Report in math
Report in math
Report in math
 Domain: all real numbers
 Range: [-1 , 1]
 Period = 2pi
 x intercepts: x = k pi , where k is an integer.
 y intercepts: y = 0
 maximum points: (pi/2 + 2 k pi , 1) , where k is an integer.
 minimum points: (3pi/2 + 2 k pi , -1) , where k is an integer.
 symmetry: since sin(-x) = - sin (x) then sin (x) is an odd 
  function and its graph is symmetric with respect to the 
  origon (0 , 0).
 intervals of increase/decrease: over one period and from 0 
  to 2pi, sin (x) is increasing on the intervals (0 , pi/2) and (3pi/2 
  , 2pi), and decreasing on the interval (pi/2 , 3pi/2).
Report in math
 Domain: all real numbers
 Range: [-1 , 1]
 Period = 2pi
 x intercepts: x = pi/2 + k pi , where k is an integer.
 y intercepts: y = 1
 maximum points: (2 k pi , 1) , where k is an integer.
 minimum points: (pi + 2 k pi , -1) , where k is an integer.
 symmetry: since cos(-x) = cos (x) then cos (x) is an even 
  function and its graph is symmetric with respect to the y 
  axis.
 intervals of increase/decrease: over one period and from 
  0 to 2pi, cos (x) is decreasing on (0 , pi) increasing on (pi , 
  2pi).
 Domain: all real numbers except pi/2 + k pi, k is an 
  integer.
 Range: all real numbers
 Period = pi
 x intercepts: x = k pi , where k is an integer.
 y intercepts: y = 0
 symmetry: since tan(-x) = - tan(x) then tan (x) is an 
  odd function and its graph is symmetric with respect 
  the origin.
 intervals of increase/decrease: over one period and 
  from -pi/2 to pi/2, tan (x) is increasing.
 Vertical asymptotes: x = pi/2 + k pi, where k is an 
  integer.
Report in math
Report in math

More Related Content

PDF
Noise detection from the signal matlab code, Signal Diagnosis
DOC
bask, bfsk, bpsk
PDF
Notes 10-5
PDF
P13 020
PPT
4.5 sec and csc worked 3rd
PPT
4.5 tan and cot.ppt worked
PPTX
Asymptotic notation
PDF
Prim1_secx
Noise detection from the signal matlab code, Signal Diagnosis
bask, bfsk, bpsk
Notes 10-5
P13 020
4.5 sec and csc worked 3rd
4.5 tan and cot.ppt worked
Asymptotic notation
Prim1_secx

What's hot (20)

PPT
Graphing day 1 worked
DOCX
LAB 1 U3.docx
PDF
Trapezoidal log log
PDF
Lesson 5 Nov 3
DOC
Syed Ubaid Ali Jafri - Cryptography Techniques
PDF
Polar plots with R
PPT
Acoustics
PDF
Mpmc unit-string manipulation
PPT
Using Petri Net Invariants in State Space Construction
PPTX
Maxima and minima
PDF
Complex Integral
PDF
CRMS Calculus 2010 March 30, 2010
PDF
Section9 stochastic
DOC
Matlab code
PDF
Booth's Algorithm Fully Explained With Flow Chart PDF
DOCX
matlab code for channel estimation for ofdm
PDF
Progr2
Graphing day 1 worked
LAB 1 U3.docx
Trapezoidal log log
Lesson 5 Nov 3
Syed Ubaid Ali Jafri - Cryptography Techniques
Polar plots with R
Acoustics
Mpmc unit-string manipulation
Using Petri Net Invariants in State Space Construction
Maxima and minima
Complex Integral
CRMS Calculus 2010 March 30, 2010
Section9 stochastic
Matlab code
Booth's Algorithm Fully Explained With Flow Chart PDF
matlab code for channel estimation for ofdm
Progr2
Ad

Viewers also liked (20)

PPT
Presentations tips
PDF
Solar energy
PPT
Revelation
PDF
Weddings at Hotel Torre Laurentii
PDF
Elia (januari)
PDF
Elia (februari)
PPTX
Church on Tuesday 1 English German Duetsche 101116
PPTX
Implementing Accessibility: Accessibility Toronto
PPT
Religion What is it?
PDF
Information extraction from sensor networks using the Watershed transform alg...
 
PDF
Inicio año escolar 2017
PPTX
KNOWLEDGE AND BRAIN POWER FOR DEVELOPMENT ; NEW DEVELOPMENT STRATEGY FOR KERA...
PDF
Introducción a dropbox
PPT
COMING OF THE AGE OF 'PERISH OR PROSPER TOGETHER': NEW MEANING FOR GLOBAL PEA...
PPTX
Evaluating my music magazine
PPTX
DOCTORAL RESEARCH WORKS SUPERVISED BY DR. RAJU M. MATHEW
PDF
MuMHR: Multi-path, Multi-hop Hierarchical Routing
 
PPTX
2011 2012-121115033020-phpapp02
PPTX
As media studies
PDF
Bikeship
Presentations tips
Solar energy
Revelation
Weddings at Hotel Torre Laurentii
Elia (januari)
Elia (februari)
Church on Tuesday 1 English German Duetsche 101116
Implementing Accessibility: Accessibility Toronto
Religion What is it?
Information extraction from sensor networks using the Watershed transform alg...
 
Inicio año escolar 2017
KNOWLEDGE AND BRAIN POWER FOR DEVELOPMENT ; NEW DEVELOPMENT STRATEGY FOR KERA...
Introducción a dropbox
COMING OF THE AGE OF 'PERISH OR PROSPER TOGETHER': NEW MEANING FOR GLOBAL PEA...
Evaluating my music magazine
DOCTORAL RESEARCH WORKS SUPERVISED BY DR. RAJU M. MATHEW
MuMHR: Multi-path, Multi-hop Hierarchical Routing
 
2011 2012-121115033020-phpapp02
As media studies
Bikeship
Ad

Similar to Report in math (20)

PPT
Graphing Trig Functions-Tangent and Cotangent.ppt
PDF
identify which of the following properties apply to the graph of y=s.pdf
PPT
Unit circle
PPTX
t5 graphs of trig functions and inverse trig functions
PDF
kactl.pdf
PDF
PPT
Lines and curves algorithms
PDF
Module 4 circular function
PPT
Phase shift and amplitude of trigonometric functions
PPTX
6. graphs of trig functions x
PPT
Mathematics
PDF
CBSE - Grade 10 - Mathematics - Ch 2 - Polynomials - Notes (PDF Format)
PPT
Computer_Graphics_circle_drawing_techniq.ppt
PDF
Day 8 examples
PDF
Day 8 examples
PDF
Lecture5
PPT
10994479.ppt
PDF
On probability distributions
PPT
1531 fourier series- integrals and trans
PPTX
QFSK: BER and SER Derivation and Simulation
Graphing Trig Functions-Tangent and Cotangent.ppt
identify which of the following properties apply to the graph of y=s.pdf
Unit circle
t5 graphs of trig functions and inverse trig functions
kactl.pdf
Lines and curves algorithms
Module 4 circular function
Phase shift and amplitude of trigonometric functions
6. graphs of trig functions x
Mathematics
CBSE - Grade 10 - Mathematics - Ch 2 - Polynomials - Notes (PDF Format)
Computer_Graphics_circle_drawing_techniq.ppt
Day 8 examples
Day 8 examples
Lecture5
10994479.ppt
On probability distributions
1531 fourier series- integrals and trans
QFSK: BER and SER Derivation and Simulation

Report in math

  • 4.  Domain: all real numbers  Range: [-1 , 1]  Period = 2pi  x intercepts: x = k pi , where k is an integer.  y intercepts: y = 0  maximum points: (pi/2 + 2 k pi , 1) , where k is an integer.  minimum points: (3pi/2 + 2 k pi , -1) , where k is an integer.  symmetry: since sin(-x) = - sin (x) then sin (x) is an odd  function and its graph is symmetric with respect to the  origon (0 , 0).  intervals of increase/decrease: over one period and from 0  to 2pi, sin (x) is increasing on the intervals (0 , pi/2) and (3pi/2  , 2pi), and decreasing on the interval (pi/2 , 3pi/2).
  • 6.  Domain: all real numbers  Range: [-1 , 1]  Period = 2pi  x intercepts: x = pi/2 + k pi , where k is an integer.  y intercepts: y = 1  maximum points: (2 k pi , 1) , where k is an integer.  minimum points: (pi + 2 k pi , -1) , where k is an integer.  symmetry: since cos(-x) = cos (x) then cos (x) is an even  function and its graph is symmetric with respect to the y  axis.  intervals of increase/decrease: over one period and from  0 to 2pi, cos (x) is decreasing on (0 , pi) increasing on (pi ,  2pi).
  • 7.  Domain: all real numbers except pi/2 + k pi, k is an  integer.  Range: all real numbers  Period = pi  x intercepts: x = k pi , where k is an integer.  y intercepts: y = 0  symmetry: since tan(-x) = - tan(x) then tan (x) is an  odd function and its graph is symmetric with respect  the origin.  intervals of increase/decrease: over one period and  from -pi/2 to pi/2, tan (x) is increasing.  Vertical asymptotes: x = pi/2 + k pi, where k is an  integer.