # 6 45+ † 4.2 dAw 4.2 300 100 + 6 2,100,000 N mm dAw 2.1 kN m de7 4 † 2.1 kN m dAw 4 2.1 3 C. D RS Q18 C 14.71 21.3 44.05 19.07
  • 64. Next
  • 65. Situation 10 - Refer to the figure shown. The stresses in a bar subjected to uniaxial stress is plotted as shown. Given, 3 40 MPa. 31. Determine the maximum normal stress (MPa). A. 50 C. 80 B. 60 D. 40 32. Determine the maximum shear stress (MPa). A. 40 C. 60 B. 20 D. 80 33. What angle does the maximum shear stress occur from the origin. A. 90° C. 60° B. 30° D. 45° £ ¤ a a z z 40 40 Maximum normal stress: £dAw 80 MPa Maximum shear stress: ¤dAw ¤dAw 40 MPa £dAw 90° 45° z z Q31 C 2.03 3.39 73.86 20.23 Q32 A 77.06 3.1 6.49 12.97 Q33 D 33.98 3.48 4.74 57.5
  • 66. ???