SlideShare a Scribd company logo
Show that
C
f(z)dz = 0, where f is the given function and C is the unit circle |z| = 1.
a) f(z) = z3
− 1 + 3i
b) f(z) = z2
+
1
z − 4
c) f(z) =
sin z
(z2 − 25) (z2 + 9)
Solution by Mikołaj Hajduk: The points a) and b) can be solved with use of parametrization z(t) = eit
where t ∈ [0, 2π] and dz = ieit
dt.
Ad. a)
C
f(z)dz =
C
(z3
− 1 + 3i)dz =
2π
0
((eit
)3
− 1 + 3i)ieit
dt =
=
2π
0
e3it
ieit
+ (−1 + 3i)ieit
dt =
2π
0
ie4it
dt +
2π
0
(−1 + 3i)ieit
dt =
= i
2π
0
e4it
dt + (−1 + 3i)i
2π
0
eit
dt = i
1
4i
e4it
2π
0
+ (−1 + 3i)i
1
i
eit
2π
0
=
=
1
4
e4it
2π
0
+ (−1 + 3i)eit
2π
0
=
1
4
(e4i∗2π
− e4i∗0
) + (−1 + 3i)(ei∗2π
− ei∗0
) =
c 2015/09/17 02:27:23, Mikołaj Hajduk 1 / 4 next
=
1
4
((e2iπ
)4
− e0
) + (−1 + 3i)(e2iπ
− e0
) =
1
4
(1 − 1) + (−1 + 3i)(1 − 1) = 0
Ad. b)
C
f(z)dz =
C
z2
+
1
z − 4
dz =
2π
0
(eit
)2
+
1
eit − 4
ieit
dt =
=
2π
0
ie2it
eit
dt +
2π
0
ieit
eit − 4
dt = i
2π
0
e3it
dt +
2π
0
(eit
− 4)
eit − 4
dt =
= i
1
3i
e3it
2π
0
+ ln |eit
− 4|
2π
0
=
1
3
(e3i∗2π
− e3i∗0
) + (ln |ei∗2π
− 4| − ln |ei∗0
− 4|) =
=
1
3
((e2iπ
)3
− e0
) + (ln |1 − 4| − ln |1 − 4|) =
1
3
(1 − 1) + (ln 3 − ln 3) = 0
Ad. c)
Let’s notice that the function f is odd in its domain because
sin(−z)
def
=
ei(−z)
− e−i(−z)
2i
=
e−iz
− eiz
2i
= −
eiz
− e−iz
2i
def
= − sin(z)
and hence
f(−z) =
sin(−z)
((−z)2 − 25) ((−z)2 + 9)
=
− sin z
(z2 − 25) (z2 + 9)
= −f(z)
Let CU and CB denote the circle arcs corresponding to the upper and bottom halves of the circle C. We have
then
C
f(z)dz =
CU
f(z)dz +
CB
f(z)dz
c 2015/09/17 02:27:23, Mikołaj Hajduk 2 / 4 next
The function h : CU −→ CB defined as h(z) = −z is a bijection between points of the arcs CU and CB that
transforms the beginning point of the arc CU into the beginning point of the arc CB and the ending point of
the arc CU into the ending point of the arc CB. The arc CB is an image of the arc CU under the function h:
CB = h(CU)
c 2015/09/17 02:27:23, Mikołaj Hajduk 3 / 4 next
therefore, bearing in mind that f(z) is odd and h−1
(z) = −z, we get
CB
f(z)dz =
h(CU)
f(z)dz =
CU
f(h−1
(z))dz =
CU
f(−z)dz =
CU
−f(z)dz = −
CU
f(z)dz
Hence
C
f(z)dz =
CU
f(z)dz +
CB
f(z)dz =
CU
f(z)dz −
CU
f(z)dz = 0
c 2015/09/17 02:27:23, Mikołaj Hajduk 4 / 4

More Related Content

PDF
Htdp27.key
PDF
RM FUNCIONAL
PPTX
Module 6.7
PDF
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
PDF
Assignment3 solution 3rd_edition
PDF
Equation plane
PDF
ЗНО-2021 (математика)
PPTX
C2 mate factorización por binomio - 5º
Htdp27.key
RM FUNCIONAL
Module 6.7
MATHS SYMBOLS - #1 - EXPONENTIALS and THEIR PROPERTIES
Assignment3 solution 3rd_edition
Equation plane
ЗНО-2021 (математика)
C2 mate factorización por binomio - 5º

What's hot (16)

PPTX
Mate factorización por binomio - 2º
PDF
Figures
DOC
PPTX
Presentation1
DOCX
Statistics formulaee
PDF
Parameterized convolutional neural networks for aspect level classification
PDF
[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기
PPTX
Answers sign-charts
PDF
10CSL67 CG LAB PROGRAM 1
PDF
Efoom 2016
PPTX
Mate tarea - 3º
PPTX
حساب النهايات جبرياً
PDF
Introduction to Integral calculus
PDF
Maria
PDF
EJERCICIOS PARA EL EXAMEN
Mate factorización por binomio - 2º
Figures
Presentation1
Statistics formulaee
Parameterized convolutional neural networks for aspect level classification
[112] 모바일 환경에서 실시간 Portrait Segmentation 구현하기
Answers sign-charts
10CSL67 CG LAB PROGRAM 1
Efoom 2016
Mate tarea - 3º
حساب النهايات جبرياً
Introduction to Integral calculus
Maria
EJERCICIOS PARA EL EXAMEN
Ad

Similar to Complex Integral (20)

PPTX
Complex Variables Assignment Help
PPTX
Complex Variables Assignment Help
PPT
Another possibility
PPT
Mba admission in india
PDF
Mac331 complex analysis_mfa_week6_16-10-20 (1)
PDF
Complex analysis and differential equation
PPTX
Complex differentiation contains analytic function.pptx
PPTX
PPTX
Engg. mathematics iii
PDF
cauchyintegraltheoremformula-171016142130.pdf
DOCX
Unit iii analytic functions
PDF
Hw1sol
PDF
U unit3 vm
PDF
C222529
PPTX
Cauchy integral theorem & formula (complex variable & numerical method )
PDF
Hw5sol
PPT
complex variable PPT ( SEM 2 / CH -2 / GTU)
PDF
U unit4 vm
Complex Variables Assignment Help
Complex Variables Assignment Help
Another possibility
Mba admission in india
Mac331 complex analysis_mfa_week6_16-10-20 (1)
Complex analysis and differential equation
Complex differentiation contains analytic function.pptx
Engg. mathematics iii
cauchyintegraltheoremformula-171016142130.pdf
Unit iii analytic functions
Hw1sol
U unit3 vm
C222529
Cauchy integral theorem & formula (complex variable & numerical method )
Hw5sol
complex variable PPT ( SEM 2 / CH -2 / GTU)
U unit4 vm
Ad

More from Mikołaj Hajduk (11)

PDF
Ptolemy's theorem visualisation. 3D graphics.
PDF
An inequality painted on the vase body.
PDF
Still life with vases - a 3D visualisation.
PDF
How to draw arcs of huge circles - usage of the "drawing tool".
PDF
How to draw arcs of huge circles - description.
PDF
Calculation of the volume of a bottle partially filled with a fluid.
PDF
Permutation theorem and its use to proving inequalities.
PDF
The sum of the triangle sides lengths reciprocals vs a cyclic sum of a specif...
PDF
Indescribable numbers
PDF
Late Spring 2015 Photos
PDF
Cube root
Ptolemy's theorem visualisation. 3D graphics.
An inequality painted on the vase body.
Still life with vases - a 3D visualisation.
How to draw arcs of huge circles - usage of the "drawing tool".
How to draw arcs of huge circles - description.
Calculation of the volume of a bottle partially filled with a fluid.
Permutation theorem and its use to proving inequalities.
The sum of the triangle sides lengths reciprocals vs a cyclic sum of a specif...
Indescribable numbers
Late Spring 2015 Photos
Cube root

Recently uploaded (20)

PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Lesson notes of climatology university.
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
Cell Structure & Organelles in detailed.
PPTX
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
Yogi Goddess Pres Conference Studio Updates
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PDF
Complications of Minimal Access Surgery at WLH
PDF
Updated Idioms and Phrasal Verbs in English subject
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
master seminar digital applications in india
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Lesson notes of climatology university.
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Final Presentation General Medicine 03-08-2024.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Cell Structure & Organelles in detailed.
UV-Visible spectroscopy..pptx UV-Visible Spectroscopy – Electronic Transition...
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Orientation - ARALprogram of Deped to the Parents.pptx
Yogi Goddess Pres Conference Studio Updates
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
2.FourierTransform-ShortQuestionswithAnswers.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Microbial disease of the cardiovascular and lymphatic systems
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Complications of Minimal Access Surgery at WLH
Updated Idioms and Phrasal Verbs in English subject
Microbial diseases, their pathogenesis and prophylaxis
master seminar digital applications in india

Complex Integral

  • 1. Show that C f(z)dz = 0, where f is the given function and C is the unit circle |z| = 1. a) f(z) = z3 − 1 + 3i b) f(z) = z2 + 1 z − 4 c) f(z) = sin z (z2 − 25) (z2 + 9) Solution by Mikołaj Hajduk: The points a) and b) can be solved with use of parametrization z(t) = eit where t ∈ [0, 2π] and dz = ieit dt. Ad. a) C f(z)dz = C (z3 − 1 + 3i)dz = 2π 0 ((eit )3 − 1 + 3i)ieit dt = = 2π 0 e3it ieit + (−1 + 3i)ieit dt = 2π 0 ie4it dt + 2π 0 (−1 + 3i)ieit dt = = i 2π 0 e4it dt + (−1 + 3i)i 2π 0 eit dt = i 1 4i e4it 2π 0 + (−1 + 3i)i 1 i eit 2π 0 = = 1 4 e4it 2π 0 + (−1 + 3i)eit 2π 0 = 1 4 (e4i∗2π − e4i∗0 ) + (−1 + 3i)(ei∗2π − ei∗0 ) = c 2015/09/17 02:27:23, Mikołaj Hajduk 1 / 4 next
  • 2. = 1 4 ((e2iπ )4 − e0 ) + (−1 + 3i)(e2iπ − e0 ) = 1 4 (1 − 1) + (−1 + 3i)(1 − 1) = 0 Ad. b) C f(z)dz = C z2 + 1 z − 4 dz = 2π 0 (eit )2 + 1 eit − 4 ieit dt = = 2π 0 ie2it eit dt + 2π 0 ieit eit − 4 dt = i 2π 0 e3it dt + 2π 0 (eit − 4) eit − 4 dt = = i 1 3i e3it 2π 0 + ln |eit − 4| 2π 0 = 1 3 (e3i∗2π − e3i∗0 ) + (ln |ei∗2π − 4| − ln |ei∗0 − 4|) = = 1 3 ((e2iπ )3 − e0 ) + (ln |1 − 4| − ln |1 − 4|) = 1 3 (1 − 1) + (ln 3 − ln 3) = 0 Ad. c) Let’s notice that the function f is odd in its domain because sin(−z) def = ei(−z) − e−i(−z) 2i = e−iz − eiz 2i = − eiz − e−iz 2i def = − sin(z) and hence f(−z) = sin(−z) ((−z)2 − 25) ((−z)2 + 9) = − sin z (z2 − 25) (z2 + 9) = −f(z) Let CU and CB denote the circle arcs corresponding to the upper and bottom halves of the circle C. We have then C f(z)dz = CU f(z)dz + CB f(z)dz c 2015/09/17 02:27:23, Mikołaj Hajduk 2 / 4 next
  • 3. The function h : CU −→ CB defined as h(z) = −z is a bijection between points of the arcs CU and CB that transforms the beginning point of the arc CU into the beginning point of the arc CB and the ending point of the arc CU into the ending point of the arc CB. The arc CB is an image of the arc CU under the function h: CB = h(CU) c 2015/09/17 02:27:23, Mikołaj Hajduk 3 / 4 next
  • 4. therefore, bearing in mind that f(z) is odd and h−1 (z) = −z, we get CB f(z)dz = h(CU) f(z)dz = CU f(h−1 (z))dz = CU f(−z)dz = CU −f(z)dz = − CU f(z)dz Hence C f(z)dz = CU f(z)dz + CB f(z)dz = CU f(z)dz − CU f(z)dz = 0 c 2015/09/17 02:27:23, Mikołaj Hajduk 4 / 4