SlideShare a Scribd company logo
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
CHAPTER 8
The Relational Algebra
Slide 8- 2
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 3
Chapter Outline
 Relational Algebra
 Unary Relational Operations
 Relational Algebra Operations From Set Theory
 Binary Relational Operations
 Additional Relational Operations
 Examples of Queries in Relational Algebra
 Relational Calculus
 Tuple Relational Calculus
 Domain Relational Calculus
 Example Database Application (COMPANY)
 Overview of the QBE language (appendix D)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 4
Relational Algebra Overview
 Relational algebra is the basic set of operations
for the relational model
 These operations enable a user to specify basic
retrieval requests (or queries)
 The result of an operation is a new relation, which
may have been formed from one or more input
relations
 This property makes the algebra “closed” (all
objects in relational algebra are relations)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 5
Relational Algebra Overview (continued)
 The algebra operations thus produce new
relations
 These can be further manipulated using
operations of the same algebra
 A sequence of relational algebra operations
forms a relational algebra expression
 The result of a relational algebra expression is also a
relation that represents the result of a database
query (or retrieval request)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 6
Brief History of Origins of Algebra
 Muhammad ibn Musa al-Khwarizmi (800-847 CE) – from
Morocco wrote a book titled al-jabr about arithmetic of
variables
 Book was translated into Latin.
 Its title (al-jabr) gave Algebra its name.
 Al-Khwarizmi called variables “shay”
 “Shay” is Arabic for “thing”.
 Spanish transliterated “shay” as “xay” (“x” was “sh” in Spain).
 In time this word was abbreviated as x.
 Where does the word Algorithm come from?
 Algorithm originates from “al-Khwarizmi"
 Reference: PBS (http://www.pbs.org/empires/islam/innoalgebra.html)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 7
Relational Algebra Overview
 Relational Algebra consists of several groups of operations
 Unary Relational Operations
 SELECT (symbol:  (sigma))
 PROJECT (symbol:  (pi))
 RENAME (symbol:  (rho))
 Relational Algebra Operations From Set Theory
 UNION (  ), INTERSECTION (  ), DIFFERENCE (or MINUS, – )
 CARTESIAN PRODUCT ( x )
 Binary Relational Operations
 JOIN (several variations of JOIN exist)
 DIVISION
 Additional Relational Operations
 OUTER JOINS, OUTER UNION
 AGGREGATE FUNCTIONS (These compute summary of
information: for example, SUM, COUNT, AVG, MIN, MAX)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 8
Database State for COMPANY
 All examples discussed below refer to the COMPANY database
shown here.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 9
Unary Relational Operations: SELECT
 The SELECT operation (denoted by  (sigma)) is used to select a
subset of the tuples from a relation based on a selection condition.
 The selection condition acts as a filter
 Keeps only those tuples that satisfy the qualifying condition
 Tuples satisfying the condition are selected whereas the
other tuples are discarded (filtered out)
 Examples:
 Select the EMPLOYEE tuples whose department number is 4:
 DNO = 4 (EMPLOYEE)
 Select the employee tuples whose salary is greater than $30,000:
 SALARY > 30,000 (EMPLOYEE)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 10
Unary Relational Operations: SELECT
 In general, the select operation is denoted by
 <selection condition>(R) where
 the symbol  (sigma) is used to denote the select
operator
 the selection condition is a Boolean (conditional)
expression specified on the attributes of relation R
 tuples that make the condition true are selected
 appear in the result of the operation
 tuples that make the condition false are filtered out
 discarded from the result of the operation
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 11
Unary Relational Operations: SELECT
(continued)
 SELECT Operation Properties
 The SELECT operation  <selection condition>(R) produces a relation
S that has the same schema (same attributes) as R
 SELECT  is commutative:
  <condition1>( < condition2> (R)) =  <condition2> ( < condition1> (R))
 Because of commutativity property, a cascade (sequence) of
SELECT operations may be applied in any order:
 <cond1>(<cond2> (<cond3> (R)) = <cond2> (<cond3> (<cond1> ( R)))
 A cascade of SELECT operations may be replaced by a single
selection with a conjunction of all the conditions:
 <cond1>(< cond2> (<cond3>(R)) =  <cond1> AND < cond2> AND <
cond3>(R)))
 The number of tuples in the result of a SELECT is less than
(or equal to) the number of tuples in the input relation R
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 12
The following query results refer to this
database state
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 13
Unary Relational Operations: PROJECT
 PROJECT Operation is denoted by  (pi)
 This operation keeps certain columns (attributes)
from a relation and discards the other columns.
 PROJECT creates a vertical partitioning
 The list of specified columns (attributes) is kept in
each tuple
 The other attributes in each tuple are discarded
 Example: To list each employee’s first and last
name and salary, the following is used:
LNAME, FNAME,SALARY(EMPLOYEE)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 14
Unary Relational Operations: PROJECT
(cont.)
 The general form of the project operation is:
<attribute list>(R)
  (pi) is the symbol used to represent the project
operation
 <attribute list> is the desired list of attributes from
relation R.
 The project operation removes any duplicate
tuples
 This is because the result of the project operation
must be a set of tuples
 Mathematical sets do not allow duplicate elements.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 15
Unary Relational Operations: PROJECT
(contd.)
 PROJECT Operation Properties
 The number of tuples in the result of projection
<list>(R) is always less or equal to the number of
tuples in R
 If the list of attributes includes a key of R, then the
number of tuples in the result of PROJECT is equal
to the number of tuples in R
 PROJECT is not commutative
  <list1> ( <list2> (R) ) =  <list1> (R) as long as <list2>
contains the attributes in <list1>
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 16
Examples of applying SELECT and
PROJECT operations
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 17
Relational Algebra Expressions
 We may want to apply several relational algebra
operations one after the other
 Either we can write the operations as a single
relational algebra expression by nesting the
operations, or
 We can apply one operation at a time and create
intermediate result relations.
 In the latter case, we must give names to the
relations that hold the intermediate results.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 18
Single expression versus sequence of
relational operations (Example)
 To retrieve the first name, last name, and salary of all
employees who work in department number 5, we must
apply a select and a project operation
 We can write a single relational algebra expression as
follows:
 FNAME, LNAME, SALARY( DNO=5(EMPLOYEE))
 OR We can explicitly show the sequence of operations,
giving a name to each intermediate relation:
 DEP5_EMPS   DNO=5(EMPLOYEE)
 RESULT   FNAME, LNAME, SALARY (DEP5_EMPS)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 19
Unary Relational Operations: RENAME
 The RENAME operator is denoted by  (rho)
 In some cases, we may want to rename the
attributes of a relation or the relation name or
both
 Useful when a query requires multiple
operations
 Necessary in some cases (see JOIN operation
later)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 20
Unary Relational Operations: RENAME
(continued)
 The general RENAME operation  can be
expressed by any of the following forms:
 S (B1, B2, …, Bn )(R) changes both:
 the relation name to S, and
 the column (attribute) names to B1, B1, …..Bn
 S(R) changes:
 the relation name only to S
 (B1, B2, …, Bn )(R) changes:
 the column (attribute) names only to B1, B1, …..Bn
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 21
Unary Relational Operations: RENAME
(continued)
 For convenience, we also use a shorthand for
renaming attributes in an intermediate relation:
 If we write:
• RESULT   FNAME, LNAME, SALARY (DEP5_EMPS)
• RESULT will have the same attribute names as
DEP5_EMPS (same attributes as EMPLOYEE)
• If we write:
• RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO)
 RESULT (F.M.L.S.B,A,SX,SAL,SU, DNO)(DEP5_EMPS)
• The 10 attributes of DEP5_EMPS are renamed to
F, M, L, S, B, A, SX, SAL, SU, DNO, respectively
Note: the  symbol is an assignment operator
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 22
Example of applying multiple operations
and RENAME
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 23
Relational Algebra Operations from
Set Theory: UNION
 UNION Operation
 Binary operation, denoted by 
 The result of R  S, is a relation that includes all
tuples that are either in R or in S or in both R and
S
 Duplicate tuples are eliminated
 The two operand relations R and S must be “type
compatible” (or UNION compatible)
 R and S must have same number of attributes
 Each pair of corresponding attributes must be type
compatible (have same or compatible domains)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 24
Relational Algebra Operations from
Set Theory: UNION
 Example:
 To retrieve the social security numbers of all employees who
either work in department 5 (RESULT1 below) or directly
supervise an employee who works in department 5 (RESULT2
below)
 We can use the UNION operation as follows:
DEP5_EMPS  DNO=5 (EMPLOYEE)
RESULT1   SSN(DEP5_EMPS)
RESULT2(SSN)  SUPERSSN(DEP5_EMPS)
RESULT  RESULT1  RESULT2
 The union operation produces the tuples that are in either
RESULT1 or RESULT2 or both
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Figure 8.3 Result of the UNION
operation RESULT ← RESULT1 ∪
RESULT2.
Slide 8- 25
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 26
Relational Algebra Operations from
Set Theory
 Type Compatibility of operands is required for the binary
set operation UNION , (also for INTERSECTION , and
SET DIFFERENCE –, see next slides)
 R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type
compatible if:
 they have the same number of attributes, and
 the domains of corresponding attributes are type compatible
(i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n).
 The resulting relation for R1R2 (also for R1R2, or R1–
R2, see next slides) has the same attribute names as the
first operand relation R1 (by convention)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 27
Relational Algebra Operations from Set
Theory: INTERSECTION
 INTERSECTION is denoted by 
 The result of the operation R  S, is a
relation that includes all tuples that are in
both R and S
 The attribute names in the result will be the
same as the attribute names in R
 The two operand relations R and S must be
“type compatible”
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 28
Relational Algebra Operations from Set
Theory: SET DIFFERENCE (cont.)
 SET DIFFERENCE (also called MINUS or
EXCEPT) is denoted by –
 The result of R – S, is a relation that includes all
tuples that are in R but not in S
 The attribute names in the result will be the
same as the attribute names in R
 The two operand relations R and S must be
“type compatible”
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 29
Example to illustrate the result of UNION,
INTERSECT, and DIFFERENCE
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 30
Some properties of UNION, INTERSECT,
and DIFFERENCE
 Notice that both union and intersection are commutative
operations; that is
 R  S = S  R, and R  S = S  R
 Both union and intersection can be treated as n-ary
operations applicable to any number of relations as both
are associative operations; that is
 R  (S  T) = (R  S)  T
 (R  S)  T = R  (S  T)
 The minus operation is not commutative; that is, in
general
 R – S ≠ S – R
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 31
Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT
 CARTESIAN (or CROSS) PRODUCT Operation
 This operation is used to combine tuples from two relations
in a combinatorial fashion.
 Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)
 Result is a relation Q with degree n + m attributes:
 Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.
 The resulting relation state has one tuple for each
combination of tuples—one from R and one from S.
 Hence, if R has nR tuples (denoted as |R| = nR ), and S has
nS tuples, then R x S will have nR * nS tuples.
 The two operands do NOT have to be "type compatible”
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 32
Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont.)
 Generally, CROSS PRODUCT is not a
meaningful operation
 Can become meaningful when followed by other
operations
 Example (not meaningful):
 FEMALE_EMPS   SEX=’F’(EMPLOYEE)
 EMPNAMES   FNAME, LNAME, SSN (FEMALE_EMPS)
 EMP_DEPENDENTS  EMPNAMES x DEPENDENT
 EMP_DEPENDENTS will contain every combination of
EMPNAMES and DEPENDENT
 whether or not they are actually related
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 33
Relational Algebra Operations from Set
Theory: CARTESIAN PRODUCT (cont.)
 To keep only combinations where the
DEPENDENT is related to the EMPLOYEE, we
add a SELECT operation as follows
 Example (meaningful):
 FEMALE_EMPS   SEX=’F’(EMPLOYEE)
 EMPNAMES   FNAME, LNAME, SSN (FEMALE_EMPS)
 EMP_DEPENDENTS  EMPNAMES x DEPENDENT
 ACTUAL_DEPS   SSN=ESSN(EMP_DEPENDENTS)
 RESULT   FNAME, LNAME, DEPENDENT_NAME (ACTUAL_DEPS)
 RESULT will now contain the name of female employees
and their dependents
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Figure 8.5 The CARTESIAN PRODUCT
(CROSS PRODUCT) operation.
continued on next slide
Slide 8- 34
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Figure 8.5 (continued) The CARTESIAN
PRODUCT (CROSS PRODUCT) operation.
continued on next slide
Slide 8- 35
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Figure 8.5 (continued) The CARTESIAN
PRODUCT (CROSS PRODUCT) operation.
Slide 8- 36
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 37
Binary Relational Operations: JOIN
 JOIN Operation (denoted by )
 The sequence of CARTESIAN PRODECT followed by
SELECT is used quite commonly to identify and select
related tuples from two relations
 A special operation, called JOIN combines this sequence
into a single operation
 This operation is very important for any relational database
with more than a single relation, because it allows us
combine related tuples from various relations
 The general form of a join operation on two relations R(A1,
A2, . . ., An) and S(B1, B2, . . ., Bm) is:
R <join condition>S
 where R and S can be any relations that result from general
relational algebra expressions.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 38
Binary Relational Operations: JOIN (cont.)
 Example: Suppose that we want to retrieve the name of the
manager of each department.
 To get the manager’s name, we need to combine each
DEPARTMENT tuple with the EMPLOYEE tuple whose SSN
value matches the MGRSSN value in the department tuple.
 We do this by using the join operation.
 DEPT_MGR  DEPARTMENT MGRSSN=SSN EMPLOYEE
 MGRSSN=SSN is the join condition
 Combines each department record with the employee who
manages the department
 The join condition can also be specified as
DEPARTMENT.MGRSSN= EMPLOYEE.SSN
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Figure 8.6 Result of the JOIN operation
DEPT_MGR ← DEPARTMENT|X|
Mgr_ssn=SsnEMPLOYEE.
Slide 8- 39
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 40
Some properties of JOIN
 Consider the following JOIN operation:
 R(A1, A2, . . ., An) S(B1, B2, . . ., Bm)
R.Ai=S.Bj
 Result is a relation Q with degree n + m attributes:
 Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.
 The resulting relation state has one tuple for each
combination of tuples—r from R and s from S, but only if
they satisfy the join condition r[Ai]=s[Bj]
 Hence, if R has nR tuples, and S has nS tuples, then the join
result will generally have less than nR * nS tuples.
 Only related tuples (based on the join condition) will appear
in the result
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 41
Some properties of JOIN
 The general case of JOIN operation is called a
Theta-join: R S
theta
 The join condition is called theta
 Theta can be any general boolean expression on
the attributes of R and S; for example:
 R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)
 Most join conditions involve one or more equality
conditions “AND”ed together; for example:
 R.Ai=S.Bj AND R.Ak=S.Bl AND R.Ap=S.Bq
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 42
Binary Relational Operations: EQUIJOIN
 EQUIJOIN Operation
 The most common use of join involves join
conditions with equality comparisons only
 Such a join, where the only comparison operator
used is =, is called an EQUIJOIN.
 In the result of an EQUIJOIN we always have one
or more pairs of attributes (whose names need not
be identical) that have identical values in every
tuple.
 The JOIN seen in the previous example was an
EQUIJOIN.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 43
Binary Relational Operations:
NATURAL JOIN Operation
 NATURAL JOIN Operation
 Another variation of JOIN called NATURAL JOIN —
denoted by * — was created to get rid of the second
(superfluous) attribute in an EQUIJOIN condition.
 because one of each pair of attributes with identical values is
superfluous
 The standard definition of natural join requires that the two
join attributes, or each pair of corresponding join attributes,
have the same name in both relations
 If this is not the case, a renaming operation is applied first.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 44
Binary Relational Operations
NATURAL JOIN (continued)
 Example: To apply a natural join on the DNUMBER attributes of
DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:
 DEPT_LOCS  DEPARTMENT * DEPT_LOCATIONS
 Only attribute with the same name is DNUMBER
 An implicit join condition is created based on this attribute:
DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER
 Another example: Q  R(A,B,C,D) * S(C,D,E)
 The implicit join condition includes each pair of attributes with the
same name, “AND”ed together:
 R.C=S.C AND R.D.S.D
 Result keeps only one attribute of each such pair:
 Q(A,B,C,D,E)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 45
Example of NATURAL JOIN operation
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 46
Complete Set of Relational Operations
 The set of operations including SELECT ,
PROJECT  , UNION , DIFFERENCE - ,
RENAME , and CARTESIAN PRODUCT X is
called a complete set because any other
relational algebra expression can be expressed
by a combination of these five operations.
 For example:
 R  S = (R  S ) – ((R - S)  (S - R))
 R <join condition>S =  <join condition> (R X S)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 47
Binary Relational Operations: DIVISION
 DIVISION Operation
 The division operation is applied to two relations
 R(Z)  S(X), where X subset Z. Let Y = Z - X (and hence Z
= X  Y); that is, let Y be the set of attributes of R that are
not attributes of S.
 The result of DIVISION is a relation T(Y) that includes a
tuple t if tuples tR appear in R with tR [Y] = t, and with
 tR [X] = ts for every tuple ts in S.
 For a tuple t to appear in the result T of the DIVISION, the
values in t must appear in R in combination with every tuple
in S.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 48
Example of DIVISION
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Table 8.1 Operations of Relational
Algebra
continued on next slide
Slide 8- 49
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Table 8.1 Operations of Relational
Algebra (continued)
Slide 8- 50
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 51
Query Tree Notation
 Query Tree
 An internal data structure to represent a query
 Standard technique for estimating the work involved in
executing the query, the generation of intermediate results,
and the optimization of execution
 Nodes stand for operations like selection, projection, join,
renaming, division, ….
 Leaf nodes represent base relations
 A tree gives a good visual feel of the complexity of the
query and the operations involved
 Algebraic Query Optimization consists of rewriting the query
or modifying the query tree into an equivalent tree.
(see Chapter 15)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 52
Example of Query Tree
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 53
Additional Relational Operations:
Aggregate Functions and Grouping
 A type of request that cannot be expressed in the basic
relational algebra is to specify mathematical aggregate
functions on collections of values from the database.
 Examples of such functions include retrieving the average
or total salary of all employees or the total number of
employee tuples.
 These functions are used in simple statistical queries that
summarize information from the database tuples.
 Common functions applied to collections of numeric
values include
 SUM, AVERAGE, MAXIMUM, and MINIMUM.
 The COUNT function is used for counting tuples or
values.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 54
Aggregate Function Operation
 Use of the Aggregate Functional operation ℱ
 ℱMAX Salary (EMPLOYEE) retrieves the maximum salary value
from the EMPLOYEE relation
 ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary value
from the EMPLOYEE relation
 ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary
from the EMPLOYEE relation
 ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE) computes the count
(number) of employees and their average salary
 Note: count just counts the number of rows, without removing
duplicates
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 55
Using Grouping with Aggregation
 The previous examples all summarized one or more
attributes for a set of tuples
 Maximum Salary or Count (number of) Ssn
 Grouping can be combined with Aggregate Functions
 Example: For each department, retrieve the DNO,
COUNT SSN, and AVERAGE SALARY
 A variation of aggregate operation ℱ allows this:
 Grouping attribute placed to left of symbol
 Aggregate functions to right of symbol
 DNO ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE)
 Above operation groups employees by DNO (department
number) and computes the count of employees and
average salary per department
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Figure 8.10 The aggregate function
operation.
a. ρR(Dno, No_of_employees, Average_sal)(Dno ℑ COUNT Ssn,
AVERAGE Salary (EMPLOYEE)).
b. Dno ℑ alary(EMPLOYEE).
c. ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE).
Slide 8- 56
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Figure 7.1a Results of GROUP BY
and HAVING (in SQL). Q24.
continued on next slide
Slide 8- 57
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 58
Additional Relational Operations
(continued)
 Recursive Closure Operations
 Another type of operation that, in general,
cannot be specified in the basic original
relational algebra is recursive closure.
 This operation is applied to a recursive
relationship.
 An example of a recursive operation is to
retrieve all SUPERVISEES of an EMPLOYEE
e at all levels — that is, all EMPLOYEE e’
directly supervised by e; all employees e’’
directly supervised by each employee e’; all
employees e’’’ directly supervised by each
employee e’’; and so on.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 59
Additional Relational Operations
(continued)
 Although it is possible to retrieve employees at
each level and then take their union, we cannot,
in general, specify a query such as “retrieve the
supervisees of ‘James Borg’ at all levels” without
utilizing a looping mechanism.
 The SQL3 standard includes syntax for recursive
closure.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Figure 8.11 A two-level recursive
query.
Slide 8- 60
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 61
Additional Relational Operations
(continued)
 The OUTER JOIN Operation
 In NATURAL JOIN and EQUIJOIN, tuples without a
matching (or related) tuple are eliminated from the join
result
 Tuples with null in the join attributes are also eliminated
 This amounts to loss of information.
 A set of operations, called OUTER joins, can be used when
we want to keep all the tuples in R, or all those in S, or all
those in both relations in the result of the join, regardless of
whether or not they have matching tuples in the other
relation.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 62
Additional Relational Operations
(continued)
 The left outer join operation keeps every tuple in
the first or left relation R in R S; if no matching
tuple is found in S, then the attributes of S in the
join result are filled or “padded” with null values.
 A similar operation, right outer join, keeps every
tuple in the second or right relation S in the result
of R S.
 A third operation, full outer join, denoted by
keeps all tuples in both the left and the right
relations when no matching tuples are found,
padding them with null values as needed.
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Figure 8.12 The result of a LEFT
OUTER JOIN operation.
Slide 8- 63
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 64
Additional Relational Operations
(continued)
 OUTER UNION Operations
 The outer union operation was developed to take
the union of tuples from two relations if the
relations are not type compatible.
 This operation will take the union of tuples in two
relations R(X, Y) and S(X, Z) that are partially
compatible, meaning that only some of their
attributes, say X, are type compatible.
 The attributes that are type compatible are
represented only once in the result, and those
attributes that are not type compatible from either
relation are also kept in the result relation T(X, Y,
Z).
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 65
Additional Relational Operations
(continued)
 Example: An outer union can be applied to two relations
whose schemas are STUDENT(Name, SSN, Department,
Advisor) and INSTRUCTOR(Name, SSN, Department,
Rank).
 Tuples from the two relations are matched based on having the
same combination of values of the shared attributes— Name,
SSN, Department.
 If a student is also an instructor, both Advisor and Rank will
have a value; otherwise, one of these two attributes will be null.
 The result relation STUDENT_OR_INSTRUCTOR will have the
following attributes:
STUDENT_OR_INSTRUCTOR (Name, SSN, Department,
Advisor, Rank)
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Inner join
Slide 16- 66
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
Outer join
 Left outer join
Slide 16- 67
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
 Right outer join
Slide 16- 68
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
 Full outer join
Slide 16- 69
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 70
Chapter Summary
 Relational Algebra
 Unary Relational Operations
 Relational Algebra Operations From Set Theory
 Binary Relational Operations
 Additional Relational Operations
 Examples of Queries in Relational Algebra
 Relational Calculus
 Tuple Relational Calculus
 Domain Relational Calculus
 Overview of the QBE language (appendix C)

More Related Content

PDF
Database management system chapter eigei
PPTX
Chapter 08.pptx
PPT
Database systemhe Relational Alge. goodbra.
PDF
5 the relational algebra and calculus
PPT
relational algebra IN DATABASE MANAGEMENT SYSTEM COURSE FOR 4TH SEM VTU
PPT
Mapping of Multivalued attributesER-to-Relational Mapping Algorithm.ppt
PPTX
relalgebra-220717082803-22f6cf31_2 - Copy.pptx
Database management system chapter eigei
Chapter 08.pptx
Database systemhe Relational Alge. goodbra.
5 the relational algebra and calculus
relational algebra IN DATABASE MANAGEMENT SYSTEM COURSE FOR 4TH SEM VTU
Mapping of Multivalued attributesER-to-Relational Mapping Algorithm.ppt
relalgebra-220717082803-22f6cf31_2 - Copy.pptx

Similar to relation algebra unit ii notes and their queries (20)

PPTX
Relational Algebra.pptx for Module four
PPT
relAlgebra.ppt
PPT
Chapter07 database system in computer.ppt
PPT
Relational-algebra in Data base management ppts
PPT
Module 2-2.ppt
PDF
DBMS Module 2.2.pdf......................
PPT
Elmasri_6e_Ch06gdfgdfgdfgdfgdfgdfdgdfg.ppt
DOCX
Relational Algebra Ch6 (Navathe 4th edition)/ Ch7 (Navathe 3rd edition)
PPT
Module 3 Part I - Bk1 Chapter 07.ppt
PPTX
lecture 4 Relational Algebra my sql work
PPTX
3._Relational_Algebra.pptx:Basics of relation algebra
PPTX
Query and optimizing operating system.pptx
PPT
Relational Algebra-Database Systems
PPT
sql ppt of nitj. Jalandhar proffersor mes shefali
PPT
Chapter05 database sytem in computer . ppt
PPTX
ch04-The Relational Data Model and Relational Database Constraints [Compatibi...
PDF
Chapter05 Data Base Chapter05 Data Base .pdf
PPT
Chapter05db
PPT
Chapter09.ppt
Relational Algebra.pptx for Module four
relAlgebra.ppt
Chapter07 database system in computer.ppt
Relational-algebra in Data base management ppts
Module 2-2.ppt
DBMS Module 2.2.pdf......................
Elmasri_6e_Ch06gdfgdfgdfgdfgdfgdfdgdfg.ppt
Relational Algebra Ch6 (Navathe 4th edition)/ Ch7 (Navathe 3rd edition)
Module 3 Part I - Bk1 Chapter 07.ppt
lecture 4 Relational Algebra my sql work
3._Relational_Algebra.pptx:Basics of relation algebra
Query and optimizing operating system.pptx
Relational Algebra-Database Systems
sql ppt of nitj. Jalandhar proffersor mes shefali
Chapter05 database sytem in computer . ppt
ch04-The Relational Data Model and Relational Database Constraints [Compatibi...
Chapter05 Data Base Chapter05 Data Base .pdf
Chapter05db
Chapter09.ppt
Ad

Recently uploaded (20)

PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
Weekly quiz Compilation Jan -July 25.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
Classroom Observation Tools for Teachers
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
master seminar digital applications in india
PDF
01-Introduction-to-Information-Management.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Trump Administration's workforce development strategy
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Complications of Minimal Access Surgery at WLH
Weekly quiz Compilation Jan -July 25.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Microbial diseases, their pathogenesis and prophylaxis
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Computing-Curriculum for Schools in Ghana
Classroom Observation Tools for Teachers
human mycosis Human fungal infections are called human mycosis..pptx
Final Presentation General Medicine 03-08-2024.pptx
master seminar digital applications in india
01-Introduction-to-Information-Management.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Trump Administration's workforce development strategy
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Ad

relation algebra unit ii notes and their queries

  • 1. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe
  • 2. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe CHAPTER 8 The Relational Algebra Slide 8- 2
  • 3. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 3 Chapter Outline  Relational Algebra  Unary Relational Operations  Relational Algebra Operations From Set Theory  Binary Relational Operations  Additional Relational Operations  Examples of Queries in Relational Algebra  Relational Calculus  Tuple Relational Calculus  Domain Relational Calculus  Example Database Application (COMPANY)  Overview of the QBE language (appendix D)
  • 4. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 4 Relational Algebra Overview  Relational algebra is the basic set of operations for the relational model  These operations enable a user to specify basic retrieval requests (or queries)  The result of an operation is a new relation, which may have been formed from one or more input relations  This property makes the algebra “closed” (all objects in relational algebra are relations)
  • 5. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 5 Relational Algebra Overview (continued)  The algebra operations thus produce new relations  These can be further manipulated using operations of the same algebra  A sequence of relational algebra operations forms a relational algebra expression  The result of a relational algebra expression is also a relation that represents the result of a database query (or retrieval request)
  • 6. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 6 Brief History of Origins of Algebra  Muhammad ibn Musa al-Khwarizmi (800-847 CE) – from Morocco wrote a book titled al-jabr about arithmetic of variables  Book was translated into Latin.  Its title (al-jabr) gave Algebra its name.  Al-Khwarizmi called variables “shay”  “Shay” is Arabic for “thing”.  Spanish transliterated “shay” as “xay” (“x” was “sh” in Spain).  In time this word was abbreviated as x.  Where does the word Algorithm come from?  Algorithm originates from “al-Khwarizmi"  Reference: PBS (http://www.pbs.org/empires/islam/innoalgebra.html)
  • 7. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 7 Relational Algebra Overview  Relational Algebra consists of several groups of operations  Unary Relational Operations  SELECT (symbol:  (sigma))  PROJECT (symbol:  (pi))  RENAME (symbol:  (rho))  Relational Algebra Operations From Set Theory  UNION (  ), INTERSECTION (  ), DIFFERENCE (or MINUS, – )  CARTESIAN PRODUCT ( x )  Binary Relational Operations  JOIN (several variations of JOIN exist)  DIVISION  Additional Relational Operations  OUTER JOINS, OUTER UNION  AGGREGATE FUNCTIONS (These compute summary of information: for example, SUM, COUNT, AVG, MIN, MAX)
  • 8. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 8 Database State for COMPANY  All examples discussed below refer to the COMPANY database shown here.
  • 9. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 9 Unary Relational Operations: SELECT  The SELECT operation (denoted by  (sigma)) is used to select a subset of the tuples from a relation based on a selection condition.  The selection condition acts as a filter  Keeps only those tuples that satisfy the qualifying condition  Tuples satisfying the condition are selected whereas the other tuples are discarded (filtered out)  Examples:  Select the EMPLOYEE tuples whose department number is 4:  DNO = 4 (EMPLOYEE)  Select the employee tuples whose salary is greater than $30,000:  SALARY > 30,000 (EMPLOYEE)
  • 10. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 10 Unary Relational Operations: SELECT  In general, the select operation is denoted by  <selection condition>(R) where  the symbol  (sigma) is used to denote the select operator  the selection condition is a Boolean (conditional) expression specified on the attributes of relation R  tuples that make the condition true are selected  appear in the result of the operation  tuples that make the condition false are filtered out  discarded from the result of the operation
  • 11. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 11 Unary Relational Operations: SELECT (continued)  SELECT Operation Properties  The SELECT operation  <selection condition>(R) produces a relation S that has the same schema (same attributes) as R  SELECT  is commutative:   <condition1>( < condition2> (R)) =  <condition2> ( < condition1> (R))  Because of commutativity property, a cascade (sequence) of SELECT operations may be applied in any order:  <cond1>(<cond2> (<cond3> (R)) = <cond2> (<cond3> (<cond1> ( R)))  A cascade of SELECT operations may be replaced by a single selection with a conjunction of all the conditions:  <cond1>(< cond2> (<cond3>(R)) =  <cond1> AND < cond2> AND < cond3>(R)))  The number of tuples in the result of a SELECT is less than (or equal to) the number of tuples in the input relation R
  • 12. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 12 The following query results refer to this database state
  • 13. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 13 Unary Relational Operations: PROJECT  PROJECT Operation is denoted by  (pi)  This operation keeps certain columns (attributes) from a relation and discards the other columns.  PROJECT creates a vertical partitioning  The list of specified columns (attributes) is kept in each tuple  The other attributes in each tuple are discarded  Example: To list each employee’s first and last name and salary, the following is used: LNAME, FNAME,SALARY(EMPLOYEE)
  • 14. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 14 Unary Relational Operations: PROJECT (cont.)  The general form of the project operation is: <attribute list>(R)   (pi) is the symbol used to represent the project operation  <attribute list> is the desired list of attributes from relation R.  The project operation removes any duplicate tuples  This is because the result of the project operation must be a set of tuples  Mathematical sets do not allow duplicate elements.
  • 15. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 15 Unary Relational Operations: PROJECT (contd.)  PROJECT Operation Properties  The number of tuples in the result of projection <list>(R) is always less or equal to the number of tuples in R  If the list of attributes includes a key of R, then the number of tuples in the result of PROJECT is equal to the number of tuples in R  PROJECT is not commutative   <list1> ( <list2> (R) ) =  <list1> (R) as long as <list2> contains the attributes in <list1>
  • 16. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 16 Examples of applying SELECT and PROJECT operations
  • 17. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 17 Relational Algebra Expressions  We may want to apply several relational algebra operations one after the other  Either we can write the operations as a single relational algebra expression by nesting the operations, or  We can apply one operation at a time and create intermediate result relations.  In the latter case, we must give names to the relations that hold the intermediate results.
  • 18. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 18 Single expression versus sequence of relational operations (Example)  To retrieve the first name, last name, and salary of all employees who work in department number 5, we must apply a select and a project operation  We can write a single relational algebra expression as follows:  FNAME, LNAME, SALARY( DNO=5(EMPLOYEE))  OR We can explicitly show the sequence of operations, giving a name to each intermediate relation:  DEP5_EMPS   DNO=5(EMPLOYEE)  RESULT   FNAME, LNAME, SALARY (DEP5_EMPS)
  • 19. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 19 Unary Relational Operations: RENAME  The RENAME operator is denoted by  (rho)  In some cases, we may want to rename the attributes of a relation or the relation name or both  Useful when a query requires multiple operations  Necessary in some cases (see JOIN operation later)
  • 20. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 20 Unary Relational Operations: RENAME (continued)  The general RENAME operation  can be expressed by any of the following forms:  S (B1, B2, …, Bn )(R) changes both:  the relation name to S, and  the column (attribute) names to B1, B1, …..Bn  S(R) changes:  the relation name only to S  (B1, B2, …, Bn )(R) changes:  the column (attribute) names only to B1, B1, …..Bn
  • 21. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 21 Unary Relational Operations: RENAME (continued)  For convenience, we also use a shorthand for renaming attributes in an intermediate relation:  If we write: • RESULT   FNAME, LNAME, SALARY (DEP5_EMPS) • RESULT will have the same attribute names as DEP5_EMPS (same attributes as EMPLOYEE) • If we write: • RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO)  RESULT (F.M.L.S.B,A,SX,SAL,SU, DNO)(DEP5_EMPS) • The 10 attributes of DEP5_EMPS are renamed to F, M, L, S, B, A, SX, SAL, SU, DNO, respectively Note: the  symbol is an assignment operator
  • 22. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 22 Example of applying multiple operations and RENAME
  • 23. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 23 Relational Algebra Operations from Set Theory: UNION  UNION Operation  Binary operation, denoted by   The result of R  S, is a relation that includes all tuples that are either in R or in S or in both R and S  Duplicate tuples are eliminated  The two operand relations R and S must be “type compatible” (or UNION compatible)  R and S must have same number of attributes  Each pair of corresponding attributes must be type compatible (have same or compatible domains)
  • 24. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 24 Relational Algebra Operations from Set Theory: UNION  Example:  To retrieve the social security numbers of all employees who either work in department 5 (RESULT1 below) or directly supervise an employee who works in department 5 (RESULT2 below)  We can use the UNION operation as follows: DEP5_EMPS  DNO=5 (EMPLOYEE) RESULT1   SSN(DEP5_EMPS) RESULT2(SSN)  SUPERSSN(DEP5_EMPS) RESULT  RESULT1  RESULT2  The union operation produces the tuples that are in either RESULT1 or RESULT2 or both
  • 25. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Figure 8.3 Result of the UNION operation RESULT ← RESULT1 ∪ RESULT2. Slide 8- 25
  • 26. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 26 Relational Algebra Operations from Set Theory  Type Compatibility of operands is required for the binary set operation UNION , (also for INTERSECTION , and SET DIFFERENCE –, see next slides)  R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type compatible if:  they have the same number of attributes, and  the domains of corresponding attributes are type compatible (i.e. dom(Ai)=dom(Bi) for i=1, 2, ..., n).  The resulting relation for R1R2 (also for R1R2, or R1– R2, see next slides) has the same attribute names as the first operand relation R1 (by convention)
  • 27. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 27 Relational Algebra Operations from Set Theory: INTERSECTION  INTERSECTION is denoted by   The result of the operation R  S, is a relation that includes all tuples that are in both R and S  The attribute names in the result will be the same as the attribute names in R  The two operand relations R and S must be “type compatible”
  • 28. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 28 Relational Algebra Operations from Set Theory: SET DIFFERENCE (cont.)  SET DIFFERENCE (also called MINUS or EXCEPT) is denoted by –  The result of R – S, is a relation that includes all tuples that are in R but not in S  The attribute names in the result will be the same as the attribute names in R  The two operand relations R and S must be “type compatible”
  • 29. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 29 Example to illustrate the result of UNION, INTERSECT, and DIFFERENCE
  • 30. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 30 Some properties of UNION, INTERSECT, and DIFFERENCE  Notice that both union and intersection are commutative operations; that is  R  S = S  R, and R  S = S  R  Both union and intersection can be treated as n-ary operations applicable to any number of relations as both are associative operations; that is  R  (S  T) = (R  S)  T  (R  S)  T = R  (S  T)  The minus operation is not commutative; that is, in general  R – S ≠ S – R
  • 31. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 31 Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT  CARTESIAN (or CROSS) PRODUCT Operation  This operation is used to combine tuples from two relations in a combinatorial fashion.  Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)  Result is a relation Q with degree n + m attributes:  Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.  The resulting relation state has one tuple for each combination of tuples—one from R and one from S.  Hence, if R has nR tuples (denoted as |R| = nR ), and S has nS tuples, then R x S will have nR * nS tuples.  The two operands do NOT have to be "type compatible”
  • 32. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 32 Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT (cont.)  Generally, CROSS PRODUCT is not a meaningful operation  Can become meaningful when followed by other operations  Example (not meaningful):  FEMALE_EMPS   SEX=’F’(EMPLOYEE)  EMPNAMES   FNAME, LNAME, SSN (FEMALE_EMPS)  EMP_DEPENDENTS  EMPNAMES x DEPENDENT  EMP_DEPENDENTS will contain every combination of EMPNAMES and DEPENDENT  whether or not they are actually related
  • 33. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 33 Relational Algebra Operations from Set Theory: CARTESIAN PRODUCT (cont.)  To keep only combinations where the DEPENDENT is related to the EMPLOYEE, we add a SELECT operation as follows  Example (meaningful):  FEMALE_EMPS   SEX=’F’(EMPLOYEE)  EMPNAMES   FNAME, LNAME, SSN (FEMALE_EMPS)  EMP_DEPENDENTS  EMPNAMES x DEPENDENT  ACTUAL_DEPS   SSN=ESSN(EMP_DEPENDENTS)  RESULT   FNAME, LNAME, DEPENDENT_NAME (ACTUAL_DEPS)  RESULT will now contain the name of female employees and their dependents
  • 34. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Figure 8.5 The CARTESIAN PRODUCT (CROSS PRODUCT) operation. continued on next slide Slide 8- 34
  • 35. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Figure 8.5 (continued) The CARTESIAN PRODUCT (CROSS PRODUCT) operation. continued on next slide Slide 8- 35
  • 36. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Figure 8.5 (continued) The CARTESIAN PRODUCT (CROSS PRODUCT) operation. Slide 8- 36
  • 37. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 37 Binary Relational Operations: JOIN  JOIN Operation (denoted by )  The sequence of CARTESIAN PRODECT followed by SELECT is used quite commonly to identify and select related tuples from two relations  A special operation, called JOIN combines this sequence into a single operation  This operation is very important for any relational database with more than a single relation, because it allows us combine related tuples from various relations  The general form of a join operation on two relations R(A1, A2, . . ., An) and S(B1, B2, . . ., Bm) is: R <join condition>S  where R and S can be any relations that result from general relational algebra expressions.
  • 38. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 38 Binary Relational Operations: JOIN (cont.)  Example: Suppose that we want to retrieve the name of the manager of each department.  To get the manager’s name, we need to combine each DEPARTMENT tuple with the EMPLOYEE tuple whose SSN value matches the MGRSSN value in the department tuple.  We do this by using the join operation.  DEPT_MGR  DEPARTMENT MGRSSN=SSN EMPLOYEE  MGRSSN=SSN is the join condition  Combines each department record with the employee who manages the department  The join condition can also be specified as DEPARTMENT.MGRSSN= EMPLOYEE.SSN
  • 39. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Figure 8.6 Result of the JOIN operation DEPT_MGR ← DEPARTMENT|X| Mgr_ssn=SsnEMPLOYEE. Slide 8- 39
  • 40. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 40 Some properties of JOIN  Consider the following JOIN operation:  R(A1, A2, . . ., An) S(B1, B2, . . ., Bm) R.Ai=S.Bj  Result is a relation Q with degree n + m attributes:  Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.  The resulting relation state has one tuple for each combination of tuples—r from R and s from S, but only if they satisfy the join condition r[Ai]=s[Bj]  Hence, if R has nR tuples, and S has nS tuples, then the join result will generally have less than nR * nS tuples.  Only related tuples (based on the join condition) will appear in the result
  • 41. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 41 Some properties of JOIN  The general case of JOIN operation is called a Theta-join: R S theta  The join condition is called theta  Theta can be any general boolean expression on the attributes of R and S; for example:  R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)  Most join conditions involve one or more equality conditions “AND”ed together; for example:  R.Ai=S.Bj AND R.Ak=S.Bl AND R.Ap=S.Bq
  • 42. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 42 Binary Relational Operations: EQUIJOIN  EQUIJOIN Operation  The most common use of join involves join conditions with equality comparisons only  Such a join, where the only comparison operator used is =, is called an EQUIJOIN.  In the result of an EQUIJOIN we always have one or more pairs of attributes (whose names need not be identical) that have identical values in every tuple.  The JOIN seen in the previous example was an EQUIJOIN.
  • 43. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 43 Binary Relational Operations: NATURAL JOIN Operation  NATURAL JOIN Operation  Another variation of JOIN called NATURAL JOIN — denoted by * — was created to get rid of the second (superfluous) attribute in an EQUIJOIN condition.  because one of each pair of attributes with identical values is superfluous  The standard definition of natural join requires that the two join attributes, or each pair of corresponding join attributes, have the same name in both relations  If this is not the case, a renaming operation is applied first.
  • 44. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 44 Binary Relational Operations NATURAL JOIN (continued)  Example: To apply a natural join on the DNUMBER attributes of DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:  DEPT_LOCS  DEPARTMENT * DEPT_LOCATIONS  Only attribute with the same name is DNUMBER  An implicit join condition is created based on this attribute: DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER  Another example: Q  R(A,B,C,D) * S(C,D,E)  The implicit join condition includes each pair of attributes with the same name, “AND”ed together:  R.C=S.C AND R.D.S.D  Result keeps only one attribute of each such pair:  Q(A,B,C,D,E)
  • 45. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 45 Example of NATURAL JOIN operation
  • 46. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 46 Complete Set of Relational Operations  The set of operations including SELECT , PROJECT  , UNION , DIFFERENCE - , RENAME , and CARTESIAN PRODUCT X is called a complete set because any other relational algebra expression can be expressed by a combination of these five operations.  For example:  R  S = (R  S ) – ((R - S)  (S - R))  R <join condition>S =  <join condition> (R X S)
  • 47. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 47 Binary Relational Operations: DIVISION  DIVISION Operation  The division operation is applied to two relations  R(Z)  S(X), where X subset Z. Let Y = Z - X (and hence Z = X  Y); that is, let Y be the set of attributes of R that are not attributes of S.  The result of DIVISION is a relation T(Y) that includes a tuple t if tuples tR appear in R with tR [Y] = t, and with  tR [X] = ts for every tuple ts in S.  For a tuple t to appear in the result T of the DIVISION, the values in t must appear in R in combination with every tuple in S.
  • 48. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 48 Example of DIVISION
  • 49. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Table 8.1 Operations of Relational Algebra continued on next slide Slide 8- 49
  • 50. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Table 8.1 Operations of Relational Algebra (continued) Slide 8- 50
  • 51. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 51 Query Tree Notation  Query Tree  An internal data structure to represent a query  Standard technique for estimating the work involved in executing the query, the generation of intermediate results, and the optimization of execution  Nodes stand for operations like selection, projection, join, renaming, division, ….  Leaf nodes represent base relations  A tree gives a good visual feel of the complexity of the query and the operations involved  Algebraic Query Optimization consists of rewriting the query or modifying the query tree into an equivalent tree. (see Chapter 15)
  • 52. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 52 Example of Query Tree
  • 53. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 53 Additional Relational Operations: Aggregate Functions and Grouping  A type of request that cannot be expressed in the basic relational algebra is to specify mathematical aggregate functions on collections of values from the database.  Examples of such functions include retrieving the average or total salary of all employees or the total number of employee tuples.  These functions are used in simple statistical queries that summarize information from the database tuples.  Common functions applied to collections of numeric values include  SUM, AVERAGE, MAXIMUM, and MINIMUM.  The COUNT function is used for counting tuples or values.
  • 54. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 54 Aggregate Function Operation  Use of the Aggregate Functional operation ℱ  ℱMAX Salary (EMPLOYEE) retrieves the maximum salary value from the EMPLOYEE relation  ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary value from the EMPLOYEE relation  ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary from the EMPLOYEE relation  ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE) computes the count (number) of employees and their average salary  Note: count just counts the number of rows, without removing duplicates
  • 55. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 55 Using Grouping with Aggregation  The previous examples all summarized one or more attributes for a set of tuples  Maximum Salary or Count (number of) Ssn  Grouping can be combined with Aggregate Functions  Example: For each department, retrieve the DNO, COUNT SSN, and AVERAGE SALARY  A variation of aggregate operation ℱ allows this:  Grouping attribute placed to left of symbol  Aggregate functions to right of symbol  DNO ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE)  Above operation groups employees by DNO (department number) and computes the count of employees and average salary per department
  • 56. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Figure 8.10 The aggregate function operation. a. ρR(Dno, No_of_employees, Average_sal)(Dno ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE)). b. Dno ℑ alary(EMPLOYEE). c. ℑ COUNT Ssn, AVERAGE Salary(EMPLOYEE). Slide 8- 56
  • 57. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Figure 7.1a Results of GROUP BY and HAVING (in SQL). Q24. continued on next slide Slide 8- 57
  • 58. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 58 Additional Relational Operations (continued)  Recursive Closure Operations  Another type of operation that, in general, cannot be specified in the basic original relational algebra is recursive closure.  This operation is applied to a recursive relationship.  An example of a recursive operation is to retrieve all SUPERVISEES of an EMPLOYEE e at all levels — that is, all EMPLOYEE e’ directly supervised by e; all employees e’’ directly supervised by each employee e’; all employees e’’’ directly supervised by each employee e’’; and so on.
  • 59. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 59 Additional Relational Operations (continued)  Although it is possible to retrieve employees at each level and then take their union, we cannot, in general, specify a query such as “retrieve the supervisees of ‘James Borg’ at all levels” without utilizing a looping mechanism.  The SQL3 standard includes syntax for recursive closure.
  • 60. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Figure 8.11 A two-level recursive query. Slide 8- 60
  • 61. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 61 Additional Relational Operations (continued)  The OUTER JOIN Operation  In NATURAL JOIN and EQUIJOIN, tuples without a matching (or related) tuple are eliminated from the join result  Tuples with null in the join attributes are also eliminated  This amounts to loss of information.  A set of operations, called OUTER joins, can be used when we want to keep all the tuples in R, or all those in S, or all those in both relations in the result of the join, regardless of whether or not they have matching tuples in the other relation.
  • 62. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 62 Additional Relational Operations (continued)  The left outer join operation keeps every tuple in the first or left relation R in R S; if no matching tuple is found in S, then the attributes of S in the join result are filled or “padded” with null values.  A similar operation, right outer join, keeps every tuple in the second or right relation S in the result of R S.  A third operation, full outer join, denoted by keeps all tuples in both the left and the right relations when no matching tuples are found, padding them with null values as needed.
  • 63. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Figure 8.12 The result of a LEFT OUTER JOIN operation. Slide 8- 63
  • 64. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 64 Additional Relational Operations (continued)  OUTER UNION Operations  The outer union operation was developed to take the union of tuples from two relations if the relations are not type compatible.  This operation will take the union of tuples in two relations R(X, Y) and S(X, Z) that are partially compatible, meaning that only some of their attributes, say X, are type compatible.  The attributes that are type compatible are represented only once in the result, and those attributes that are not type compatible from either relation are also kept in the result relation T(X, Y, Z).
  • 65. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 65 Additional Relational Operations (continued)  Example: An outer union can be applied to two relations whose schemas are STUDENT(Name, SSN, Department, Advisor) and INSTRUCTOR(Name, SSN, Department, Rank).  Tuples from the two relations are matched based on having the same combination of values of the shared attributes— Name, SSN, Department.  If a student is also an instructor, both Advisor and Rank will have a value; otherwise, one of these two attributes will be null.  The result relation STUDENT_OR_INSTRUCTOR will have the following attributes: STUDENT_OR_INSTRUCTOR (Name, SSN, Department, Advisor, Rank)
  • 66. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Inner join Slide 16- 66
  • 67. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Outer join  Left outer join Slide 16- 67
  • 68. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe  Right outer join Slide 16- 68
  • 69. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe  Full outer join Slide 16- 69
  • 70. Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 8- 70 Chapter Summary  Relational Algebra  Unary Relational Operations  Relational Algebra Operations From Set Theory  Binary Relational Operations  Additional Relational Operations  Examples of Queries in Relational Algebra  Relational Calculus  Tuple Relational Calculus  Domain Relational Calculus  Overview of the QBE language (appendix C)