SlideShare a Scribd company logo
Prove that if a, b, c are lengths of the sides of a triangle then the following inequality holds:
1
a
+
1
b
+
1
c
1
a + b − c
+
1
c + a − b
+
1
b + c − a
Solution by Mikołaj Hajduk: Since a, b, c are lengths of the sides of a triangle we have a > 0, b > 0, c > 0
and 


a + b > c
c + a > b
b + c > a
⇐⇒



a + b − c > 0
c + a − b > 0
b + c − a > 0
Let’s notice that
(a + b − c) + (c + a − b) = 2a
(c + a − b) + (b + c − a) = 2c
(a + b − c) + (b + c − a) = 2b
From the other hand, for any x > 0, y > 0 we have
1
x
+
1
y
4
x + y
hence
1
a + b − c
+
1
c + a − b
+
1
b + c − a
4
(a + b − c) + (c + a − b)
+
1
b + c − a
=
2
a
+
1
b + c − a
1
a + b − c
+
1
c + a − b
+
1
b + c − a
1
a + b − c
+
4
(c + a − b) + (b + c − a)
=
1
a + b − c
+
2
c
1
a + b − c
+
1
c + a − b
+
1
b + c − a
4
(a + b − c) + (b + c − a)
+
1
c + a − b
=
2
b
+
1
c + a − b
c 2015/10/11 22:05:55, Mikołaj Hajduk 1 / 2 next
Let’s add all aforementioned inequalities:
3
1
a + b − c
+
1
c + a − b
+
1
b + c − a
2
a
+
2
b
+
2
c
+
1
a + b − c
+
1
c + a − b
+
1
b + c − a
and rearrange the result a bit to obtain the following inequality:
2
1
a + b − c
+
1
c + a − b
+
1
b + c − a
2
1
a
+
1
b
+
1
c
and finally
1
a + b − c
+
1
c + a − b
+
1
b + c − a
1
a
+
1
b
+
1
c
c 2015/10/11 22:05:55, Mikołaj Hajduk 2 / 2

More Related Content

PDF
Productos notables
DOCX
Practica productos notables
PDF
Spm last minute revision mt
PDF
ЗНО-2021 (математика)
PDF
Tarea de Matematicas
DOC
Moooniiikitha
DOC
ChRistian
DOCX
Class notes precalc
Productos notables
Practica productos notables
Spm last minute revision mt
ЗНО-2021 (математика)
Tarea de Matematicas
Moooniiikitha
ChRistian
Class notes precalc

What's hot (19)

PDF
EJERCICIOS PARA EL EXAMEN
PDF
Ch02 22
PDF
Intro To Gradient Descent in Javascript
PPTX
Real Numbers
PPTX
Productos notables web 2.o
PDF
Maria
DOC
1.2 expansion and factorization
PDF
Teoria y problemas de paralelepipedos pa327 ccesa007
PDF
Assignment3 solution 3rd_edition
PPTX
Appendix 3 Linear Functions PowerPoint
PDF
経済数学II 「第6章 比較静学と導関数の概念」
PPT
Productos notables gráficos
PDF
Regras diferenciacao
DOCX
Math basic
PDF
ikh323-05
PDF
Answers homework2
PPTX
Quadratic equations 7
PPTX
Mate tarea - 2º
PDF
Summative Assessment Paper-3
EJERCICIOS PARA EL EXAMEN
Ch02 22
Intro To Gradient Descent in Javascript
Real Numbers
Productos notables web 2.o
Maria
1.2 expansion and factorization
Teoria y problemas de paralelepipedos pa327 ccesa007
Assignment3 solution 3rd_edition
Appendix 3 Linear Functions PowerPoint
経済数学II 「第6章 比較静学と導関数の概念」
Productos notables gráficos
Regras diferenciacao
Math basic
ikh323-05
Answers homework2
Quadratic equations 7
Mate tarea - 2º
Summative Assessment Paper-3
Ad

Similar to The sum of the triangle sides lengths reciprocals vs a cyclic sum of a specific form. (20)

PDF
567 nice and_hard_inequality
PPTX
Expanding Binomial Brackets
PDF
100 Inequalities Problems
PPT
Chapter 6 algebraic expressions iii
PDF
GEO_3º_1B_SOL (1) (1).pdf
PDF
DLD solutions.pdf digital logic design book
PDF
Kuncisoal mtk-un-smk-prwsta
PPT
Math graphing quatratic equation
PDF
Special products and factorization / algebra
PDF
BT BỒI DƯỠNG HSG LỚP 9 (Đại Số) Dạng 1
PDF
Summative Assessment Paper-1
PDF
lemh2sm.pdf
PDF
Mock cat solutions paper no 1
PDF
Sect3 7
DOC
De thi hsg lop 9 co dap an de 9
PDF
number theory chandramowliswaran theorem
PDF
Sesion de aprendizaje de ecuacion de primer grado algebra pre universitaria c...
PDF
Matematicas para ingenieria 4ta edicion - john bird
PDF
Math06reviewsheet (3)
567 nice and_hard_inequality
Expanding Binomial Brackets
100 Inequalities Problems
Chapter 6 algebraic expressions iii
GEO_3º_1B_SOL (1) (1).pdf
DLD solutions.pdf digital logic design book
Kuncisoal mtk-un-smk-prwsta
Math graphing quatratic equation
Special products and factorization / algebra
BT BỒI DƯỠNG HSG LỚP 9 (Đại Số) Dạng 1
Summative Assessment Paper-1
lemh2sm.pdf
Mock cat solutions paper no 1
Sect3 7
De thi hsg lop 9 co dap an de 9
number theory chandramowliswaran theorem
Sesion de aprendizaje de ecuacion de primer grado algebra pre universitaria c...
Matematicas para ingenieria 4ta edicion - john bird
Math06reviewsheet (3)
Ad

More from Mikołaj Hajduk (11)

PDF
Ptolemy's theorem visualisation. 3D graphics.
PDF
An inequality painted on the vase body.
PDF
Still life with vases - a 3D visualisation.
PDF
How to draw arcs of huge circles - usage of the "drawing tool".
PDF
How to draw arcs of huge circles - description.
PDF
Calculation of the volume of a bottle partially filled with a fluid.
PDF
Permutation theorem and its use to proving inequalities.
PDF
Complex Integral
PDF
Indescribable numbers
PDF
Late Spring 2015 Photos
PDF
Cube root
Ptolemy's theorem visualisation. 3D graphics.
An inequality painted on the vase body.
Still life with vases - a 3D visualisation.
How to draw arcs of huge circles - usage of the "drawing tool".
How to draw arcs of huge circles - description.
Calculation of the volume of a bottle partially filled with a fluid.
Permutation theorem and its use to proving inequalities.
Complex Integral
Indescribable numbers
Late Spring 2015 Photos
Cube root

Recently uploaded (20)

PDF
VCE English Exam - Section C Student Revision Booklet
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PPTX
Cell Structure & Organelles in detailed.
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Complications of Minimal Access Surgery at WLH
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
master seminar digital applications in india
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
01-Introduction-to-Information-Management.pdf
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PPTX
Pharma ospi slides which help in ospi learning
PDF
O7-L3 Supply Chain Operations - ICLT Program
VCE English Exam - Section C Student Revision Booklet
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Cell Structure & Organelles in detailed.
Supply Chain Operations Speaking Notes -ICLT Program
Final Presentation General Medicine 03-08-2024.pptx
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
GDM (1) (1).pptx small presentation for students
Complications of Minimal Access Surgery at WLH
Microbial disease of the cardiovascular and lymphatic systems
master seminar digital applications in india
Anesthesia in Laparoscopic Surgery in India
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
A systematic review of self-coping strategies used by university students to ...
01-Introduction-to-Information-Management.pdf
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
Pharma ospi slides which help in ospi learning
O7-L3 Supply Chain Operations - ICLT Program

The sum of the triangle sides lengths reciprocals vs a cyclic sum of a specific form.

  • 1. Prove that if a, b, c are lengths of the sides of a triangle then the following inequality holds: 1 a + 1 b + 1 c 1 a + b − c + 1 c + a − b + 1 b + c − a Solution by Mikołaj Hajduk: Since a, b, c are lengths of the sides of a triangle we have a > 0, b > 0, c > 0 and    a + b > c c + a > b b + c > a ⇐⇒    a + b − c > 0 c + a − b > 0 b + c − a > 0 Let’s notice that (a + b − c) + (c + a − b) = 2a (c + a − b) + (b + c − a) = 2c (a + b − c) + (b + c − a) = 2b From the other hand, for any x > 0, y > 0 we have 1 x + 1 y 4 x + y hence 1 a + b − c + 1 c + a − b + 1 b + c − a 4 (a + b − c) + (c + a − b) + 1 b + c − a = 2 a + 1 b + c − a 1 a + b − c + 1 c + a − b + 1 b + c − a 1 a + b − c + 4 (c + a − b) + (b + c − a) = 1 a + b − c + 2 c 1 a + b − c + 1 c + a − b + 1 b + c − a 4 (a + b − c) + (b + c − a) + 1 c + a − b = 2 b + 1 c + a − b c 2015/10/11 22:05:55, Mikołaj Hajduk 1 / 2 next
  • 2. Let’s add all aforementioned inequalities: 3 1 a + b − c + 1 c + a − b + 1 b + c − a 2 a + 2 b + 2 c + 1 a + b − c + 1 c + a − b + 1 b + c − a and rearrange the result a bit to obtain the following inequality: 2 1 a + b − c + 1 c + a − b + 1 b + c − a 2 1 a + 1 b + 1 c and finally 1 a + b − c + 1 c + a − b + 1 b + c − a 1 a + 1 b + 1 c c 2015/10/11 22:05:55, Mikołaj Hajduk 2 / 2