SECTION 3.7

LINEAR EQUATIONS AND CURVE FITTING

In Problems 1-10 we first set up the linear system in the coefficients a , b,  that we get by
substituting each given point ( xi , yi ) into the desired interpolating polynomial equation
 y = a + bx + . Then we give the polynomial that results from solution of this linear system.

1.      y ( x ) = a + bx

        1 1   a   1 
        1 3  b  = 7         ⇒   a = − 2, b = 3   so    y ( x) = − 2 + 3 x
                   

2.      y ( x ) = a + bx

        1 −1  a     11 
        1 2   b  =  −10         ⇒   a = 4, b = −7     so    y ( x) = 4 − 7 x
                        

3.      y ( x ) = a + bx + cx 2

        1 0 0   a    3
        1 1 1   b  =  1         ⇒    a = 3, b = 0, c = −2    so     y ( x) = 3 − 2 x 2
                      
        1 2 4   c 
                      −5 
                          

4.      y ( x ) = a + bx + cx 2

        1 −1 1   a   1
        1 1 1   b  =  5         ⇒     a = 0, b = 2, c = 3    so     y ( x) = 2 x + 3 x 2
                      
        1 2 4   c 
                     16 
                          

5.      y ( x ) = a + bx + cx 2

        1 1 1   a    3
        1 2 4   b  = 3          ⇒   a = 5, b = −3, c = 1    so    y ( x) = 5 − 3 x + x 2
                      
        1 3 9   c 
                     5 
                          

6.      y ( x ) = a + bx + cx 2

        1 −1 1   a   −1 
        1 3 9  b  =  −13
                        
        1 5 25   c 
                     5 
                            
⇒     a = − 10, b = −7, c = 2      so        y ( x) = − 10 − 7 x + 2 x 2

7.      y ( x ) = a + bx + cx 2 + dx 3

        1 −1  1 −1  a      1
        1 0         b 
               0 0          0
                            =  
        1 1   1 1  c       1
                            
        1 2   4 8  d        −4 
                           4
             ⇒ a = 0, b = , c = 1, d = −
                           3
                                         4
                                         3
                                                          so      y( x) =
                                                                            1
                                                                            3
                                                                              ( 4 x + 3x 2 − 4 x3 )
8.      y ( x ) = a + bx + cx 2 + dx 3

        1 −1     1 −1  a    3
        1 0           b 
                  0 0        5 
                             =  
        1 1      1 1  c     7 
                             
        1 2      4 8  d     3
             ⇒     a = 5, b = 3, c = 0, d = −1        so        y ( x) = 5 + 3x − x3

9.      y ( x ) = a + bx + cx 2 + dx 3

        1 −2 4 −8   a   −2 
        1 −1 1 −1  b    
                    =  2 
        1 1 1 1   c    10 
                        
        1 2 4 8   d     26 
             ⇒     a = 4, b = 3, c = 2, d = 1        so        y ( x) = 4 + 3 x + 2 x 2 + x 3

10.     y ( x ) = a + bx + cx 2 + dx 3

        1 −1     1 −1  a     17 
        1 1            b 
                  1 1          −5 
                              =  
        1 2      4 8  c      3
                              
        1 3      9 27   d     −2 
             ⇒     a = 17, b = −5, c = 3, d = −2           so       y ( x) = 17 − 5 x + 3 x 2 − 2 x 3

In Problems 11-14 we first set up the linear system in the coefficients A, B, C that we get by
substituting each given point ( xi , yi ) into the circle equation Ax + By + C = − x 2 − y 2 (see
Eq. (9) in the text). Then we give the circle that results from solution of this linear system.
11.     Ax + By + C = − x 2 − y 2

         −1 −1 1  A   −2 
         6 6 1  B  =  −72           ⇒      A = −6, B = −4, C = −12
                          
         7 5 1 C 
                      −74 
                              
        x 2 + y 2 − 6 x − 4 y − 12 = 0

        ( x − 3)2 + ( y − 2)2 = 25       center (3, 2) and radius 5

12.     Ax + By + C = − x 2 − y 2

         3 −4 1  A     −25 
         5 10 1  B  =  −125           ⇒     A = 6, B = −8, C = −75
                           
         −9 12 1 C 
                       −225
                               
        x 2 + y 2 + 6 x − 8 y − 75 = 0

        ( x + 3)2 + ( y − 4)2 = 100      center (–3, 4) and radius 10

13.     Ax + By + C = − x 2 − y 2

         1 0 1  A      −1 
         0 −5 1  B  =  −25           ⇒     A = 4, B = 4, C = −5
                           
         −5 −4 1 C 
                       −41
                               
        x2 + y 2 + 4 x + 4 y − 5 = 0

        ( x + 2)2 + ( y + 2)2 = 13       center (–3, –2) and radius     13

14.     Ax + By + C = − x 2 − y 2

         0 0 1  A     0 
        10 0 1  B  =  −100           ⇒     A = −10, B = −24, C = 0
                           
         −7 7 1 C 
                      −98 
                               
        x 2 + y 2 − 10 x − 24 y = 0

        ( x − 5)2 + ( y − 12)2 = 169     center (5, 12) and radius 13

In Problems 15-18 we first set up the linear system in the coefficients A, B, C that we get by
substituting each given point ( xi , yi ) into the central conic equation Ax 2 + Bxy + Cy 2 = 1 (see
Eq. (10) in the text). Then we give the equation that results from solution of this linear system.
15.   Ax 2 + Bxy + Cy 2 = 1

       0 0 25  A     1
       25 0 0   B  = 1             ⇒       A=
                                                      1       1
                                                         , B=− , C=
                                                                    1
                                                25      25    25
       25 25 25  C 
                     1
                         
      x 2 − xy + y 2 = 25


16.   Ax 2 + Bxy + Cy 2 = 1

       0   0   25   A    1
       25  0        B  = 1
                0                         ⇒     A=
                                                        1
                                                           , B=−
                                                                  7
                                                                     , C=
                                                                          1
                                                     25       100      25
      100 100 100  C 
                         1
                             
      4 x 2 − 7 xy + 4 y 2 = 100


17.   Ax 2 + Bxy + Cy 2 = 1

       0   0   1   A    1
       1   0   0   B  = 1              ⇒     A = 1, B = −
                                                                  199
                                                                      , C =1
                                                            100
      100 100 100  C 
                        1
                            
      100 x 2 − 199 xy + 100 y 2 = 100


18.   Ax 2 + Bxy + Cy 2 = 1

       0 0 16   A   1
       9 0 0   B  = 1              ⇒
                                                   1
                                                 A= , B =−
                                                            481
                                                                , C=
                                                                      1
                                             9       3600      16
       25 25 25 C 
                    1
                        
      400 x 2 − 481xy + 225 y 2 = 3600
                                                                               B
19.   We substitute each of the two given points into the equation y = A +       .
                                                                               x
      1 1 
       1   A = 5             ⇒   A = 3, B = 2 so y = 3 +
                                                                     2
      1    B   4
       2                                                       x
          
B C
20.     We substitute each of the three given points into the equation y = Ax +          + .
                                                                                        x x2
                  
        1    1 1
                    A  2
              1 1  
                       B =  20
        2                                                                                   8 16
                                           ⇒        A = 10, B = 8, C = −16 so y = 10 x +      −
             2 4                                                                       x x2
                    C    41
              1 1        
        4         
        
             4 16 
                   

In Problems 21 and 22 we fit the sphere equation ( x − h )2 + ( y − k )2 + ( z − l ) 2 = r 2 in the expanded
form Ax + By + Cz + D = − x 2 − y 2 − z 2 that is analogous to Eq. (9) in the text (for a circle).

21.      Ax + By + Cz + D = − x 2 − y 2 − z 2

         4 6 15         1  A   −277 
        13 5 7          1  B        
                            =  −243             ⇒     A = −2, B = −4, C = −6, D = −155
         5 14 6         1  C   −257 
                                    
         5 5 −9         1  D   −131
        x 2 + y 2 + z 2 − 2 x − 4 y − 6 z − 155 = 0

        ( x − 1)2 + ( y − 2)2 + ( z − 3)2 = 169       center (1, 2, 3) and radius 13

22.      Ax + By + Cz + D = − x 2 − y 2 − z 2

         11 17 17 1  A       −699 
         29           B
               1 15 1         −1067 
                             =                         ⇒     A = −10, B = 14, C = −18, D = −521
         13   −1 33 1  C     −1259 
                                   
         −19 −13 1 1  D      −531 
        x 2 + y 2 + z 2 − 10 x + 14 y − 18 z − 521 = 0

        ( x − 5) 2 + ( y + 7)2 + ( z − 9) 2 = 676     center (5, –7, 9) and radius 26

In Problems 23-26 we first take t = 0 in 1970 to fit a quadratic polynomial P(t ) = a + bt + ct 2 .
Then we write the quadratic polynomial Q(T ) = P(T − 1970) that expresses the predicted
population in terms of the actual calendar year T.
23.     P(t ) = a + bt + ct 2

        1 0   0  a      49.061
        1 10 100  b  =  49.137 
                               
        1 20 400   c 
                       50.809 
                                   
        P(t ) = 49.061 − 0.0722 t + 0.00798 t 2

        Q(T ) = 31160.9 − 31.5134 T + 0.00798 T 2

24.     P(t ) = a + bt + ct 2

        1 0   0  a     56.590 
        1 10 100  b  = 58.867 
                              
        1 20 400   c 
                       59.669 
                                  
        P(t ) = 56.590 + 0.30145 t − 0.007375 t 2

        Q(T ) = − 29158.9 + 29.3589 T − 0.007375 T 2


25.     P(t ) = a + bt + ct 2

        1 0   0  a      62.813 
        1 10 100  b  = 75.367 
                               
        1 20 400   c 
                       85.446 
                                   
        P(t ) = 62.813 + 1.37915 t − 0.012375 t 2

        Q(T ) = − 50680.3 + 50.1367 T − 0.012375 T 2


26.     P(t ) = a + bt + ct 2

        1 0   0  a     34.838
        1 10 100  b  =  43.171
                              
        1 20 400   c 
                       52.786 
                                  
        P(t ) = 34.838 + 0.7692 t + 0.00641t 2

        Q(T ) = 23396.1 − 24.4862 T + 0.00641T 2


In Problems 27-30 we first take t = 0 in 1960 to fit a cubic polynomial P(t ) = a + bt + ct 2 + dt 3 .
Then we write the cubic polynomial Q(T ) = P(T − 1960) that expresses the predicted population
in terms of the actual calendar year T.
27.   P(t ) = a + bt + ct 2 + dt 3

      1 0   0    0  a      44.678 
      1 10 100 1000   b           
                        =  49.061
      1 20 400 8000   c    49.137 
                                  
      1 30 900 27000   d  50.809 
      P(t ) = 44.678 + 0.850417 t − 0.05105 t 2 + 0.000983833 t 3

      Q(T ) = − 7.60554 × 106 + 11539.4 T − 5.83599 T 2 + 0.000983833 T 3

28.   P(t ) = a + bt + ct 2 + dt 3

      1 0   0    0  a     51.619 
      1 10 100 1000   b          
                        = 56.590 
      1 20 400 8000   c   58.867 
                                 
      1 30 900 27000   d  59.669 
      P(t ) = 51.619 + 0.672433 t − 0.019565 t 2 + 0.000203167 t 3

      Q(T ) = − 1.60618 × 106 + 2418.82 T − 1.21419 T 2 + 0.000203167 T 3

29.   P(t ) = a + bt + ct 2 + dt 3

      1 0   0    0  a      54.973 
      1 10 100 1000   b           
                        =  62.813
      1 20 400 8000   c   75.367 
                                  
      1 30 900 27000   d  85.446 
      P(t ) = 54.973 + 0.308667 t + 0.059515 t 2 − 0.00119817 t 3

      Q(T ) = 9.24972 ×106 − 14041.6 T + 7.10474 T 2 − 0.00119817 T 3

30.   P(t ) = a + bt + ct 2 + dt 3

      1 0   0    0  a      28.053
      1 10 100 1000   b          
                        = 34.838 
      1 20 400 8000   c    43.171
                                 
      1 30 900 27000   d  52.786 
      P(t ) = 28.053 + 0.592233 t + 0.00907 t 2 − 0.0000443333 t 3

      Q(T ) = 367520 − 545.895 T + 0.26975 T 2 − 0.0000443333T 3
In Problems 31-34 we take t = 0 in 1950 to fit a quartic polynomial P(t ) = a + bt + ct 2 + dt 3 + et 4 .
Then we write the quartic polynomial Q(T ) = P(T − 1950) that expresses the predicted
population in terms of the actual calendar year T.

31.     P(t ) = a + bt + ct 2 + dt 3 + et 4 .

        1    0   0    0      0     a    39.478 
        1   10 100 1000            b 
                            10000        44.678 
                                                  
        1   20 400 8000 160000   c  =  49.061
                                               
        1   30 900 27000 810000   d     49.137 
        1
            40 1600 64000 2560000   e 
                                        50.809 
                                                   
        P(t ) = 39.478 + 0.209692 t + 0.0564163 t 2 − 0.00292992 t 3 + 0.0000391375 t 4

        Q(T ) = 5.87828 × 108 − 1.19444 ×106 T + 910.118 T 2 − 0.308202 T 3 + 0.0000391375 T 4

32.     P(t ) = a + bt + ct 2 + dt 3 + et 4 .

        1    0   0    0      0     a    44.461
        1   10 100 1000            b 
                            10000       51.619 
                                                 
        1   20 400 8000 160000   c  = 56.590 
                                              
        1   30 900 27000 810000   d    58.867 
        1
            40 1600 64000 2560000   e 
                                        59.669 
                                                  
        P(t ) = 44.461 + 0.7651t − 0.000489167 t 2 − 0.000516 t 3 + 7.19167 × 10−6 t 4

        Q(T ) = 1.07807 × 108 − 219185 T + 167.096 T 2 − 0.056611T 3 + 7.19167 ×10−6 T 4

33.     P(t ) = a + bt + ct 2 + dt 3 + et 4 .

        1    0   0    0      0     a    47.197 
        1   10 100 1000            b 
                            10000        54.973 
                                                  
        1   20 400 8000 160000   c  =  62.813 
                                               
        1   30 900 27000 810000   d    75.367 
        1
            40 1600 64000 2560000   e 
                                        85.446 
                                                   
        P(t ) = 47.197 + 1.22537 t − 0.0771921t 2 + 0.00373475 t 3 − 0.0000493292 t 4

        Q(T ) = − 7.41239 × 108 + 1.50598 × 106 T − 1147.37 T 2 + 0.388502 T 3 − 0.0000493292 T 4
34.   P(t ) = a + bt + ct 2 + dt 3 + et 4 .

      1    0   0    0      0     a    20.190 
      1   10 100 1000            b 
                          10000        28.053
                                                
      1   20 400 8000 160000   c  = 34.838 
                                             
      1   30 900 27000 810000   d     43.171
      1
          40 1600 64000 2560000   e 
                                      52.786 
                                                 
      P(t ) = 20.190 + 1.00003 t − 0.031775 t 2 + 0.00116067 t 3 − 0.00001205 t 4

      Q(T ) = − 1.8296 ×108 + 370762 T − 281.742 T 2 + 0.0951507 T 3 − 0.00001205 T 4

35.   Expansion of the determinant along the first row gives an equation of the form
       ay + bx 2 + cx + d = 0 that can be solved for y = Ax 2 + Bx + C. If the coordinates of any
      one of the three given points ( x1 , y1 ), ( x2 , y2 ), ( x3 , y3 ) are substituted in the first row, then
      the determinant has two identical rows and therefore vanishes.

36.   Expansion of the determinant along the first row gives

                  y       x2   x 1
                                       1 1 1    3 1 1  3 1 1 3 1 1
                  3       1    1 1
                                   = y 4 2 1−x 3 2 1+x 3 4 1− 3 4 2 =
                                              2

                  3       4    2 1
                                       9 3 1    7 3 1  7 9 1 7 9 3
                  7       9    3 1
                                              −2 y + 4 x 2 − 12 x + 14 = 0 .

      Hence y = 2 x 2 − 6 x + 7 is the parabola that interpolates the three given points.

37.   Expansion of the determinant along the first row gives an equation of the form
       a( x 2 + y 2 ) + bx + cy + d = 0, and we get the desired form of the equation of a circle upon
      division by a. If the coordinates of any one of the three given points ( x1 , y1 ), ( x2 , y2 ), and
       ( x3 , y3 ) are substituted in the first row, then the determinant has two identical rows and
      therefore vanishes.

38.   Expansion of the determinant along the first row gives

       x2 + y 2       x   y 1
         25           3 −4 1
                              =
        125           5 10 1
        225           −9 12 1
3 −4 1      25 −4 1      25 3 1 25 3 −4
               = ( x + y ) 5 10 1 − x 125 10 1 + y 125 5 1 − 125 5 10
                       2   2


                           −9 12 1    225 12 1     225 −9 1 225 −9 12

               = 200( x 2 + y 2 ) + 1200 x − 1600 y − 15000 = 0.

      Division by 200 and completion of squares gives ( x + 3)2 + ( y − 4)2 = 100, so the circle has
      center (–3, 4) and radius 10.

39.   Expansion of the determinant along the first row gives an equation of the form
      ax 2 + bxy + cy 2 + d = 0, which can be written in the central conic form
      Ax 2 + Bxy + Cy 2 = 1 upon division by –d. If the coordinates of any one of the three given
      points ( x1 , y1 ), ( x2 , y2 ), and ( x3 , y3 ) are substituted in the first row, then the determinant
      has two identical rows and therefore vanishes.

40.   Expansion of the determinant along the first row gives

       x2   y2 1
            xy
      0 0 16 1
                 =
      9 0 0 1
      25 25 25 1

                   0 16 1     0 16 1    0 0 1 0 0 16
               = x 0 0 1 − xy 9 0 1 + y 9 0 1 − 9 0 0
                   2


                   25 25 1    25 25 1   25 25 1 25 25 25

               = 400 x 2 − 481xy + 225 y 2 − 3600 = 0.

More Related Content

PDF
Nota math-spm
PPT
Tangents + intersections
PPTX
Yr.12 Transition Workshop 2012-2013
PDF
Additional Mathematics form 4 (formula)
PDF
5HBC Conic Solutions
PDF
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
PDF
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
PDF
Add Maths 2
Nota math-spm
Tangents + intersections
Yr.12 Transition Workshop 2012-2013
Additional Mathematics form 4 (formula)
5HBC Conic Solutions
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton cálculo ii- um novo horizonte - exercicio resolvidos v2
Add Maths 2

What's hot (17)

PDF
Solucionario c.t. álgebra 5°
PDF
Form 5 Additional Maths Note
PPTX
Presentacion unidad 4
PDF
Form 4 add maths note
PDF
Appendex g
PDF
Sect4 5
PDF
Metrix[1]
DOCX
Função afim resumo teórico e exercícios - celso brasil
PDF
02[anal add math cd]
PPTX
Pers & fung kuad abc
DOC
Chapter 2(limits)
PDF
Solution Manual : Chapter - 02 Limits and Continuity
PDF
Calculus Final Exam
PPT
Spm add math 2009 paper 1extra222
DOC
Satyabama niversity questions in vector
DOCX
Test 1 f4 add maths
PDF
Notes and-formulae-mathematics
Solucionario c.t. álgebra 5°
Form 5 Additional Maths Note
Presentacion unidad 4
Form 4 add maths note
Appendex g
Sect4 5
Metrix[1]
Função afim resumo teórico e exercícios - celso brasil
02[anal add math cd]
Pers & fung kuad abc
Chapter 2(limits)
Solution Manual : Chapter - 02 Limits and Continuity
Calculus Final Exam
Spm add math 2009 paper 1extra222
Satyabama niversity questions in vector
Test 1 f4 add maths
Notes and-formulae-mathematics
Ad

Similar to Sect3 7 (20)

PDF
Integrated exercise a_(book_2_B)_Ans
PDF
09 sistema de equação do primeiro grau
PPTX
งานนำเสนอ12
DOC
Simultaneous eqn2
PPTX
Yr.12 Transition Workshop 2012- 2013
PDF
7.1 7.3 reteach (review)
PDF
jhkl,l.มือครูคณิตศาสตร์พื้นฐาน ม.4 สสวท เล่ม 2fuyhfg
DOC
09 Trial Penang S1
PDF
S101-52國立新化高中(代理)
PDF
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
PPTX
เอกนาม
PDF
Math 17 midterm exam review jamie
PPT
7.4
PDF
Sect5 3
DOC
Mathematics
DOC
Funciones1
DOC
Worksheet For Simultaneous Equation
PDF
PDF
6.6 parallel and perpendicular lines
Integrated exercise a_(book_2_B)_Ans
09 sistema de equação do primeiro grau
งานนำเสนอ12
Simultaneous eqn2
Yr.12 Transition Workshop 2012- 2013
7.1 7.3 reteach (review)
jhkl,l.มือครูคณิตศาสตร์พื้นฐาน ม.4 สสวท เล่ม 2fuyhfg
09 Trial Penang S1
S101-52國立新化高中(代理)
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
เอกนาม
Math 17 midterm exam review jamie
7.4
Sect5 3
Mathematics
Funciones1
Worksheet For Simultaneous Equation
6.6 parallel and perpendicular lines
Ad

More from inKFUPM (20)

DOC
Tb10
DOC
Tb18
DOC
Tb14
DOC
Tb13
DOC
Tb17
DOC
Tb16
DOC
Tb15
DOC
Tb12
DOC
Tb11
DOC
Tb09
DOC
Tb05
DOC
Tb07
DOC
Tb04
DOC
Tb02
DOC
Tb03
DOC
Tb06
DOC
Tb01
DOC
Tb08
PDF
21221
PDF
Sect5 6
Tb10
Tb18
Tb14
Tb13
Tb17
Tb16
Tb15
Tb12
Tb11
Tb09
Tb05
Tb07
Tb04
Tb02
Tb03
Tb06
Tb01
Tb08
21221
Sect5 6

Recently uploaded (20)

PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
August Patch Tuesday
PPT
What is a Computer? Input Devices /output devices
PPTX
Web Crawler for Trend Tracking Gen Z Insights.pptx
PPTX
Tartificialntelligence_presentation.pptx
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
CloudStack 4.21: First Look Webinar slides
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Architecture types and enterprise applications.pdf
PDF
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PPTX
Benefits of Physical activity for teenagers.pptx
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PDF
A review of recent deep learning applications in wood surface defect identifi...
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PDF
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
PDF
Developing a website for English-speaking practice to English as a foreign la...
observCloud-Native Containerability and monitoring.pptx
August Patch Tuesday
What is a Computer? Input Devices /output devices
Web Crawler for Trend Tracking Gen Z Insights.pptx
Tartificialntelligence_presentation.pptx
Getting started with AI Agents and Multi-Agent Systems
A comparative study of natural language inference in Swahili using monolingua...
CloudStack 4.21: First Look Webinar slides
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Architecture types and enterprise applications.pdf
A Late Bloomer's Guide to GenAI: Ethics, Bias, and Effective Prompting - Boha...
Group 1 Presentation -Planning and Decision Making .pptx
Zenith AI: Advanced Artificial Intelligence
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Benefits of Physical activity for teenagers.pptx
Final SEM Unit 1 for mit wpu at pune .pptx
A review of recent deep learning applications in wood surface defect identifi...
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
Microsoft Solutions Partner Drive Digital Transformation with D365.pdf
Developing a website for English-speaking practice to English as a foreign la...

Sect3 7

  • 1. SECTION 3.7 LINEAR EQUATIONS AND CURVE FITTING In Problems 1-10 we first set up the linear system in the coefficients a , b, that we get by substituting each given point ( xi , yi ) into the desired interpolating polynomial equation y = a + bx + . Then we give the polynomial that results from solution of this linear system. 1. y ( x ) = a + bx 1 1   a  1  1 3  b  = 7  ⇒ a = − 2, b = 3 so y ( x) = − 2 + 3 x      2. y ( x ) = a + bx 1 −1  a   11  1 2   b  =  −10  ⇒ a = 4, b = −7 so y ( x) = 4 − 7 x      3. y ( x ) = a + bx + cx 2 1 0 0   a  3 1 1 1   b  =  1  ⇒ a = 3, b = 0, c = −2 so y ( x) = 3 − 2 x 2      1 2 4   c      −5    4. y ( x ) = a + bx + cx 2 1 −1 1   a  1 1 1 1   b  =  5  ⇒ a = 0, b = 2, c = 3 so y ( x) = 2 x + 3 x 2      1 2 4   c     16    5. y ( x ) = a + bx + cx 2 1 1 1   a  3 1 2 4   b  = 3 ⇒ a = 5, b = −3, c = 1 so y ( x) = 5 − 3 x + x 2      1 3 9   c     5    6. y ( x ) = a + bx + cx 2 1 −1 1   a   −1  1 3 9  b  =  −13      1 5 25   c      5   
  • 2. a = − 10, b = −7, c = 2 so y ( x) = − 10 − 7 x + 2 x 2 7. y ( x ) = a + bx + cx 2 + dx 3 1 −1 1 −1  a  1 1 0  b  0 0   0  =   1 1 1 1  c  1      1 2 4 8  d   −4  4 ⇒ a = 0, b = , c = 1, d = − 3 4 3 so y( x) = 1 3 ( 4 x + 3x 2 − 4 x3 ) 8. y ( x ) = a + bx + cx 2 + dx 3 1 −1 1 −1  a  3 1 0  b  0 0   5   =   1 1 1 1  c 7       1 2 4 8  d  3 ⇒ a = 5, b = 3, c = 0, d = −1 so y ( x) = 5 + 3x − x3 9. y ( x ) = a + bx + cx 2 + dx 3 1 −2 4 −8   a   −2  1 −1 1 −1  b       =  2  1 1 1 1   c  10       1 2 4 8   d   26  ⇒ a = 4, b = 3, c = 2, d = 1 so y ( x) = 4 + 3 x + 2 x 2 + x 3 10. y ( x ) = a + bx + cx 2 + dx 3 1 −1 1 −1  a  17  1 1  b  1 1    −5   =   1 2 4 8  c  3      1 3 9 27   d   −2  ⇒ a = 17, b = −5, c = 3, d = −2 so y ( x) = 17 − 5 x + 3 x 2 − 2 x 3 In Problems 11-14 we first set up the linear system in the coefficients A, B, C that we get by substituting each given point ( xi , yi ) into the circle equation Ax + By + C = − x 2 − y 2 (see Eq. (9) in the text). Then we give the circle that results from solution of this linear system.
  • 3. 11. Ax + By + C = − x 2 − y 2  −1 −1 1  A   −2   6 6 1  B  =  −72  ⇒ A = −6, B = −4, C = −12       7 5 1 C      −74    x 2 + y 2 − 6 x − 4 y − 12 = 0 ( x − 3)2 + ( y − 2)2 = 25 center (3, 2) and radius 5 12. Ax + By + C = − x 2 − y 2  3 −4 1  A   −25   5 10 1  B  =  −125 ⇒ A = 6, B = −8, C = −75       −9 12 1 C      −225   x 2 + y 2 + 6 x − 8 y − 75 = 0 ( x + 3)2 + ( y − 4)2 = 100 center (–3, 4) and radius 10 13. Ax + By + C = − x 2 − y 2  1 0 1  A   −1   0 −5 1  B  =  −25  ⇒ A = 4, B = 4, C = −5       −5 −4 1 C      −41   x2 + y 2 + 4 x + 4 y − 5 = 0 ( x + 2)2 + ( y + 2)2 = 13 center (–3, –2) and radius 13 14. Ax + By + C = − x 2 − y 2  0 0 1  A   0  10 0 1  B  =  −100  ⇒ A = −10, B = −24, C = 0       −7 7 1 C      −98    x 2 + y 2 − 10 x − 24 y = 0 ( x − 5)2 + ( y − 12)2 = 169 center (5, 12) and radius 13 In Problems 15-18 we first set up the linear system in the coefficients A, B, C that we get by substituting each given point ( xi , yi ) into the central conic equation Ax 2 + Bxy + Cy 2 = 1 (see Eq. (10) in the text). Then we give the equation that results from solution of this linear system.
  • 4. 15. Ax 2 + Bxy + Cy 2 = 1  0 0 25  A  1  25 0 0   B  = 1 ⇒ A= 1 1 , B=− , C= 1     25 25 25  25 25 25  C     1  x 2 − xy + y 2 = 25 16. Ax 2 + Bxy + Cy 2 = 1  0 0 25   A  1  25 0   B  = 1 0   ⇒ A= 1 , B=− 7 , C= 1   25 100 25 100 100 100  C     1  4 x 2 − 7 xy + 4 y 2 = 100 17. Ax 2 + Bxy + Cy 2 = 1  0 0 1   A 1  1 0 0   B  = 1 ⇒ A = 1, B = − 199 , C =1     100 100 100 100  C     1  100 x 2 − 199 xy + 100 y 2 = 100 18. Ax 2 + Bxy + Cy 2 = 1  0 0 16   A  1  9 0 0   B  = 1 ⇒ 1 A= , B =− 481 , C= 1     9 3600 16  25 25 25 C     1  400 x 2 − 481xy + 225 y 2 = 3600 B 19. We substitute each of the two given points into the equation y = A + . x 1 1   1   A = 5  ⇒ A = 3, B = 2 so y = 3 + 2 1  B 4  2     x  
  • 5. B C 20. We substitute each of the three given points into the equation y = Ax + + . x x2   1 1 1    A 2 1 1   B =  20 2 8 16 ⇒ A = 10, B = 8, C = −16 so y = 10 x + −  2 4     x x2  C   41 1 1     4    4 16   In Problems 21 and 22 we fit the sphere equation ( x − h )2 + ( y − k )2 + ( z − l ) 2 = r 2 in the expanded form Ax + By + Cz + D = − x 2 − y 2 − z 2 that is analogous to Eq. (9) in the text (for a circle). 21. Ax + By + Cz + D = − x 2 − y 2 − z 2  4 6 15 1  A   −277  13 5 7 1  B        =  −243  ⇒ A = −2, B = −4, C = −6, D = −155  5 14 6 1  C   −257        5 5 −9 1  D   −131 x 2 + y 2 + z 2 − 2 x − 4 y − 6 z − 155 = 0 ( x − 1)2 + ( y − 2)2 + ( z − 3)2 = 169 center (1, 2, 3) and radius 13 22. Ax + By + Cz + D = − x 2 − y 2 − z 2  11 17 17 1  A   −699   29  B 1 15 1    −1067   =   ⇒ A = −10, B = 14, C = −18, D = −521  13 −1 33 1  C   −1259        −19 −13 1 1  D   −531  x 2 + y 2 + z 2 − 10 x + 14 y − 18 z − 521 = 0 ( x − 5) 2 + ( y + 7)2 + ( z − 9) 2 = 676 center (5, –7, 9) and radius 26 In Problems 23-26 we first take t = 0 in 1970 to fit a quadratic polynomial P(t ) = a + bt + ct 2 . Then we write the quadratic polynomial Q(T ) = P(T − 1970) that expresses the predicted population in terms of the actual calendar year T.
  • 6. 23. P(t ) = a + bt + ct 2 1 0 0  a   49.061 1 10 100  b  =  49.137       1 20 400   c     50.809    P(t ) = 49.061 − 0.0722 t + 0.00798 t 2 Q(T ) = 31160.9 − 31.5134 T + 0.00798 T 2 24. P(t ) = a + bt + ct 2 1 0 0  a  56.590  1 10 100  b  = 58.867       1 20 400   c     59.669    P(t ) = 56.590 + 0.30145 t − 0.007375 t 2 Q(T ) = − 29158.9 + 29.3589 T − 0.007375 T 2 25. P(t ) = a + bt + ct 2 1 0 0  a   62.813  1 10 100  b  = 75.367       1 20 400   c     85.446    P(t ) = 62.813 + 1.37915 t − 0.012375 t 2 Q(T ) = − 50680.3 + 50.1367 T − 0.012375 T 2 26. P(t ) = a + bt + ct 2 1 0 0  a  34.838 1 10 100  b  =  43.171      1 20 400   c     52.786    P(t ) = 34.838 + 0.7692 t + 0.00641t 2 Q(T ) = 23396.1 − 24.4862 T + 0.00641T 2 In Problems 27-30 we first take t = 0 in 1960 to fit a cubic polynomial P(t ) = a + bt + ct 2 + dt 3 . Then we write the cubic polynomial Q(T ) = P(T − 1960) that expresses the predicted population in terms of the actual calendar year T.
  • 7. 27. P(t ) = a + bt + ct 2 + dt 3 1 0 0 0  a   44.678  1 10 100 1000   b        =  49.061 1 20 400 8000   c   49.137       1 30 900 27000   d  50.809  P(t ) = 44.678 + 0.850417 t − 0.05105 t 2 + 0.000983833 t 3 Q(T ) = − 7.60554 × 106 + 11539.4 T − 5.83599 T 2 + 0.000983833 T 3 28. P(t ) = a + bt + ct 2 + dt 3 1 0 0 0  a  51.619  1 10 100 1000   b        = 56.590  1 20 400 8000   c  58.867       1 30 900 27000   d  59.669  P(t ) = 51.619 + 0.672433 t − 0.019565 t 2 + 0.000203167 t 3 Q(T ) = − 1.60618 × 106 + 2418.82 T − 1.21419 T 2 + 0.000203167 T 3 29. P(t ) = a + bt + ct 2 + dt 3 1 0 0 0  a   54.973  1 10 100 1000   b        =  62.813 1 20 400 8000   c  75.367       1 30 900 27000   d  85.446  P(t ) = 54.973 + 0.308667 t + 0.059515 t 2 − 0.00119817 t 3 Q(T ) = 9.24972 ×106 − 14041.6 T + 7.10474 T 2 − 0.00119817 T 3 30. P(t ) = a + bt + ct 2 + dt 3 1 0 0 0  a   28.053 1 10 100 1000   b        = 34.838  1 20 400 8000   c   43.171      1 30 900 27000   d  52.786  P(t ) = 28.053 + 0.592233 t + 0.00907 t 2 − 0.0000443333 t 3 Q(T ) = 367520 − 545.895 T + 0.26975 T 2 − 0.0000443333T 3
  • 8. In Problems 31-34 we take t = 0 in 1950 to fit a quartic polynomial P(t ) = a + bt + ct 2 + dt 3 + et 4 . Then we write the quartic polynomial Q(T ) = P(T − 1950) that expresses the predicted population in terms of the actual calendar year T. 31. P(t ) = a + bt + ct 2 + dt 3 + et 4 . 1 0 0 0 0  a   39.478  1 10 100 1000  b  10000     44.678     1 20 400 8000 160000   c  =  49.061      1 30 900 27000 810000   d   49.137  1  40 1600 64000 2560000   e    50.809    P(t ) = 39.478 + 0.209692 t + 0.0564163 t 2 − 0.00292992 t 3 + 0.0000391375 t 4 Q(T ) = 5.87828 × 108 − 1.19444 ×106 T + 910.118 T 2 − 0.308202 T 3 + 0.0000391375 T 4 32. P(t ) = a + bt + ct 2 + dt 3 + et 4 . 1 0 0 0 0  a   44.461 1 10 100 1000  b  10000    51.619     1 20 400 8000 160000   c  = 56.590       1 30 900 27000 810000   d  58.867  1  40 1600 64000 2560000   e    59.669    P(t ) = 44.461 + 0.7651t − 0.000489167 t 2 − 0.000516 t 3 + 7.19167 × 10−6 t 4 Q(T ) = 1.07807 × 108 − 219185 T + 167.096 T 2 − 0.056611T 3 + 7.19167 ×10−6 T 4 33. P(t ) = a + bt + ct 2 + dt 3 + et 4 . 1 0 0 0 0  a   47.197  1 10 100 1000  b  10000     54.973     1 20 400 8000 160000   c  =  62.813       1 30 900 27000 810000   d  75.367  1  40 1600 64000 2560000   e    85.446    P(t ) = 47.197 + 1.22537 t − 0.0771921t 2 + 0.00373475 t 3 − 0.0000493292 t 4 Q(T ) = − 7.41239 × 108 + 1.50598 × 106 T − 1147.37 T 2 + 0.388502 T 3 − 0.0000493292 T 4
  • 9. 34. P(t ) = a + bt + ct 2 + dt 3 + et 4 . 1 0 0 0 0  a   20.190  1 10 100 1000  b  10000     28.053    1 20 400 8000 160000   c  = 34.838       1 30 900 27000 810000   d   43.171 1  40 1600 64000 2560000   e    52.786    P(t ) = 20.190 + 1.00003 t − 0.031775 t 2 + 0.00116067 t 3 − 0.00001205 t 4 Q(T ) = − 1.8296 ×108 + 370762 T − 281.742 T 2 + 0.0951507 T 3 − 0.00001205 T 4 35. Expansion of the determinant along the first row gives an equation of the form ay + bx 2 + cx + d = 0 that can be solved for y = Ax 2 + Bx + C. If the coordinates of any one of the three given points ( x1 , y1 ), ( x2 , y2 ), ( x3 , y3 ) are substituted in the first row, then the determinant has two identical rows and therefore vanishes. 36. Expansion of the determinant along the first row gives y x2 x 1 1 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 = y 4 2 1−x 3 2 1+x 3 4 1− 3 4 2 = 2 3 4 2 1 9 3 1 7 3 1 7 9 1 7 9 3 7 9 3 1 −2 y + 4 x 2 − 12 x + 14 = 0 . Hence y = 2 x 2 − 6 x + 7 is the parabola that interpolates the three given points. 37. Expansion of the determinant along the first row gives an equation of the form a( x 2 + y 2 ) + bx + cy + d = 0, and we get the desired form of the equation of a circle upon division by a. If the coordinates of any one of the three given points ( x1 , y1 ), ( x2 , y2 ), and ( x3 , y3 ) are substituted in the first row, then the determinant has two identical rows and therefore vanishes. 38. Expansion of the determinant along the first row gives x2 + y 2 x y 1 25 3 −4 1 = 125 5 10 1 225 −9 12 1
  • 10. 3 −4 1 25 −4 1 25 3 1 25 3 −4 = ( x + y ) 5 10 1 − x 125 10 1 + y 125 5 1 − 125 5 10 2 2 −9 12 1 225 12 1 225 −9 1 225 −9 12 = 200( x 2 + y 2 ) + 1200 x − 1600 y − 15000 = 0. Division by 200 and completion of squares gives ( x + 3)2 + ( y − 4)2 = 100, so the circle has center (–3, 4) and radius 10. 39. Expansion of the determinant along the first row gives an equation of the form ax 2 + bxy + cy 2 + d = 0, which can be written in the central conic form Ax 2 + Bxy + Cy 2 = 1 upon division by –d. If the coordinates of any one of the three given points ( x1 , y1 ), ( x2 , y2 ), and ( x3 , y3 ) are substituted in the first row, then the determinant has two identical rows and therefore vanishes. 40. Expansion of the determinant along the first row gives x2 y2 1 xy 0 0 16 1 = 9 0 0 1 25 25 25 1 0 16 1 0 16 1 0 0 1 0 0 16 = x 0 0 1 − xy 9 0 1 + y 9 0 1 − 9 0 0 2 25 25 1 25 25 1 25 25 1 25 25 25 = 400 x 2 − 481xy + 225 y 2 − 3600 = 0.