SlideShare a Scribd company logo
Rela%onal	
  Cloud	
  
A	
  Database-­‐as-­‐a-­‐Service	
  for	
  the	
  Cloud	
  

            Paper	
  by	
  Carlo	
  Curino	
  et	
  al.	
  @mit.edu	
  
                                       	
  
              Presenta%on	
  by	
  Antonio	
  Severien	
  
                            severien@kth.se	
  	
  
Overview	
  
Ø Rela%onal	
  Databases	
  
Ø Database-­‐as-­‐a-­‐Service	
  (DBaaS)	
  
Ø 	
  Problems	
  AEacked	
  
   Ø Efficient	
  Mul%-­‐tenancy	
  
   Ø Elas%c	
  Scalability	
  
   Ø Database	
  Privacy	
  
Ø Rela%onal	
  Cloud	
  
Ø Experiments	
  
Ø Conclusion	
  

                                                2	
  
Rela%onal	
  Cloud	
  
Ø Rela%onal	
  Databases	
  
Ø Database-­‐as-­‐a-­‐Service	
  (DBaaS)	
  
Ø Problems	
  AEacked	
  
   Ø Efficient	
  Mul%-­‐tenancy	
  
   Ø Elas%c	
  Scalability	
  
   Ø Database	
  Privacy	
  
Ø Rela%onal	
  Cloud	
  
Ø Experiments	
  
Ø Conclusion	
  

                                                3	
  
Rela%onal	
  Databases	
  
Ø 1970	
  by	
  Edgar	
  Codd,	
  IBM	
  research	
  San	
  Jose	
  
Ø Tables	
  
    Ø Rows	
  à	
  Tuples	
  
    Ø Columns	
  à	
  AEributes	
  
Ø Rela%onal	
  Database	
  Management	
  Systems	
  
   (RDBMS)	
  




                                                                        4	
  
Rela%onal	
  Cloud	
  
Ø Rela%onal	
  Databases	
  
Ø Database-­‐as-­‐a-­‐Service	
  (DBaaS)	
  
Ø Problems	
  AEacked	
  
   Ø Efficient	
  Mul%-­‐tenancy	
  
   Ø Elas%c	
  Scalability	
  
   Ø Database	
  Privacy	
  
Ø Rela%onal	
  Cloud	
  
Ø Experiments	
  
Ø Conclusion	
  

                                                5	
  
Database-­‐as-­‐a-­‐Service	
  (DBaaS)	
  
Ø Cloud	
  
Ø Reduce	
  management,	
  opera%onal	
  	
  
   and	
  energy	
  costs	
  
Ø Elas%city	
  and	
  scale	
  economy	
        amazon	
  RDS	
  
Ø Pay-­‐per-­‐use	
  




                                                                     6	
  
Rela%onal	
  Cloud	
  
Ø Rela%onal	
  Databases	
  
Ø Database-­‐as-­‐a-­‐Service	
  (DBaaS)	
  
Ø Problems	
  AEacked	
  
   Ø Efficient	
  Mul%-­‐tenancy	
  
   Ø Elas%c	
  Scalability	
  
   Ø Database	
  Privacy	
  
Ø Rela%onal	
  Cloud	
  
Ø Experiments	
  
Ø Conclusion	
  

                                                7	
  
Problems	
  AEacked	
  	
  


                      Efficient	
  	
  
                    Mul%-­‐tenancy	
  




Elas%c	
  Scalability	
                  Privacy	
  




                                                       8	
  
Efficient	
  	
  
Mul%-­‐tenancy	
  




                     9	
  
Efficient	
  Mul%-­‐tenancy	
  
Ø Reduce	
  costs	
  
Ø Efficient	
  usage	
  of	
  resources	
  
Ø Maximize	
  hardware	
  u%liza%on	
  
Ø Single	
  database	
  server	
  on	
  each	
  machine	
  
Ø Maintain	
  applica%on	
  query	
  performance	
  




                                                               10	
  
Efficient	
  Mul%-­‐tenancy	
  
Ø Reduce	
  costs	
  
Ø Efficient	
  usage	
  of	
  resources	
  
Ø Maximize	
  hardware	
  u%liza%on	
  
Ø Single	
  database	
  server	
  on	
  each	
  machine?	
  
Ø Maintain	
  applica%on	
  query	
  performance	
  
	
  


                       Virtual	
  Machine	
                     11	
  
Efficient	
  Mul%-­‐tenancy	
  
Ø Problems	
  
   Ø Monitoring	
  resource	
  requirements	
  for	
  workloads	
  
   Ø Predic%ng	
  the	
  load	
  generated	
  
   Ø Assigning	
  workloads	
  to	
  physical	
  machines	
  
   Ø Migra%ng	
  workloads	
  between	
  nodes	
  
   Ø Live	
  migra*on	
  




                                                                   12	
  
Efficient	
  Mul%-­‐tenancy	
  
Ø Kairos	
  (Monitoring	
  and	
  consolida%on	
  engine)	
  
   Ø Resource	
  Monitor	
  
       Disk	
  ac%vity	
  and	
  RAM	
  requirements	
  
   Ø Combined	
  Load	
  Predictor	
  
       CPU,	
  RAM,	
  Disk	
  model	
  that	
  predicts	
  the	
  combined	
  
       resource	
  requirements	
  
   Ø Consolida%on	
  Engine	
  
       Non-­‐linear	
  op%miza%on	
  techniques	
  to…	
  
         	
  …	
  minimize	
  the	
  number	
  of	
  machines	
  needed	
  
         	
  …	
  balance	
  load	
  between	
  back-­‐end	
  machines	
  

                                                                                  13	
  
Elas%c	
  Scalability	
  




                            14	
  
Elas%c	
  Scalability	
  
Ø Workload	
  exceeds	
  single	
  machine	
  capacity	
  
	
  

  Ø Scale	
  a	
  single	
  database	
  to	
  mul%ple	
  nodes	
  
  Ø Scale-­‐out	
  by	
  query	
  processing	
  par%%oning	
  
  Ø Granular	
  placement	
  and	
  load	
  balance	
  on	
  backend	
  




                                                                        15	
  
Elas%c	
  Scalability	
  
Ø Strategy	
  well	
  suited	
  for	
  OLTP	
  and	
  Web	
  
   workloads…	
  but	
  can	
  extend	
  to	
  OLAP	
  
Ø Minimize	
  cross-­‐node	
  distributed	
  transac%ons	
  
   	
  
Ø Workload-­‐aware	
  par**oner	
  
   Ø Par%%on	
  data	
  to	
  minimize	
  mul%-­‐node	
  transac%ons	
  
   Ø Front-­‐end	
  analyses	
  execu%on	
  traces	
  represented	
  
     as	
  a	
  graph	
  

                                                                       16	
  
Graph	
  Par%%oning	
  
                                                   we=2

                                                                               id	
     name	
       age	
     salary	
  


                    id	
     name	
     age	
     salary	
  



                                                                                                   we=1



                             we=10                     id	
     name	
     age	
        salary	
  




we :	
  weight	
  of	
  edge
                                                                                                                            17	
  
Graph	
  Par%%oning	
  
                                                   we=2

                                                                               id	
     name	
       age	
     salary	
  


                    id	
     name	
     age	
     salary	
  



                                                                                                   we=1



                             we=10                     id	
     name	
     age	
        salary	
  




we :	
  weight	
  of	
  edge
                                                                                                                            18	
  
Graph	
  Par%%oning	
  

                                                           id	
     name	
       age	
     salary	
  


id	
     name	
     age	
     salary	
  




                                   id	
     name	
     age	
        salary	
  




                                                                                                        19	
  
Privacy	
  




              20	
  
Privacy	
  
Ø Adjustable	
  security	
  
   Ø Onion	
  ring	
  encryp%on	
  design	
  
       2	
  onion	
  layer	
  and	
  1	
  homomorphic	
  encryp%on	
  of	
  integer	
  
   Ø SQL	
  query	
  on	
  encrypted	
  data	
  
   Ø Security	
  level	
  dynamically	
  adap%ve	
  
       Converge	
  to	
  an	
  overall	
  security	
  level	
  




                                                                                          21	
  
Onion	
  Layers	
  of	
  Encryp%on	
  
6.	
  RND:	
  no	
  func%onality	
               5.	
  RND:	
  no	
  func%onality	
        HOM:	
  addi%on	
  
                                                                                               int	
  value	
  
4.	
  DET:	
  equality	
  selec%on	
             3.	
  OPE:	
  inequality	
  select,	
  
                                                 min,	
  max,	
  sort,	
  group-­‐by	
  
  2.	
  DET:	
  equality	
  join	
                                                                  or	
  
                                                   1.	
  OPE:	
  inequality	
  join	
  
                                                                                            String	
  search	
  
               Value	
                                         Value	
  
                                                                                             string	
  value	
  


          Strong	
  
                           RND	
  =	
  Randomized	
  Encryp%on	
  (no	
  opera%ons	
  allowed)	
  
                           DET	
  =	
  Determinis%c	
  Encryp%on	
  	
  
                           OPE	
  =	
  Order-­‐preserving	
  Encryp%on	
  
                           HOM	
  =	
  Homomorphic	
  Encryp%on	
  (opera%ons	
  over	
  encrypted	
  data)	
  
         Weak	
  
                                                                                                                   22	
  
Rela%onal	
  Cloud	
  
Ø Rela%onal	
  Databases	
  
Ø Database-­‐as-­‐a-­‐Service	
  (DBaaS)	
  
Ø Problems	
  AEacked	
  
   Ø Efficient	
  Mul%-­‐tenancy	
  
   Ø Elas%c	
  Scalability	
  
   Ø Database	
  Privacy	
  
Ø Rela%onal	
  Cloud	
  
Ø Experiments	
  
Ø Conclusion	
  

                                                23	
  
Rela%onal	
  Cloud	
  Architecture	
  
                                                                        Client	
  Nodes	
  
                               Users	
                                                  User	
  Applica%on	
  
                                                                            JDBC-­‐client	
  (CryptoDB	
  enabled)	
  
 Trusted	
  Pla,orm	
  (Private/Secured)	
                   Privacy-­‐preserving	
                     Privacy-­‐preserving	
  
 Untrusted	
  Pla,orm	
  (Public)	
                               Queries	
                                   Results	
  

    Admin	
  Nodes	
                                   Frontend	
  Nodes	
  
                                                         Router	
        Distributed	
  Transac%onal	
  Coordina%on	
  
         Par%%oning	
  Engine	
  

           Placement	
  and	
  
          Migra%on	
  Engine	
  
                                                       Backend	
  Nodes	
                                 Backend	
  Nodes	
  
                                   Database	
  	
          CryptoDB	
                                          CryptoDB	
  
Par**ons	
                         load	
  stats	
  
                                                       Encryp%on	
  Engine	
                               Encryp%on	
  Engine	
  
Placement	
  




                                                                                                                                   24	
  
Rela%onal	
  Cloud	
  
Ø Rela%onal	
  Databases	
  
Ø Database-­‐as-­‐a-­‐Service	
  (DBaaS)	
  
Ø Problems	
  AEacked	
  
   Ø Efficient	
  Mul%-­‐tenancy	
  
   Ø Elas%c	
  Scalability	
  
   Ø Database	
  Privacy	
  
Ø Rela%onal	
  Cloud	
  
Ø Experiments	
  
Ø Conclusion	
  

                                                25	
  
Experiments	
  




                  26	
  
Experiments	
  




      Bad	
  results?	
  
Tradeoff	
  for	
  be=er	
  privacy	
  
                                         27	
  
Experiments	
  
  Scaling	
  TPC-­‐C	
  




                           28	
  
Rela%onal	
  Cloud	
  
Ø Rela%onal	
  Databases	
  
Ø Database-­‐as-­‐a-­‐Service	
  (DBaaS)	
  
Ø Problems	
  AEacked	
  
   Ø Efficient	
  Mul%-­‐tenancy	
  
   Ø Elas%c	
  Scalability	
  
   Ø Database	
  Privacy	
  
Ø Rela%onal	
  Cloud	
  
Ø Experiments	
  
Ø Conclusion	
  

                                                29	
  
Conclusion	
  
Ø Presented	
  Rela%onal	
  Cloud	
  
Ø Efficient	
  Mul%-­‐tenancy	
  
     Ø Novel	
  resource	
  es%ma%on	
  
     Ø Non-­‐linear	
  op%miza%on-­‐based	
  consolida%on	
  technique	
  
Ø Scalability	
  
     Ø Graph-­‐based	
  par%%oning	
  
Ø Privacy	
  	
  
     Ø Adjustable	
  privacy	
  
     Ø SQL	
  queries	
  on	
  encrypted	
  data	
  
Ø DBaaS	
  is	
  a	
  viable	
  cloud	
  service	
  
	
  
                                                                              30	
  
Relational Cloud
References	
  
Ø  "Rela%onal	
  Cloud:	
  a	
  Database	
  Service	
  for	
  the	
  cloud"	
  Carlo	
  
    Curino,	
  Evan	
  Jones,	
  Raluca	
  Popa,	
  Nirmesh	
  Malviya,	
  Eugene	
  
    Wu,	
  Sam	
  Madden,	
  Har	
  Balakrishnan,	
  Nickolai	
  Zeldovich	
  
Ø  hEp://rela%onalcloud.com	
  	
  




                                                                                            32	
  
Privacy	
  
CryptoDB	
  Example	
  

                                                                                            DET-­‐encrypted	
  	
  
 Return	
  to	
  JDBC	
  client	
  decrypted	
  	
                                          cyphertext	
  
 RND	
  cyphertexts	
  


  SELECT i_price, ... FROM item WHERE i_id = N



                                                       JDBC	
  client	
  decrypts	
  	
  
                                                       DET	
  level	
  4	
  


                                                                                                                      33	
  

More Related Content

PDF
ApacheCon Europe 2012 - Real Time Big Data in practice with Cassandra
PDF
NoSQL Matters 2012 - Real Time Big Data in practice with Cassandra
PDF
A critique of snapshot isolation: eurosys 2012
PPT
Unidad 6
PPT
Unidad 4
PDF
Лекция 12: Трудноразрешимые задачи
PPTX
PSOCLD-1006 Cisco Cloud Architectures on OpenStack - Cisco Live! US 2015 San ...
PDF
China beer industry profile cic1522 sample pages
ApacheCon Europe 2012 - Real Time Big Data in practice with Cassandra
NoSQL Matters 2012 - Real Time Big Data in practice with Cassandra
A critique of snapshot isolation: eurosys 2012
Unidad 6
Unidad 4
Лекция 12: Трудноразрешимые задачи
PSOCLD-1006 Cisco Cloud Architectures on OpenStack - Cisco Live! US 2015 San ...
China beer industry profile cic1522 sample pages

Viewers also liked (14)

PPTX
Relational cloud, A Database-as-a-Service for the Cloud
PDF
Driegeleding
DOCX
Mycobacterium
DOCX
Salmonella typhi
PDF
Introduction to Pig_cert
PDF
Pratico 1
PPS
Bretagne
PDF
G structure du tour et TBA
PDF
J pile et capacités déclenchées
PDF
Solar water pump by durak impex pvt ltd
PDF
SOLO Swiss Profitherm Atmosphere Furnace Metal Heat Treatment Fast mounting
DOCX
Spss print screen analisis regreasi
PDF
DOCX
Mari kita sambut sang raja
Relational cloud, A Database-as-a-Service for the Cloud
Driegeleding
Mycobacterium
Salmonella typhi
Introduction to Pig_cert
Pratico 1
Bretagne
G structure du tour et TBA
J pile et capacités déclenchées
Solar water pump by durak impex pvt ltd
SOLO Swiss Profitherm Atmosphere Furnace Metal Heat Treatment Fast mounting
Spss print screen analisis regreasi
Mari kita sambut sang raja
Ad

Similar to Relational Cloud (20)

PDF
Oop Overview
PPT
saurabh soni rac
PDF
High-Performance Graph Analysis and Modeling
PDF
Neo4j -- or why graph dbs kick ass
PDF
Services Oriented Infrastructure in a Web2.0 World
PDF
API's, Freebase, and the Collaborative Semantic web
PDF
Neo4j - The Benefits of Graph Databases (OSCON 2009)
PDF
NoSQL Data Stores: Introduzione alle Basi di Dati Non Relazionali
PDF
Tuning Skype’s Redundancy Control Algorithm for User Satisfaction
PDF
HP Storage Works -Clemes Esser
PDF
Data Aggregation System
PPT
Memory Management for High-Performance Applications
PPTX
Financial Networks VI - Correlation Networks
PDF
Rails Conf Europe 2007 Notes
PDF
Building Large-scale Real-world Recommender Systems - Recsys2012 tutorial
PDF
Table29 Data Validation 95
PPT
Dynamo Systems - QCon SF 2012 Presentation
PDF
Linked In Lessons Learned And Growth And Scalability
PDF
Massive MapReduce Matrix Computations & Multicore Graph Algorithms
PDF
Ruby on Rails 101 - Presentation Slides for a Five Day Introductory Course
Oop Overview
saurabh soni rac
High-Performance Graph Analysis and Modeling
Neo4j -- or why graph dbs kick ass
Services Oriented Infrastructure in a Web2.0 World
API's, Freebase, and the Collaborative Semantic web
Neo4j - The Benefits of Graph Databases (OSCON 2009)
NoSQL Data Stores: Introduzione alle Basi di Dati Non Relazionali
Tuning Skype’s Redundancy Control Algorithm for User Satisfaction
HP Storage Works -Clemes Esser
Data Aggregation System
Memory Management for High-Performance Applications
Financial Networks VI - Correlation Networks
Rails Conf Europe 2007 Notes
Building Large-scale Real-world Recommender Systems - Recsys2012 tutorial
Table29 Data Validation 95
Dynamo Systems - QCon SF 2012 Presentation
Linked In Lessons Learned And Growth And Scalability
Massive MapReduce Matrix Computations & Multicore Graph Algorithms
Ruby on Rails 101 - Presentation Slides for a Five Day Introductory Course
Ad

More from Antonio Severien (6)

PDF
Scalable Distributed Real-Time Clustering for Big Data Streams
PDF
Scalable Distributed Real-Time Clustering for Big Data Streams
PPTX
NoSQL: Cassadra vs. HBase
PDF
On Pragmatism and Scientific Freedom
PDF
Community cloud antonioseverien
PPTX
Soap vs rest
Scalable Distributed Real-Time Clustering for Big Data Streams
Scalable Distributed Real-Time Clustering for Big Data Streams
NoSQL: Cassadra vs. HBase
On Pragmatism and Scientific Freedom
Community cloud antonioseverien
Soap vs rest

Recently uploaded (20)

PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
A Presentation on Artificial Intelligence
PDF
Approach and Philosophy of On baking technology
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
cuic standard and advanced reporting.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Spectral efficient network and resource selection model in 5G networks
A Presentation on Artificial Intelligence
Approach and Philosophy of On baking technology
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Building Integrated photovoltaic BIPV_UPV.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Chapter 3 Spatial Domain Image Processing.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
“AI and Expert System Decision Support & Business Intelligence Systems”
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Advanced methodologies resolving dimensionality complications for autism neur...
cuic standard and advanced reporting.pdf
NewMind AI Weekly Chronicles - August'25 Week I
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication

Relational Cloud

  • 1. Rela%onal  Cloud   A  Database-­‐as-­‐a-­‐Service  for  the  Cloud   Paper  by  Carlo  Curino  et  al.  @mit.edu     Presenta%on  by  Antonio  Severien   severien@kth.se    
  • 2. Overview   Ø Rela%onal  Databases   Ø Database-­‐as-­‐a-­‐Service  (DBaaS)   Ø   Problems  AEacked   Ø Efficient  Mul%-­‐tenancy   Ø Elas%c  Scalability   Ø Database  Privacy   Ø Rela%onal  Cloud   Ø Experiments   Ø Conclusion   2  
  • 3. Rela%onal  Cloud   Ø Rela%onal  Databases   Ø Database-­‐as-­‐a-­‐Service  (DBaaS)   Ø Problems  AEacked   Ø Efficient  Mul%-­‐tenancy   Ø Elas%c  Scalability   Ø Database  Privacy   Ø Rela%onal  Cloud   Ø Experiments   Ø Conclusion   3  
  • 4. Rela%onal  Databases   Ø 1970  by  Edgar  Codd,  IBM  research  San  Jose   Ø Tables   Ø Rows  à  Tuples   Ø Columns  à  AEributes   Ø Rela%onal  Database  Management  Systems   (RDBMS)   4  
  • 5. Rela%onal  Cloud   Ø Rela%onal  Databases   Ø Database-­‐as-­‐a-­‐Service  (DBaaS)   Ø Problems  AEacked   Ø Efficient  Mul%-­‐tenancy   Ø Elas%c  Scalability   Ø Database  Privacy   Ø Rela%onal  Cloud   Ø Experiments   Ø Conclusion   5  
  • 6. Database-­‐as-­‐a-­‐Service  (DBaaS)   Ø Cloud   Ø Reduce  management,  opera%onal     and  energy  costs   Ø Elas%city  and  scale  economy   amazon  RDS   Ø Pay-­‐per-­‐use   6  
  • 7. Rela%onal  Cloud   Ø Rela%onal  Databases   Ø Database-­‐as-­‐a-­‐Service  (DBaaS)   Ø Problems  AEacked   Ø Efficient  Mul%-­‐tenancy   Ø Elas%c  Scalability   Ø Database  Privacy   Ø Rela%onal  Cloud   Ø Experiments   Ø Conclusion   7  
  • 8. Problems  AEacked     Efficient     Mul%-­‐tenancy   Elas%c  Scalability   Privacy   8  
  • 10. Efficient  Mul%-­‐tenancy   Ø Reduce  costs   Ø Efficient  usage  of  resources   Ø Maximize  hardware  u%liza%on   Ø Single  database  server  on  each  machine   Ø Maintain  applica%on  query  performance   10  
  • 11. Efficient  Mul%-­‐tenancy   Ø Reduce  costs   Ø Efficient  usage  of  resources   Ø Maximize  hardware  u%liza%on   Ø Single  database  server  on  each  machine?   Ø Maintain  applica%on  query  performance     Virtual  Machine   11  
  • 12. Efficient  Mul%-­‐tenancy   Ø Problems   Ø Monitoring  resource  requirements  for  workloads   Ø Predic%ng  the  load  generated   Ø Assigning  workloads  to  physical  machines   Ø Migra%ng  workloads  between  nodes   Ø Live  migra*on   12  
  • 13. Efficient  Mul%-­‐tenancy   Ø Kairos  (Monitoring  and  consolida%on  engine)   Ø Resource  Monitor   Disk  ac%vity  and  RAM  requirements   Ø Combined  Load  Predictor   CPU,  RAM,  Disk  model  that  predicts  the  combined   resource  requirements   Ø Consolida%on  Engine   Non-­‐linear  op%miza%on  techniques  to…    …  minimize  the  number  of  machines  needed    …  balance  load  between  back-­‐end  machines   13  
  • 15. Elas%c  Scalability   Ø Workload  exceeds  single  machine  capacity     Ø Scale  a  single  database  to  mul%ple  nodes   Ø Scale-­‐out  by  query  processing  par%%oning   Ø Granular  placement  and  load  balance  on  backend   15  
  • 16. Elas%c  Scalability   Ø Strategy  well  suited  for  OLTP  and  Web   workloads…  but  can  extend  to  OLAP   Ø Minimize  cross-­‐node  distributed  transac%ons     Ø Workload-­‐aware  par**oner   Ø Par%%on  data  to  minimize  mul%-­‐node  transac%ons   Ø Front-­‐end  analyses  execu%on  traces  represented   as  a  graph   16  
  • 17. Graph  Par%%oning   we=2 id   name   age   salary   id   name   age   salary   we=1 we=10 id   name   age   salary   we :  weight  of  edge 17  
  • 18. Graph  Par%%oning   we=2 id   name   age   salary   id   name   age   salary   we=1 we=10 id   name   age   salary   we :  weight  of  edge 18  
  • 19. Graph  Par%%oning   id   name   age   salary   id   name   age   salary   id   name   age   salary   19  
  • 20. Privacy   20  
  • 21. Privacy   Ø Adjustable  security   Ø Onion  ring  encryp%on  design   2  onion  layer  and  1  homomorphic  encryp%on  of  integer   Ø SQL  query  on  encrypted  data   Ø Security  level  dynamically  adap%ve   Converge  to  an  overall  security  level   21  
  • 22. Onion  Layers  of  Encryp%on   6.  RND:  no  func%onality   5.  RND:  no  func%onality   HOM:  addi%on   int  value   4.  DET:  equality  selec%on   3.  OPE:  inequality  select,   min,  max,  sort,  group-­‐by   2.  DET:  equality  join   or   1.  OPE:  inequality  join   String  search   Value   Value   string  value   Strong   RND  =  Randomized  Encryp%on  (no  opera%ons  allowed)   DET  =  Determinis%c  Encryp%on     OPE  =  Order-­‐preserving  Encryp%on   HOM  =  Homomorphic  Encryp%on  (opera%ons  over  encrypted  data)   Weak   22  
  • 23. Rela%onal  Cloud   Ø Rela%onal  Databases   Ø Database-­‐as-­‐a-­‐Service  (DBaaS)   Ø Problems  AEacked   Ø Efficient  Mul%-­‐tenancy   Ø Elas%c  Scalability   Ø Database  Privacy   Ø Rela%onal  Cloud   Ø Experiments   Ø Conclusion   23  
  • 24. Rela%onal  Cloud  Architecture   Client  Nodes   Users   User  Applica%on   JDBC-­‐client  (CryptoDB  enabled)   Trusted  Pla,orm  (Private/Secured)   Privacy-­‐preserving   Privacy-­‐preserving   Untrusted  Pla,orm  (Public)   Queries   Results   Admin  Nodes   Frontend  Nodes   Router   Distributed  Transac%onal  Coordina%on   Par%%oning  Engine   Placement  and   Migra%on  Engine   Backend  Nodes   Backend  Nodes   Database     CryptoDB   CryptoDB   Par**ons   load  stats   Encryp%on  Engine   Encryp%on  Engine   Placement   24  
  • 25. Rela%onal  Cloud   Ø Rela%onal  Databases   Ø Database-­‐as-­‐a-­‐Service  (DBaaS)   Ø Problems  AEacked   Ø Efficient  Mul%-­‐tenancy   Ø Elas%c  Scalability   Ø Database  Privacy   Ø Rela%onal  Cloud   Ø Experiments   Ø Conclusion   25  
  • 26. Experiments   26  
  • 27. Experiments   Bad  results?   Tradeoff  for  be=er  privacy   27  
  • 28. Experiments   Scaling  TPC-­‐C   28  
  • 29. Rela%onal  Cloud   Ø Rela%onal  Databases   Ø Database-­‐as-­‐a-­‐Service  (DBaaS)   Ø Problems  AEacked   Ø Efficient  Mul%-­‐tenancy   Ø Elas%c  Scalability   Ø Database  Privacy   Ø Rela%onal  Cloud   Ø Experiments   Ø Conclusion   29  
  • 30. Conclusion   Ø Presented  Rela%onal  Cloud   Ø Efficient  Mul%-­‐tenancy   Ø Novel  resource  es%ma%on   Ø Non-­‐linear  op%miza%on-­‐based  consolida%on  technique   Ø Scalability   Ø Graph-­‐based  par%%oning   Ø Privacy     Ø Adjustable  privacy   Ø SQL  queries  on  encrypted  data   Ø DBaaS  is  a  viable  cloud  service     30  
  • 32. References   Ø  "Rela%onal  Cloud:  a  Database  Service  for  the  cloud"  Carlo   Curino,  Evan  Jones,  Raluca  Popa,  Nirmesh  Malviya,  Eugene   Wu,  Sam  Madden,  Har  Balakrishnan,  Nickolai  Zeldovich   Ø  hEp://rela%onalcloud.com     32  
  • 33. Privacy   CryptoDB  Example   DET-­‐encrypted     Return  to  JDBC  client  decrypted     cyphertext   RND  cyphertexts   SELECT i_price, ... FROM item WHERE i_id = N JDBC  client  decrypts     DET  level  4   33  

Editor's Notes

  • #5: Talk about the importance of relational databases and their legacy
  • #7: Talk about the market and the viability of relational databases as a service in the cloud
  • #11: Make this slide better
  • #12: Make this slide better
  • #16: Challenge: workload exceeds capacity of single machine
  • #17: - THE WAY TO SCALE THE WORKLOADS is to MINIMIZE # of MULTI-NODE TRANSACTIONS… why? OVERHEAD ON HOLDING LOCKS on the BACKEND
  • #20: Detail how the provacy works and follow to exemplify on the next sliideKnow well homomrphismUses symetric encryption
  • #25: Comparison between consolidated DBs in one machine versus DBs on Virtual Machines.Explained the difference between UNIFORM and SKEWED: uniform load and skewed (50% of the requests goes to one of the 20 DBs)Consolidated 20 databases to one physical machine
  • #27: Explain what is TPC-C (benchmarks for databases…. Etc)