SlideShare a Scribd company logo
relationsandfunctionslessonproper-160929053921.ppt
 Analyze and graph relations.
 Find functional values.
1) ordered pair
2) Cartesian Coordinate
3) plane
4) quadrant
5) relation
6) domain
7) range
8) function
9) mapping
10) one-to-one function
11) vertical line test
12) independent variable
13) dependent variable
14) functional notation
Relations and Functions
Relations and Functions
Animal
Average
Lifetime
(years)
Maximum
Lifetime
(years)
Cat 12 28
Cow 15 30
Deer 8 20
Dog 12 20
Horse 20 50
This table shows the average lifetime
and maximum lifetime for some animals.
The data can also be represented as
ordered pairs.
The ordered pairs for the data are:
(12, 28), (15, 30), (8, 20),
(12, 20), (20, 50)
and
The first number in each ordered pair
is the average lifetime, and the second
number is the maximum lifetime.
(20, 50)
average
lifetime
maximum
lifetime
Relations and Functions
Relations and Functions
Animal Lifetimes
y
x
30
10 20 30
60
20
40
60
5 25
10
50
15
30
0
0
Average Lifetime
Maximum
Lifetime
(12, 28), (15, 30), (8, 20),
(12, 20), (20, 50)
and
You can graph the ordered pairs below
on a coordinate system with two axes.
Remember, each point in the coordinate
plane can be named by exactly one
ordered pair and that every ordered pair
names exactly one point in the coordinate
plane.
The graph of this data (animal lifetimes)
lies in only one part of the Cartesian
coordinate plane – the part with all
positive numbers.
Relations and Functions
Relations and Functions
The Cartesian coordinate system is composed of the x-axis (horizontal),
0 5
-5
0
5
-5
Origin
(0, 0)
and the y-axis (vertical), which meet at the origin (0, 0) and divide the plane into
four quadrants.
You can tell which quadrant a point is in by looking at the sign of each coordinate of
the point.
Quadrant I
( +, + )
Quadrant II
( --, + )
Quadrant III
( --, -- )
Quadrant IV
( +, -- )
The points on the two axes do not lie in any quadrant.
Relations and Functions
Relations and Functions
In general, any ordered pair in the coordinate
plane can be written in the form (x, y).
A relation is a set of ordered pairs.
The domain of a relation is the set of all first coordinates
(x-coordinates) from the ordered pairs.
The range of a relation is the set of all second coordinates
(y-coordinates) from the ordered pairs.
The graph of a relation is the set of points in the coordinate
plane corresponding to the ordered pairs in the relation.
Relations and Functions
Relations and Functions
What is a RELATION?
Given the relation:
{(2, -6), (1, 4), (2, 4), (0,0), (1, -6), (3, 0)}
State the domain:
D: {0,1, 2, 3}
State the range:
R: {-6, 0, 4}
Relations and Functions
Relations and Functions
Note: { } are the symbol for "set".
When writing the domain and range,
do not repeat values.
{(2, –3), (4, 6), (3, –1), (6, 6), (2, 3)}
domain: {2, 3, 4, 6}
range: {–3, –1, 3, 6}
State the domain and range of the following
relation.
Relations and Functions
Relations and Functions
y
x
(-4,3) (2,3)
(-1,-2)
(0,-4)
(3,-3)
State the domain and range of the relation shown
in the graph.
The relation is:
{ (-4, 3), (-1, 2), (0, -4),
(2, 3), (3, -3) }
The domain is:
{ -4, -1, 0, 2, 3 }
The range is:
{ -4, -3, -2, 3 }
Relations and Functions
Relations and Functions
ACTIVITY TIME!  (20 points)
Form five (5 groups).
Assign group leaders per group.
Let them answer pages 142 – 143. Assign problem to
each group to answer.
Outputs will be written in a Manila Paper.
Assign members who will present the output.
Presentation of outputs will be done AFTER 15 minutes.
The last group to post their output will be the first to
present.
Relations and Functions
Relations and Functions
• Relations can be written in several
ways: ordered pairs, table, graph, or
mapping.
• We have already seen relations
represented as ordered pairs.
Relations and Functions
Relations and Functions
Table
{(3, 4), (7, 2),
(0, -1), (-2, 2),
(-5, 0), (3, 3)}
x y
3 4
7 2
0 -1
-2 2
-5 0
3 3
Relations and Functions
Relations and Functions
Mapping
• Create two ovals with the domain on
the left and the range on the right.
• Elements are not repeated.
• Connect elements of the domain with
the corresponding elements in the
range by drawing an arrow.
Relations and Functions
Relations and Functions
Mapping
{(2, -6), (1, 4), (2, 4), (0, 0), (1, -6), (3, 0)}
2
1
0
3
-6
4
0
Relations and Functions
Relations and Functions
In summary:
Relations and Functions
Relations and Functions
Relations and Functions
Relations and Functions
FUNCTIONS
Objective: To recognize whether a
relation is a function or not.
What is a FUNCTION?
Relations and Functions
Relations and Functions
A function is a special type of relation in which each element of the domain is paired
with ___________ element in the range.
exactly one
A mapping shows how each member of the domain is paired with each member in
the range.
Functions
     
 
4
,
2
,
2
,
0
,
1
,
3

Domain Range
-3
0
2
1
2
4
function
Relations and Functions
Relations and Functions
ONE-TO-ONE
CORRESPONDENCE
Furthermore, a set of ordered pairs is a function if no two ordered pairs
have equal abscissas.
A function is a special type of relation in which each element of the domain is paired
with ___________ element in the range.
exactly one
A mapping shows how each member of the domain is paired with each member in
the range.
Functions
     
 
5
,
4
,
3
,
1
,
5
,
1

Domain Range
-1
1
4
5
3
function,
not one-to-one
Relations and Functions
Relations and Functions
MANY-TO-ONE
CORRESPONDENCE
Furthermore, a set of ordered pairs is a function if no two ordered pairs
have equal abscissas.
A function is a special type of relation in which each element of the domain is paired
with ___________ element in the range.
exactly one
A mapping shows how each member of the domain is paired with each member in
the range.
Functions
       
 
6
,
3
,
1
,
1
,
0
,
3
,
6
,
5 

Domain Range
5
-3
1
6
0
1
not a function
Relations and Functions
Relations and Functions
ONE-TO-MANY
CORRESPONDENCE
Furthermore, a set of ordered pairs is a function if no two ordered pairs
have equal abscissas.
y
x
(-4,3) (2,3)
(-1,-2)
(0,-4)
(3,-3)
State the domain and range of the relation shown
in the graph. Is the relation a function?
The relation is:
{ (-4, 3), (-1, 2), (0, -4), (2, 3), (3, -3) }
The domain is:
{ -4, -1, 0, 2, 3 }
The range is:
{ -4, -3, -2, 3 }
Each member of the domain is paired with
Exactly one member of the range, so
this relation is a function.
Relations and Functions
Relations and Functions
Function Not a Function
(4,12)
(5,15)
(6,18)
(7,21)
(8,24)
(4,12)
(4,15)
(5,18)
(5,21)
(6,24)
Function Not a Function
10
3
4
7
5
2
3
4
8
10
3
5
7
2
2
3
4
7
5
Function Not a Function
-3
-2
-1
0
1
-6
-1
-0
3
15
-3
-2
-1
0
1
-6
-1
-0
3
15
Function Not a Function
X Y
1 2
2 4
3 6
4 8
5 10
6 12
X Y
1 2
2 4
1 5
3 8
4 4
5 10
Function
Not a Function
X -3 0 3 8 -10
Y 6 8 20 4 8
X -2 0 -2 7 -8
Y 6 8 20 4 8
ANSWER EXERCISE 7,
IDENTIFY WHICH ONES
ARE FUNCTIONS.
1. FUNCTION
2. NOT FUNCTION
3. FUNCTION
4. FUNCTION
5. FUNCTION
Relations and Functions
Relations and Functions
Let’s check!
NOW YOU TRY!  (2 minutes)
You can use the vertical line test to determine whether a relation is a function.
Vertical Line Test
y
x
y
x
If no vertical line intersects a
graph in more than one point,
the graph represents a function.
If some vertical line intercepts a
graph in two or more points, the
graph does not represent a function.
Relations and Functions
Relations and Functions
Year
Population
(millions)
1950 3.9
1960 4.7
1970 5.2
1980 5.5
1990 5.5
2000 6.1
The table shows the population of Indiana
over the last several decades.
We can graph this data to determine
if it represents a function.
7
‘60
0
1
3
5
7
2
6
‘50
8
4
‘80
‘70 ‘00
0
‘90
Population
(millions)
Year
Population of Indiana
Use the vertical
line test.
Notice that no vertical line can be drawn that
contains more than one of the data points.
Therefore, this relation is a function!
Relations and Functions
Relations and Functions
Function Not a Function
Function Not a Function
Function Not a Function
SHORT QUIZ #3: (1/4)
Identify if the given
relation is function or
not.
-2
-1
-4
-2
0
1
0
2
2 4
-2
-1
0
1
0
1
2
2
3.
0
1
2
-2
-1
0
1
2
2.
1.
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
3.
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
3. 4.
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
4. 5. 6.
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
4. 5. 6. 7.
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
4. 5. 6. 7.
8. 9.
10. 11.
input output
0
1
5
2
3
y
x
-3
-3
-3
-3
-1
0
1
2
x
y
input output
-2
-1
0
3
4
5
6
12.
13.
14.
15.
Let’s Check!
Answers
-2
-1
-4
-2
0
1
0
2
2 4
Function
-2
-1
0
1
0
1
2
2
Function Not a Function
3.
0
1
2
-2
-1
0
1
2
2.
1.
x
y
x
y
x
y
x
y
x
y
x
y
x
y
x
y
Function Function Not a
Function
Function
Not a
Function
Function Not a
Function
Not a
Function
4. 5. 6. 7.
8. 9.
10. 11.
input output
0
1
5
2
3
y
x
-3
-3
-3
-3
-1
0
1
2
x
y
Function
Not a
Function
Not a
Function
input output
-2
-1
0
3
4
5
6
Not a
Function
12.
13.
14.
15.
Determine whether each
relation is a function.
1. {(2, 3), (3, 0), (5, 2), (4, 3)}
YES, every domain is different!
f(x)
2 3
f(x)
3 0
f(x)
5 2
f(x)
4 3
Determine whether the relation
is a function.
2. {(4, 1), (5, 2), (5, 3), (6, 6), (1, 9)}
f(x)
4 1
f(x)
5 2
f(x)
5 3
f(x)
6 6
f(x)
1 9
NO,
5 is paired with 2 numbers!
Is this relation a function?
{(1,3), (2,3), (3,3)}
1. Yes
2. No
Answer Now
Vertical Line Test (pencil test)
If any vertical line passes through
more than one point of the graph,
then that relation is not a function.
Are these functions?
FUNCTION! FUNCTION! NOPE!
Vertical Line Test
NO! FUNCTION!
FUNCTION!
NO!
Is this a graph of a function?
1. Yes
2. No
Answer Now
When an equation represents a function, the variable (usually x) whose values make
up the domain is called the independent variable.
Relations and Functions
Relations and Functions
When an equation represents a function, the variable
(usually x) whose values make up the
domain is called the independent variable.
The other variable (usually y) whose values make
up the range is called the dependent variable
because its values depend on x.
Relations and Functions
Relations and Functions
Function Notation
• When we know that a relation is a
function, the “y” in the equation can be
replaced with f(x).
• f(x) is simply a notation to designate a
function. It is pronounced ‘f’ of ‘x’.
• The ‘f’ names the function, the ‘x’ tells
the variable that is being used.
NOTE: Letters other than f can be used to represent
a function.
EXAMPLE: g(x) = 2x + 1
Function Notation
Output
Input
Name of
Function
y  f x
 
Given f(x) = 3x - 2, find:
1) f(3)
2) f(-2)
3(3)-2
3 7
3(-2)-2
-2 -8
= 7
= -8
Given h(z) = z2
- 4z + 9, find h(-
3)
(-3)2
-4(-3)+9
-3 30
9 + 12 + 9
h(-3) = 30
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
Find each value.
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
Find each value.
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
f(x) = x2
+ 2
Find each value.
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
f(x) = x2
+ 2
Find each value.
f(-3) = (-3)2
+ 2
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
f(x) = x2
+ 2
Find each value.
f(-3) = (-3)2
+ 2
f(-3) = 9 + 2
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
f(x) = x2
+ 2
Find each value.
f(-3) = (-3)2
+ 2
f(-3) = 9 + 2
f(-3) = 11
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
f(x) = x2
+ 2
Find each value.
f(-3) = (-3)2
+ 2
f(-3) = 9 + 2
f(-3) = 11
g(2.8)
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
f(x) = x2
+ 2
Find each value.
f(-3) = (-3)2
+ 2
f(-3) = 9 + 2
f(-3) = 11
g(2.8)
g(x) = 0.5x2
– 5x + 3.5
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
f(x) = x2
+ 2
Find each value.
f(-3) = (-3)2
+ 2
f(-3) = 9 + 2
f(-3) = 11
g(2.8)
g(x) = 0.5x2
– 5x + 3.5
g(2.8) = 0.5(2.8)2
– 5(2.8) + 3.5
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
f(x) = x2
+ 2
Find each value.
f(-3) = (-3)2
+ 2
f(-3) = 9 + 2
f(-3) = 11
g(2.8)
g(x) = 0.5x2
– 5x + 3.5
g(2.8) = 0.5(2.8)2
– 5(2.8) + 3.5
g(2.8) = 3.92 – 14 + 3.5
Relations and Functions
Relations and Functions
Given: f(x) = x2
+ 2 and g(x) = 0.5x2
– 5x + 3.5
f(-3)
f(x) = x2
+ 2
Find each value.
f(-3) = (-3)2
+ 2
f(-3) = 9 + 2
f(-3) = 11
g(2.8)
g(x) = 0.5x2
– 5x + 3.5
g(2.8) = 0.5(2.8)2
– 5(2.8) + 3.5
g(2.8) = 3.92 – 14 + 3.5
g(2.8) = – 6.58
Relations and Functions
Relations and Functions
Given g(x) = x2
– 2, find g(4)
Answer Now
1. 2
2. 6
3. 14
4. 18
Given f(x) = 2x + 1, find f(-8)
Answer Now
1. -40
2. -15
3. -8
4. 4
Value of a Function
If g(s) = 2s + 3, find g(-2).
g(-2) = 2(-2) + 3
=-4 + 3
= -1
g(-2) = -1
Value of a Function
If h(x) = x2
- x + 7, find h(2c).
h(2c) = (2c)2
– (2c) + 7
= 4c2
- 2c + 7
Value of a Function
If f(k) = k2
- 3, find f(a - 1)
f(a - 1)=(a - 1)2
- 3
(Remember FOIL?!)
=(a-1)(a-1) - 3
= a2
- a - a + 1 - 3
= a2
- 2a - 2
1
2
relation
Graph the 
 x
y
x y
1) Make a table of values.
-1
0
1
2
-1
1
3
5
2) Graph the ordered pairs.
0
y
0 x
5
-4 -2 1 3
-3
-3
-1
2
4
6
-5 -1 4
-2
3
-5 2
1
-3
5
7
3) Find the domain and range.
Domain is all real numbers.
Range is all real numbers.
4) Determine whether the relation is a function.
The graph passes the vertical line test.
For every x value there is exactly one y value,
so the equation y = 2x + 1 represents a function.
Relations and Functions
Relations and Functions
2
relation
Graph the 2

y
x
x y
1) Make a table of values.
2
-1
-2
-2
-1
0
2) Graph the ordered pairs.
0
y
0 x
5
-4 -2 1 3
-3
-3
-1
2
4
6
-5 -1 4
-2
3
-5 2
1
-3
5
7
3) Find the domain and range.
Domain is all real numbers,
greater than or equal to -2.
Range is all real numbers.
4) Determine whether the relation is a function.
The graph does not pass the vertical line test.
For every x value (except x = -2),
there are TWO y values,
so the equation x = y2
– 2
DOES NOT represent a function.
-1 1
2 2
Relations and Functions
Relations and Functions
Graphs of a Function
Vertical Line Test:
If a vertical line is passed
over the graph and it intersects
the graph in exactly one point,
the graph represents a function.
x
y
x
y
Does the graph represent a
function? Name the domain and
range.
Yes
D: all real numbers
R: all real numbers
Yes
D: all real numbers
R: y ≥ -6
x
y
x
y
Does the graph represent a
function? Name the domain and
range.
No
D: x ≥ 1/2
R: all real numbers
No
D: all real numbers
R: all real numbers
Does the graph represent a
function? Name the domain and
range.
Yes
D: all real numbers
R: y ≥ -6
No
D: x = 2
R: all real numbers
x
y
x
y
Relations and Functions
Relations and Functions

More Related Content

PDF
relationsandfunctionslessonproper-160929053921.pdf
PPT
Relations and functions
PPT
relationsandfunctionslessonproper-160929053921.ppt
PDF
relationsandfunctionslessonproper-160929053921.pdf
PPTX
Relations and functions
PPTX
Functions
PPT
relationsandfunctionsupdated-140102120840-phpapp01.ppt
PPT
Relations and Functions
relationsandfunctionslessonproper-160929053921.pdf
Relations and functions
relationsandfunctionslessonproper-160929053921.ppt
relationsandfunctionslessonproper-160929053921.pdf
Relations and functions
Functions
relationsandfunctionsupdated-140102120840-phpapp01.ppt
Relations and Functions

Similar to relationsandfunctionslessonproper-160929053921.ppt (20)

PPT
Relations and Functions
PPTX
8.1 intro to functions
PPTX
Grade 11- Concept of functions rev.1.pptx
PPTX
Functions and it's graph6519105021465481791.pptx
PPT
Relations and functions
PPT
Evaluating function 1
PPT
Relations & functions
PPT
2 1 relationsfunctions
PPT
2.1 relations and functions
PDF
Relations and functions
PPTX
WEEK-2-FUNCTION-AND-RELATION-EVALAUTION-OF-A-FUNCTIONS.pptx
PPT
8.1 Relations And Functions
PPT
3LP PRESENTATIONS FNCTIONS1 (1hhhhi).ppt
PPTX
Relations & Functions
PPTX
4.-Relations-Functions.pptxjejejkajwhwhbj
PPTX
Grade 11-Strand(Concept of functions).pptx
PPTX
Function and their graphs ppt
PPTX
Function powerpoinr.pptx
PPTX
Relations & Functions.pptx
PDF
Chepter 1 function 2013
Relations and Functions
8.1 intro to functions
Grade 11- Concept of functions rev.1.pptx
Functions and it's graph6519105021465481791.pptx
Relations and functions
Evaluating function 1
Relations & functions
2 1 relationsfunctions
2.1 relations and functions
Relations and functions
WEEK-2-FUNCTION-AND-RELATION-EVALAUTION-OF-A-FUNCTIONS.pptx
8.1 Relations And Functions
3LP PRESENTATIONS FNCTIONS1 (1hhhhi).ppt
Relations & Functions
4.-Relations-Functions.pptxjejejkajwhwhbj
Grade 11-Strand(Concept of functions).pptx
Function and their graphs ppt
Function powerpoinr.pptx
Relations & Functions.pptx
Chepter 1 function 2013
Ad

More from KayraTheressGubat (20)

PPTX
ESP7 3rd Quarter Lesson 3 - Peace with Ny Brothers and Order in the Community...
PPTX
QUARTER 3 - Lesson 3 to 6 - Operations on Integers.pptx
PPTX
LONG QUIZ IN MATHEMATICS GRADE 8 .pptx
PPTX
PPT ENGLISH GRADE 7 NARRATIVE POETRY.pptx
PPTX
ESP Grade 7 Love is Good Enough .ppt.pptx
PPT
grade7statistics-150427083137-conversion-gate01.ppt
PPT
Review on Fractions GRADE 7 MATHEMATICS.ppt
PPTX
ESP Grade 7 Love is Good Enough.ppt.pptx
PPTX
INTRODUCTION TO RELATION AND FUNCTION.pptx
PPTX
cartesiancoordinateplane-140804022012-phpapp01.pptx
PPTX
Basic Ideas of Set - Mathematics 7 .pptx
PPTX
Types of Angles - Mathematics Grade 7.pptx
PPTX
cartesiancoordinateplane-140804022012-phpapp01.pptx
PPTX
Introduction to Polygons Educational Presentation in Colorful Illustrative St...
PPTX
Polygon Math Education Presentation in Colorful Abstract Style .pptx
PPTX
a1-factoringthedifferenceoftwosquares-120607184100-phpapp02.pptx
PPTX
Introduction-to-Factoring-Polynomials.pptx
PPTX
Introduction-to-Geometry (1)Building Blocks of Geometry .pptx
PPTX
NON-GRADUATING-PARENT-TEACHER-CONFERENCE-PPT-CSGT-Copy.pptx
PPTX
grade5-prepositionsandprepositionalphrases.pptx
ESP7 3rd Quarter Lesson 3 - Peace with Ny Brothers and Order in the Community...
QUARTER 3 - Lesson 3 to 6 - Operations on Integers.pptx
LONG QUIZ IN MATHEMATICS GRADE 8 .pptx
PPT ENGLISH GRADE 7 NARRATIVE POETRY.pptx
ESP Grade 7 Love is Good Enough .ppt.pptx
grade7statistics-150427083137-conversion-gate01.ppt
Review on Fractions GRADE 7 MATHEMATICS.ppt
ESP Grade 7 Love is Good Enough.ppt.pptx
INTRODUCTION TO RELATION AND FUNCTION.pptx
cartesiancoordinateplane-140804022012-phpapp01.pptx
Basic Ideas of Set - Mathematics 7 .pptx
Types of Angles - Mathematics Grade 7.pptx
cartesiancoordinateplane-140804022012-phpapp01.pptx
Introduction to Polygons Educational Presentation in Colorful Illustrative St...
Polygon Math Education Presentation in Colorful Abstract Style .pptx
a1-factoringthedifferenceoftwosquares-120607184100-phpapp02.pptx
Introduction-to-Factoring-Polynomials.pptx
Introduction-to-Geometry (1)Building Blocks of Geometry .pptx
NON-GRADUATING-PARENT-TEACHER-CONFERENCE-PPT-CSGT-Copy.pptx
grade5-prepositionsandprepositionalphrases.pptx
Ad

Recently uploaded (20)

PPTX
Cell Types and Its function , kingdom of life
PDF
Pre independence Education in Inndia.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Institutional Correction lecture only . . .
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Cell Structure & Organelles in detailed.
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
master seminar digital applications in india
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Insiders guide to clinical Medicine.pdf
Cell Types and Its function , kingdom of life
Pre independence Education in Inndia.pdf
Renaissance Architecture: A Journey from Faith to Humanism
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Institutional Correction lecture only . . .
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Cell Structure & Organelles in detailed.
TR - Agricultural Crops Production NC III.pdf
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Sports Quiz easy sports quiz sports quiz
master seminar digital applications in india
Abdominal Access Techniques with Prof. Dr. R K Mishra
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Microbial diseases, their pathogenesis and prophylaxis
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Insiders guide to clinical Medicine.pdf

relationsandfunctionslessonproper-160929053921.ppt

  • 2.  Analyze and graph relations.  Find functional values. 1) ordered pair 2) Cartesian Coordinate 3) plane 4) quadrant 5) relation 6) domain 7) range 8) function 9) mapping 10) one-to-one function 11) vertical line test 12) independent variable 13) dependent variable 14) functional notation Relations and Functions Relations and Functions
  • 3. Animal Average Lifetime (years) Maximum Lifetime (years) Cat 12 28 Cow 15 30 Deer 8 20 Dog 12 20 Horse 20 50 This table shows the average lifetime and maximum lifetime for some animals. The data can also be represented as ordered pairs. The ordered pairs for the data are: (12, 28), (15, 30), (8, 20), (12, 20), (20, 50) and The first number in each ordered pair is the average lifetime, and the second number is the maximum lifetime. (20, 50) average lifetime maximum lifetime Relations and Functions Relations and Functions
  • 4. Animal Lifetimes y x 30 10 20 30 60 20 40 60 5 25 10 50 15 30 0 0 Average Lifetime Maximum Lifetime (12, 28), (15, 30), (8, 20), (12, 20), (20, 50) and You can graph the ordered pairs below on a coordinate system with two axes. Remember, each point in the coordinate plane can be named by exactly one ordered pair and that every ordered pair names exactly one point in the coordinate plane. The graph of this data (animal lifetimes) lies in only one part of the Cartesian coordinate plane – the part with all positive numbers. Relations and Functions Relations and Functions
  • 5. The Cartesian coordinate system is composed of the x-axis (horizontal), 0 5 -5 0 5 -5 Origin (0, 0) and the y-axis (vertical), which meet at the origin (0, 0) and divide the plane into four quadrants. You can tell which quadrant a point is in by looking at the sign of each coordinate of the point. Quadrant I ( +, + ) Quadrant II ( --, + ) Quadrant III ( --, -- ) Quadrant IV ( +, -- ) The points on the two axes do not lie in any quadrant. Relations and Functions Relations and Functions
  • 6. In general, any ordered pair in the coordinate plane can be written in the form (x, y). A relation is a set of ordered pairs. The domain of a relation is the set of all first coordinates (x-coordinates) from the ordered pairs. The range of a relation is the set of all second coordinates (y-coordinates) from the ordered pairs. The graph of a relation is the set of points in the coordinate plane corresponding to the ordered pairs in the relation. Relations and Functions Relations and Functions What is a RELATION?
  • 7. Given the relation: {(2, -6), (1, 4), (2, 4), (0,0), (1, -6), (3, 0)} State the domain: D: {0,1, 2, 3} State the range: R: {-6, 0, 4} Relations and Functions Relations and Functions Note: { } are the symbol for "set". When writing the domain and range, do not repeat values.
  • 8. {(2, –3), (4, 6), (3, –1), (6, 6), (2, 3)} domain: {2, 3, 4, 6} range: {–3, –1, 3, 6} State the domain and range of the following relation. Relations and Functions Relations and Functions
  • 9. y x (-4,3) (2,3) (-1,-2) (0,-4) (3,-3) State the domain and range of the relation shown in the graph. The relation is: { (-4, 3), (-1, 2), (0, -4), (2, 3), (3, -3) } The domain is: { -4, -1, 0, 2, 3 } The range is: { -4, -3, -2, 3 } Relations and Functions Relations and Functions
  • 10. ACTIVITY TIME!  (20 points) Form five (5 groups). Assign group leaders per group. Let them answer pages 142 – 143. Assign problem to each group to answer. Outputs will be written in a Manila Paper. Assign members who will present the output. Presentation of outputs will be done AFTER 15 minutes. The last group to post their output will be the first to present. Relations and Functions Relations and Functions
  • 11. • Relations can be written in several ways: ordered pairs, table, graph, or mapping. • We have already seen relations represented as ordered pairs. Relations and Functions Relations and Functions
  • 12. Table {(3, 4), (7, 2), (0, -1), (-2, 2), (-5, 0), (3, 3)} x y 3 4 7 2 0 -1 -2 2 -5 0 3 3 Relations and Functions Relations and Functions
  • 13. Mapping • Create two ovals with the domain on the left and the range on the right. • Elements are not repeated. • Connect elements of the domain with the corresponding elements in the range by drawing an arrow. Relations and Functions Relations and Functions
  • 14. Mapping {(2, -6), (1, 4), (2, 4), (0, 0), (1, -6), (3, 0)} 2 1 0 3 -6 4 0 Relations and Functions Relations and Functions
  • 15. In summary: Relations and Functions Relations and Functions
  • 16. Relations and Functions Relations and Functions FUNCTIONS Objective: To recognize whether a relation is a function or not.
  • 17. What is a FUNCTION? Relations and Functions Relations and Functions
  • 18. A function is a special type of relation in which each element of the domain is paired with ___________ element in the range. exactly one A mapping shows how each member of the domain is paired with each member in the range. Functions         4 , 2 , 2 , 0 , 1 , 3  Domain Range -3 0 2 1 2 4 function Relations and Functions Relations and Functions ONE-TO-ONE CORRESPONDENCE Furthermore, a set of ordered pairs is a function if no two ordered pairs have equal abscissas.
  • 19. A function is a special type of relation in which each element of the domain is paired with ___________ element in the range. exactly one A mapping shows how each member of the domain is paired with each member in the range. Functions         5 , 4 , 3 , 1 , 5 , 1  Domain Range -1 1 4 5 3 function, not one-to-one Relations and Functions Relations and Functions MANY-TO-ONE CORRESPONDENCE Furthermore, a set of ordered pairs is a function if no two ordered pairs have equal abscissas.
  • 20. A function is a special type of relation in which each element of the domain is paired with ___________ element in the range. exactly one A mapping shows how each member of the domain is paired with each member in the range. Functions           6 , 3 , 1 , 1 , 0 , 3 , 6 , 5   Domain Range 5 -3 1 6 0 1 not a function Relations and Functions Relations and Functions ONE-TO-MANY CORRESPONDENCE Furthermore, a set of ordered pairs is a function if no two ordered pairs have equal abscissas.
  • 21. y x (-4,3) (2,3) (-1,-2) (0,-4) (3,-3) State the domain and range of the relation shown in the graph. Is the relation a function? The relation is: { (-4, 3), (-1, 2), (0, -4), (2, 3), (3, -3) } The domain is: { -4, -1, 0, 2, 3 } The range is: { -4, -3, -2, 3 } Each member of the domain is paired with Exactly one member of the range, so this relation is a function. Relations and Functions Relations and Functions
  • 22. Function Not a Function (4,12) (5,15) (6,18) (7,21) (8,24) (4,12) (4,15) (5,18) (5,21) (6,24)
  • 23. Function Not a Function 10 3 4 7 5 2 3 4 8 10 3 5 7 2 2 3 4 7 5
  • 24. Function Not a Function -3 -2 -1 0 1 -6 -1 -0 3 15 -3 -2 -1 0 1 -6 -1 -0 3 15
  • 25. Function Not a Function X Y 1 2 2 4 3 6 4 8 5 10 6 12 X Y 1 2 2 4 1 5 3 8 4 4 5 10
  • 26. Function Not a Function X -3 0 3 8 -10 Y 6 8 20 4 8 X -2 0 -2 7 -8 Y 6 8 20 4 8
  • 27. ANSWER EXERCISE 7, IDENTIFY WHICH ONES ARE FUNCTIONS. 1. FUNCTION 2. NOT FUNCTION 3. FUNCTION 4. FUNCTION 5. FUNCTION Relations and Functions Relations and Functions Let’s check! NOW YOU TRY!  (2 minutes)
  • 28. You can use the vertical line test to determine whether a relation is a function. Vertical Line Test y x y x If no vertical line intersects a graph in more than one point, the graph represents a function. If some vertical line intercepts a graph in two or more points, the graph does not represent a function. Relations and Functions Relations and Functions
  • 29. Year Population (millions) 1950 3.9 1960 4.7 1970 5.2 1980 5.5 1990 5.5 2000 6.1 The table shows the population of Indiana over the last several decades. We can graph this data to determine if it represents a function. 7 ‘60 0 1 3 5 7 2 6 ‘50 8 4 ‘80 ‘70 ‘00 0 ‘90 Population (millions) Year Population of Indiana Use the vertical line test. Notice that no vertical line can be drawn that contains more than one of the data points. Therefore, this relation is a function! Relations and Functions Relations and Functions
  • 30. Function Not a Function
  • 31. Function Not a Function
  • 32. Function Not a Function
  • 33. SHORT QUIZ #3: (1/4) Identify if the given relation is function or not.
  • 43. x y x y x y x y x y x y x y x y Function Function Not a Function Function Not a Function Function Not a Function Not a Function 4. 5. 6. 7. 8. 9. 10. 11.
  • 44. input output 0 1 5 2 3 y x -3 -3 -3 -3 -1 0 1 2 x y Function Not a Function Not a Function input output -2 -1 0 3 4 5 6 Not a Function 12. 13. 14. 15.
  • 45. Determine whether each relation is a function. 1. {(2, 3), (3, 0), (5, 2), (4, 3)} YES, every domain is different! f(x) 2 3 f(x) 3 0 f(x) 5 2 f(x) 4 3
  • 46. Determine whether the relation is a function. 2. {(4, 1), (5, 2), (5, 3), (6, 6), (1, 9)} f(x) 4 1 f(x) 5 2 f(x) 5 3 f(x) 6 6 f(x) 1 9 NO, 5 is paired with 2 numbers!
  • 47. Is this relation a function? {(1,3), (2,3), (3,3)} 1. Yes 2. No Answer Now
  • 48. Vertical Line Test (pencil test) If any vertical line passes through more than one point of the graph, then that relation is not a function. Are these functions? FUNCTION! FUNCTION! NOPE!
  • 49. Vertical Line Test NO! FUNCTION! FUNCTION! NO!
  • 50. Is this a graph of a function? 1. Yes 2. No Answer Now
  • 51. When an equation represents a function, the variable (usually x) whose values make up the domain is called the independent variable. Relations and Functions Relations and Functions
  • 52. When an equation represents a function, the variable (usually x) whose values make up the domain is called the independent variable. The other variable (usually y) whose values make up the range is called the dependent variable because its values depend on x. Relations and Functions Relations and Functions
  • 53. Function Notation • When we know that a relation is a function, the “y” in the equation can be replaced with f(x). • f(x) is simply a notation to designate a function. It is pronounced ‘f’ of ‘x’. • The ‘f’ names the function, the ‘x’ tells the variable that is being used. NOTE: Letters other than f can be used to represent a function. EXAMPLE: g(x) = 2x + 1
  • 55. Given f(x) = 3x - 2, find: 1) f(3) 2) f(-2) 3(3)-2 3 7 3(-2)-2 -2 -8 = 7 = -8
  • 56. Given h(z) = z2 - 4z + 9, find h(- 3) (-3)2 -4(-3)+9 -3 30 9 + 12 + 9 h(-3) = 30
  • 57. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 Find each value. Relations and Functions Relations and Functions
  • 58. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) Find each value. Relations and Functions Relations and Functions
  • 59. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) f(x) = x2 + 2 Find each value. Relations and Functions Relations and Functions
  • 60. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) f(x) = x2 + 2 Find each value. f(-3) = (-3)2 + 2 Relations and Functions Relations and Functions
  • 61. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) f(x) = x2 + 2 Find each value. f(-3) = (-3)2 + 2 f(-3) = 9 + 2 Relations and Functions Relations and Functions
  • 62. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) f(x) = x2 + 2 Find each value. f(-3) = (-3)2 + 2 f(-3) = 9 + 2 f(-3) = 11 Relations and Functions Relations and Functions
  • 63. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) f(x) = x2 + 2 Find each value. f(-3) = (-3)2 + 2 f(-3) = 9 + 2 f(-3) = 11 g(2.8) Relations and Functions Relations and Functions
  • 64. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) f(x) = x2 + 2 Find each value. f(-3) = (-3)2 + 2 f(-3) = 9 + 2 f(-3) = 11 g(2.8) g(x) = 0.5x2 – 5x + 3.5 Relations and Functions Relations and Functions
  • 65. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) f(x) = x2 + 2 Find each value. f(-3) = (-3)2 + 2 f(-3) = 9 + 2 f(-3) = 11 g(2.8) g(x) = 0.5x2 – 5x + 3.5 g(2.8) = 0.5(2.8)2 – 5(2.8) + 3.5 Relations and Functions Relations and Functions
  • 66. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) f(x) = x2 + 2 Find each value. f(-3) = (-3)2 + 2 f(-3) = 9 + 2 f(-3) = 11 g(2.8) g(x) = 0.5x2 – 5x + 3.5 g(2.8) = 0.5(2.8)2 – 5(2.8) + 3.5 g(2.8) = 3.92 – 14 + 3.5 Relations and Functions Relations and Functions
  • 67. Given: f(x) = x2 + 2 and g(x) = 0.5x2 – 5x + 3.5 f(-3) f(x) = x2 + 2 Find each value. f(-3) = (-3)2 + 2 f(-3) = 9 + 2 f(-3) = 11 g(2.8) g(x) = 0.5x2 – 5x + 3.5 g(2.8) = 0.5(2.8)2 – 5(2.8) + 3.5 g(2.8) = 3.92 – 14 + 3.5 g(2.8) = – 6.58 Relations and Functions Relations and Functions
  • 68. Given g(x) = x2 – 2, find g(4) Answer Now 1. 2 2. 6 3. 14 4. 18
  • 69. Given f(x) = 2x + 1, find f(-8) Answer Now 1. -40 2. -15 3. -8 4. 4
  • 70. Value of a Function If g(s) = 2s + 3, find g(-2). g(-2) = 2(-2) + 3 =-4 + 3 = -1 g(-2) = -1
  • 71. Value of a Function If h(x) = x2 - x + 7, find h(2c). h(2c) = (2c)2 – (2c) + 7 = 4c2 - 2c + 7
  • 72. Value of a Function If f(k) = k2 - 3, find f(a - 1) f(a - 1)=(a - 1)2 - 3 (Remember FOIL?!) =(a-1)(a-1) - 3 = a2 - a - a + 1 - 3 = a2 - 2a - 2
  • 73. 1 2 relation Graph the   x y x y 1) Make a table of values. -1 0 1 2 -1 1 3 5 2) Graph the ordered pairs. 0 y 0 x 5 -4 -2 1 3 -3 -3 -1 2 4 6 -5 -1 4 -2 3 -5 2 1 -3 5 7 3) Find the domain and range. Domain is all real numbers. Range is all real numbers. 4) Determine whether the relation is a function. The graph passes the vertical line test. For every x value there is exactly one y value, so the equation y = 2x + 1 represents a function. Relations and Functions Relations and Functions
  • 74. 2 relation Graph the 2  y x x y 1) Make a table of values. 2 -1 -2 -2 -1 0 2) Graph the ordered pairs. 0 y 0 x 5 -4 -2 1 3 -3 -3 -1 2 4 6 -5 -1 4 -2 3 -5 2 1 -3 5 7 3) Find the domain and range. Domain is all real numbers, greater than or equal to -2. Range is all real numbers. 4) Determine whether the relation is a function. The graph does not pass the vertical line test. For every x value (except x = -2), there are TWO y values, so the equation x = y2 – 2 DOES NOT represent a function. -1 1 2 2 Relations and Functions Relations and Functions
  • 75. Graphs of a Function Vertical Line Test: If a vertical line is passed over the graph and it intersects the graph in exactly one point, the graph represents a function.
  • 76. x y x y Does the graph represent a function? Name the domain and range. Yes D: all real numbers R: all real numbers Yes D: all real numbers R: y ≥ -6
  • 77. x y x y Does the graph represent a function? Name the domain and range. No D: x ≥ 1/2 R: all real numbers No D: all real numbers R: all real numbers
  • 78. Does the graph represent a function? Name the domain and range. Yes D: all real numbers R: y ≥ -6 No D: x = 2 R: all real numbers x y x y