SlideShare a Scribd company logo
MARKING SCHEME
                                 ADDITIONAL MATHEMATICS PAPER 2
                                   SPM TRIAL EXAMINATION 2010

N0.                                       SOLUTION                       MARKS
 1     x = 10 − 2 y                                                 P1
                                                                    K1 Eliminate x
       y 2 + (10 − 2 y ) y = 24
       y 2 − 10 y + 24 = 0                                          K1 Solve quadratic
       ( y − 4) ( y − 6) = 0                                           equation
       y=4               or         y=6
                                                                    N1
       x=2               or         x = −2
                                                                    N1

                                                                             5
 2
(a)    k=6                                                          P1

(b)    Mid point      23 , 28 , 33 , 38 , 43                        P1

(i)    Mean

       =
         ∑ fx      =
                     1 × 23 + 4 × 28 + 7 × 33 + 5 × 38 + 3 × 43
                                                                    K1 Use formula and
                                                                        calculate
         ∑f                       1+ 4 + 7 + 5 + 3
           685
       =       = 34.25                                              N1
           20


(ii)   Varian

       =
         ∑ fx2 − x 2
         ∑f                                                         K1 Use formula and
         1 × 232 + 4 × 282 + 7 × 332 + 5 × 382 + 3 × 432                calculate
       =                                                 − 34.252
                                20
         24055
       =         − 34.252
            20                                                      N1
       = 29.69


(iii) Median , m
             1                  1                               K1 Use formula and
              2N −F              2 (20) − 5                         calculate
       = L+          C = 30.5 +             5
              fm                     7      
                                                                N1
       = 34.07



                                                                             8

                                                                                         2
N0.                                      SOLUTION                                        MARKS
 3       1
      y = x3 − x 2 + 2
         3

(a)   dy
         = x2 − 2 x = 3                                                            K1 Equate and solve
      dx
      x2 − 2 x − 3 = 0                                                                quadratic
                                                                                      equation
      ( x + 1) ( x − 3) = 0
      x = −1 , 3
                          2
      x = −1            y=
                          3
      x=3               y=2

          2
       −1,         and      ( 3, 2 )                                             N1   N1
          3


(b)   Equation of normals :
                    1
      mnormal = −
                    3                                                              K1 Use mnormal to form
        2    1                                        1                               equations
      y−  = − ( x + 1)                        y−2=−     ( x − 3)
        3    3                                        3
          1    1                                   1                               N1    N1
      y=− x+           or equivalent          y = − x+3            or equivalent
          3    3                                   3

                                                                                              6
 4
       y
(a)


                                                                                   P1 Modulus sine
                                                                                      shape correct.
       2                                               y = 3sin 2 x − 1
                                                                                   P1 Amplitude = 3
                                                                                      [ Maximum = 2
       1
                                                                                      and Minimum =
                                                                                      -1]

        O                π           π       3π         2π              x          P1 Two full cycle in
       -1                2                    2                                       0 ≤ x ≤ 2π  π

                                                                         3x
                                                             y = 1−
       -2
                                                                         2π        P1 Shift down the
                                                                                      graph




                                                                                                          3
N0.                                  SOLUTION                                MARKS
 4
                           3x
(b)   3sin 2 x − 1 = 1 −
                           2π
      or                                                               N1 For equation

                 3x
      y = 1−
                 2π


                                             3x
      Draw the straight line        y = 1−                             K1 Sketch the
                                             2π                           straight line

      Number of solutions       =   5.                                 N1



                                                                                 7
 5

(a)   Common ratio,       r=4                                          N1



(b)        1                                                           K1
      A6 = π ( 32 )                                         1
                                                  T6 = ar = π ( 4 )
                    2                                   5          5
           4                        OR                      4
                                                                       N1
         = 256π                                      = 256π



(c)
      S6 − S 2                                                         K1 Use S6 or S2

        1
            (
          π 46 − 1
                     1
                      )     (
                       π 42 − 1      )                                 K1 Use S6 - S2
      = 4          −4
           4 −1         4 −1
                                                                       N1
      = 341.25π −1.25π
      = 340π




                                                                                 6

                                                                                          4
N0.                                    SOLUTION         MARKS
 6
(a)                                               K1 for using vector
(i)    uuu uuu uuu
         r     r     r                               triangle for a(i) or
       OD = OC + CD
                                                     a(ii)
           = 6a + 12b
              % %                                 N1

(ii)   uuu uuu uuu
         r     r     r
       AB = OB − OA
             1 uuu uuu
                  r     r
           = OD − OA
             2
           = 3a + 6b − 3a
              % % %                               N1
           = 6b
              %
       OR

       uuu 1 uuu
         r     r
       AB = CD = 6b            [ K1 N1 ]
           2      %


(b)
       uuur
       AE
         uuu uuu
            r  r
       = AB + BE                                  K1 for using vector
                                                                   uuu
                                                                     r
                 1 uuu 
                       r                             triangle and BE
       = 6b + h  OD 
          % 2           
       = 6b + h ( 3a + 6b )
          %        % %


       a + kb = 3ha + ( 6 + 6h ) b
                                                  K1
       % %        %              %

                              k = 6 + 6h          K1 for equating
       3h = 1                                        coefficients
                                       1
          1                     = 6 + 6            correctly
       h=                               3
          3
                                =8                N1      N1




                                                               8

                                                                            5
N0.                                   SOLUTION                                   MARKS
 7
(a)
            x           1        2            3      4        5      6
                                                                           N1   6 correct
        log10 y        0.65    0.87          1.08   1.30     1.52   1.74
                                                                                values of log y


                 log10 y
(b)                                                                        K1 Plot log10 y vs x
                                                                               Correct axes &
                                                                              uniform scale

                                                                           N1   6 points plotted
                                                                                 correctly

                                                                           N1   Line of best-fit
                0.43

                        0                                x



(c)    log10 y = ( k log10 A ) x + log10 A                                 P1
(i)    x = 2.6                                                             N1

(ii)   y-intercept = log10 y                                               K1

       A = 2.69                                                            N1

       gradient = k log10 A                                                K1
            gradient
       k=
            log10 A *
         = 0.51                                                            N1




                                                                                     10


                                                                                                   6
N0.                                              SOLUTION           MARKS
 8
(a)   P(5, 1 )                                              P1

      Q(1, 0 )                                              P1



(b)                   1

                  ∫ (4y         + 1) dy                               ∫ x dy
                            2
      A=                                                    K1 use
                  0

                                                            K1 correct limit
                       4y3             1
          =                + y
                       3               0
                                                            K1 integrate
                                                               correctly
              7
      =                                  OR   equivalent
              3                                             N1




                      5
                          x −1
(c)   V= π∫                    dx                           K1 integrate
                            4
                      1
                                                                 π ∫ y 2 dx
                                                            K1 correct limit
              π  x2                5
          =     − x
            4 2                    1
                                                            K1 integrate
                                                               correctly

          = 2π                                              N1




                                                                        10




                                                                               7
N0.                                SOLUTION                      MARKS
 9
(a)                   4                                     K1 Use ratio of
      cos ∠ POQ =
                     10                                        trigonometry or
                                                               equivalent

          ∠ POQ = 1.16 rad.
                                                            N1




(b)
      ( 2π – 1.16 ) rad                                     P1

      PQ = 10 ( 2π – 1.16 )                                 K1 Use s = rθ

      = 51.24 cm                                            N1

(c)
                                                            P1
        10 2 − 4 2
      = 9.17 cm

                                    1                       K1
      Area of trapezium POQR =        ( 6 + 10 ) × 9.17 *
                                    2
                                     = 73.36 cm2

                              1                             K1 Use formula
      Area of sector POQ =      (10) 2 (1.16)
                              2                                 1
                                                            A = r 2θ
                              = 58 cm2                          2



      Area of shaded region

      = 73.36 – 58                                          K1

      = 15.36 cm2                                           N1




                                                                     10

                                                                                 8
N0.                                         SOLUTION                      MARKS
10.
(a) Equation of str. line PQR :

                   1                                                K1
         m= −
                   2

              1                                                     N1
       y= −     x+1
              2


(b)                    1                                            K1   solving
       2x + 6 = −        x+1
                       2                                                  simultaneous
                                                                          equation
       P( –2, 2)                                                    N1




(c)    1( x) + 2(−2)                     1( y ) + 2(2)              K1   Use the ratio
                     =0        or                      =1
           1+ 2                              1+ 2                        rule



       R( 4, –1)                                                    N1

(d)
(i)                                  1                              K1   Use distance
         ( x − 4) 2 + ( y + 1) 2 =        ( x + 2) 2 + ( y − 2) 2
                                     2                                   formula

       4 [ x2 – 8x + 16 + y2 + 2y +1 ] = x2 + 4x + 4 + y2 – 4y +4

       x2 + y2 – 12x + 4y + 15 = 0                                  N1



(ii)   Substitute x = 0, y2 + 4y + 15 = 0                           K1 Substitute x = 0
                b2 – 4ac = (4)2 – 4(1)(15)                                      2
                                                                       and use b – 4ac
                         = – 44 < 0                                    to make a
                                                                       conclusion
        ⇒ No real root for y,

        ⇒ The locus does not intercept the y-axis.                  N1 if b2 – 4ac = -44




                                                                                           9
10
N0.                                   SOLUTION         MARKS
11
(a)
      µ = 80, σ = 12
                               65 − 80                         X −µ
      P ( X ≥ 65 ) = P ( Z ≥           )         K1 Use Z =
                                 12                                σ
                      = P ( Z ≥ − 1.25 )

                      = 1 – 0.1056               K1   Use 1 – Q(Z)
                      = 0.8944                   N1



(b)   0.1056 × 4000                              K1
      = 422 or 423                               N1



(c)    200                                       P1
           = 0.05
      4000

      Q( Z ) = 0.05
      Z = 1.645                                  K1 Find value of Z

      m − 80                                                  m−µ
             = − 1.645                           K1    Use
       12                                                      σ
                                                 K1    Use negative
                                                       value
          m = 60.26 g                            N1




                                                          10

                                                                       10
N0.                                                  SOLUTION                                                          MARKS
12
(a)   - 5 ms-1                                                                                               N1

(b)           v<0                                                                                            K1
                2
            t - 4t - 5 < 0                                                                                   K1
            (t – 5) (t +1) < 0

                      0<t<5                                                                                  N1


                        v
(c)                           8



                        7    7

                              6

                                                                                                             P1 (for shape )
                              4




                              2




      -5


                        0
                              0       2      5   6            10               15
                                                                                    t
                             -2
                                  2              6
                             -4
                                                                                                             P1 min(2,-9) , (6,7)
                       -5   -5

                             -6                                                                                 &(0,-5) must be
                             -8                                                                                 seen
                       -9    -9

                            -10




                            -12




(d)   Total dis tan ce
            5            6                                                                                   K1 for
      =     ∫ vdt        ∫
                      + vdt                                                                                       5           6

            0            5
                                                                                                                  ∫
                                                                                                                  0
                                                                                                                        and   ∫ 5
                                  5                       6
        t3               t3             
      =  − 2t 2 − 5 t  +  − 2 t 2 − 5 t 
        3
                      0
                          3
                                          5
                                           
                                                                                                             K1 (for Integration;
                                                                                                                  either one)




                 5 3                                216               5
                                                                                 3                     
           =         − 2 (5 ) 2 − 5 (5 )  − ( 0 )  +    2( 36 ) − 30  −    − 2 (5 ) 2 − 5 (5 )  
                 3
                
                                           
                                                      3
                                                                           3
                                                                               
                                                                                                       
                                                                                                          K1 (for use and
                                                                                                                      summation)
                    1              1 
           = −33      +  −30 − (−33 ) 
                    3              3 

               2
           = 36 m
               3                                                                                             N1



                                                                                                                                    11
10
N0.                                           SOLUTION                         MARKS
13
       P09
(a)        × 100 = 125                                                   K1
       60

                                                                         N1
       P09 = RM 75


(b)                  (125 × 4 ) + (120 m) + (80 × 5 ) + 150 m + 450      K1
(i)     120 =
                                        12 + 2 m

                                                                         K1 (use formula)
        1440 + 240 m = 1350 + 270 m

                                                                         N1
                         m = 3


(ii)
                              100
       P07 = RM 30 ×                                                     K1
                              120

                                                                         N1
           = RM 25


(c)
       120 + (120 × 0.15) = 138                                          K1



                                                                         K1
                       (125 × 4 ) + (138 × 3) + (80 × 5 ) + (150 × 6 )
         I 10 / 07   =
                                            18

                                                                         N1
                     = 123




                                                                                            12
10
N0.                                                     SOLUTION                                 MARKS
14
(a)    y      ≥ 200                                                                         N1

       x+y ≤                 800                                                            N1

       4x + y ≤            1400                                                             N1

(b)               y


           1000


                             4x + y = 1400
            900



            800



            700



            600                       (200,600)


            500



            400
                       R


            300

                                                                             y = 200
            200



            100
                                                                          x + y = 800
                                                                                        x
                       100      200        300    400   500   600   700    800   900




                  •   At least one straight line is drawn correctly from inequalities K1
                      involving x and y.
                                                                                      N1
                  •   All the three straight lines are drawn correctly


                  •   Region is correctly shaded                                            N1
(c)
(i)
       650                                                                                  N1

(ii)
       Maximum point (200, 600)                                                             N1

       Maximum profit = 20(200) + 6(600)                                                    K1

                                       =     RM 7600                                        N1




                                                                                                         13
10
N0.                                      SOLUTION                           MARKS
15
(a)     TQ2 = 92 + 62 – 2(9)(6)cos56o                                  K1

         TQ = 7.524 cm                                                 N1




(b)     sin ∠QTR sin 56 0                                              K1
                =
             6    7.524

          ∠QTR     = 41o 23’                                           N1




(c)               1                                                    K1
        42.28 =     ( RS )(6 )sin 56 o
                  2

           RS =   17

          ST = 17 − 9        (or    ST + 9       in formula of area)   K1

              = 8 cm                                                   N1

(d)                   1
          Area ∆ QTR = (9)(6) sin 56 0
                      2                                                K1
                                         2
                          = 22.38 cm




      Area of quadrilateral PQTS =           2(42.28) – 22.38          K1

                                         =       62.18 cm2             N1




                                                                             10




                                         END OF MARKING SCHEME

                                                                                    14

More Related Content

PDF
Chapter 1 functions
PPT
Spm add math 2009 paper 1extra222
PDF
Add Maths Module
PDF
MODULE 4- Quadratic Expression and Equations
PDF
Chapter 5 indices & logarithms
PDF
Modul bimbingan add maths
PDF
35182797 additional-mathematics-form-4-and-5-notes
PDF
Soalan Jawapan Omk 2007
Chapter 1 functions
Spm add math 2009 paper 1extra222
Add Maths Module
MODULE 4- Quadratic Expression and Equations
Chapter 5 indices & logarithms
Modul bimbingan add maths
35182797 additional-mathematics-form-4-and-5-notes
Soalan Jawapan Omk 2007

What's hot (19)

PDF
Nota math-spm
DOC
Skills In Add Maths
PDF
Form 4 add maths note
PDF
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
PDF
modul 2 add maths
DOCX
Test 1 f4 add maths
PPT
Pp smi add. maths paper 1
PDF
1. functions
PDF
Chapter 3 quadratc functions
PPT
Ceramah Add Mth
PDF
Add maths complete f4 & f5 Notes
PDF
Add maths module form 4 & 5
PDF
Chapter 9 differentiation
PDF
Chepter 1 function 2013
PDF
02[anal add math cd]
KEY
Teknik Menjawab Kertas 1 Matematik Tambahan
PDF
Chapter 4 simultaneous equations
PDF
Notes and-formulae-mathematics
PDF
add maths module 5
Nota math-spm
Skills In Add Maths
Form 4 add maths note
KSSM Form 4 Additional Mathematics Notes (Chapter 1-5)
modul 2 add maths
Test 1 f4 add maths
Pp smi add. maths paper 1
1. functions
Chapter 3 quadratc functions
Ceramah Add Mth
Add maths complete f4 & f5 Notes
Add maths module form 4 & 5
Chapter 9 differentiation
Chepter 1 function 2013
02[anal add math cd]
Teknik Menjawab Kertas 1 Matematik Tambahan
Chapter 4 simultaneous equations
Notes and-formulae-mathematics
add maths module 5
Ad

Similar to Add Maths 2 (20)

DOC
5 marks scheme for add maths paper 2 trial spm
PDF
5 marks scheme for add maths paper 2 trial spm
PDF
09 trial melaka_s2
PDF
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
DOC
Bowen prelim a maths p1 2011 with answer key
PDF
Algebra practice paper
PDF
Trial Sbp 2007 Answer Mm 1 & 2
DOC
09 Trial Penang S1
PDF
F4 Final Sbp 2007 Maths Skema P 1 & P2
PDF
Jacobi and gauss-seidel
PDF
09 trial melaka_s1
PDF
Bt0063 mathematics fot it
PDF
Math 17 midterm exam review jamie
PPT
8-6 Solving Rational Functions
PDF
S101-52國立新化高中(代理)
DOC
C3 January 2012 QP
PDF
Maths CBSE 2011-12
PDF
Maths CBSE 2012
PDF
Chapter 14
PDF
Maths Answer Ppsmi2006 F4 P2
5 marks scheme for add maths paper 2 trial spm
5 marks scheme for add maths paper 2 trial spm
09 trial melaka_s2
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Bowen prelim a maths p1 2011 with answer key
Algebra practice paper
Trial Sbp 2007 Answer Mm 1 & 2
09 Trial Penang S1
F4 Final Sbp 2007 Maths Skema P 1 & P2
Jacobi and gauss-seidel
09 trial melaka_s1
Bt0063 mathematics fot it
Math 17 midterm exam review jamie
8-6 Solving Rational Functions
S101-52國立新化高中(代理)
C3 January 2012 QP
Maths CBSE 2011-12
Maths CBSE 2012
Chapter 14
Maths Answer Ppsmi2006 F4 P2
Ad

More from morabisma (12)

PDF
Terengganu spm trial 2010 add maths
PDF
Terengganu trial 2010 add maths answer scheme
PDF
Terengganu spm trial 2010 add maths
PPT
Integration (area)
PDF
Trial SPM Perlis 2010
PDF
Add maths 2
PDF
Add Maths 1
PPTX
Add maths revision
PPTX
Kuiz Add Maths
PPT
Penggunaan Kalkulator Dlm P & P
PPT
Answering Techniques Ad Maths P1
PPT
G coordinate, s tat, c measure
Terengganu spm trial 2010 add maths
Terengganu trial 2010 add maths answer scheme
Terengganu spm trial 2010 add maths
Integration (area)
Trial SPM Perlis 2010
Add maths 2
Add Maths 1
Add maths revision
Kuiz Add Maths
Penggunaan Kalkulator Dlm P & P
Answering Techniques Ad Maths P1
G coordinate, s tat, c measure

Add Maths 2

  • 1. MARKING SCHEME ADDITIONAL MATHEMATICS PAPER 2 SPM TRIAL EXAMINATION 2010 N0. SOLUTION MARKS 1 x = 10 − 2 y P1 K1 Eliminate x y 2 + (10 − 2 y ) y = 24 y 2 − 10 y + 24 = 0 K1 Solve quadratic ( y − 4) ( y − 6) = 0 equation y=4 or y=6 N1 x=2 or x = −2 N1 5 2 (a) k=6 P1 (b) Mid point 23 , 28 , 33 , 38 , 43 P1 (i) Mean = ∑ fx = 1 × 23 + 4 × 28 + 7 × 33 + 5 × 38 + 3 × 43 K1 Use formula and calculate ∑f 1+ 4 + 7 + 5 + 3 685 = = 34.25 N1 20 (ii) Varian = ∑ fx2 − x 2 ∑f K1 Use formula and 1 × 232 + 4 × 282 + 7 × 332 + 5 × 382 + 3 × 432 calculate = − 34.252 20 24055 = − 34.252 20 N1 = 29.69 (iii) Median , m 1  1  K1 Use formula and  2N −F   2 (20) − 5  calculate = L+  C = 30.5 +  5  fm   7      N1 = 34.07 8 2
  • 2. N0. SOLUTION MARKS 3 1 y = x3 − x 2 + 2 3 (a) dy = x2 − 2 x = 3 K1 Equate and solve dx x2 − 2 x − 3 = 0 quadratic equation ( x + 1) ( x − 3) = 0 x = −1 , 3 2 x = −1 y= 3 x=3 y=2  2  −1,  and ( 3, 2 ) N1 N1  3 (b) Equation of normals : 1 mnormal = − 3 K1 Use mnormal to form 2 1 1 equations y− = − ( x + 1) y−2=− ( x − 3) 3 3 3 1 1 1 N1 N1 y=− x+ or equivalent y = − x+3 or equivalent 3 3 3 6 4 y (a) P1 Modulus sine shape correct. 2 y = 3sin 2 x − 1 P1 Amplitude = 3 [ Maximum = 2 1 and Minimum = -1] O π π 3π 2π x P1 Two full cycle in -1 2 2 0 ≤ x ≤ 2π π 3x y = 1− -2 2π P1 Shift down the graph 3
  • 3. N0. SOLUTION MARKS 4 3x (b) 3sin 2 x − 1 = 1 − 2π or N1 For equation 3x y = 1− 2π 3x Draw the straight line y = 1− K1 Sketch the 2π straight line Number of solutions = 5. N1 7 5 (a) Common ratio, r=4 N1 (b) 1 K1 A6 = π ( 32 ) 1 T6 = ar = π ( 4 ) 2 5 5 4 OR 4 N1 = 256π = 256π (c) S6 − S 2 K1 Use S6 or S2 1 ( π 46 − 1 1 ) ( π 42 − 1 ) K1 Use S6 - S2 = 4 −4 4 −1 4 −1 N1 = 341.25π −1.25π = 340π 6 4
  • 4. N0. SOLUTION MARKS 6 (a) K1 for using vector (i) uuu uuu uuu r r r triangle for a(i) or OD = OC + CD a(ii) = 6a + 12b % % N1 (ii) uuu uuu uuu r r r AB = OB − OA 1 uuu uuu r r = OD − OA 2 = 3a + 6b − 3a % % % N1 = 6b % OR uuu 1 uuu r r AB = CD = 6b [ K1 N1 ] 2 % (b) uuur AE uuu uuu r r = AB + BE K1 for using vector uuu r  1 uuu  r triangle and BE = 6b + h  OD  % 2  = 6b + h ( 3a + 6b ) % % % a + kb = 3ha + ( 6 + 6h ) b K1 % % % % k = 6 + 6h K1 for equating 3h = 1 coefficients 1 1 = 6 + 6  correctly h=  3 3 =8 N1 N1 8 5
  • 5. N0. SOLUTION MARKS 7 (a) x 1 2 3 4 5 6 N1 6 correct log10 y 0.65 0.87 1.08 1.30 1.52 1.74 values of log y log10 y (b) K1 Plot log10 y vs x Correct axes & uniform scale N1 6 points plotted correctly N1 Line of best-fit 0.43 0 x (c) log10 y = ( k log10 A ) x + log10 A P1 (i) x = 2.6 N1 (ii) y-intercept = log10 y K1 A = 2.69 N1 gradient = k log10 A K1 gradient k= log10 A * = 0.51 N1 10 6
  • 6. N0. SOLUTION MARKS 8 (a) P(5, 1 ) P1 Q(1, 0 ) P1 (b) 1 ∫ (4y + 1) dy ∫ x dy 2 A= K1 use 0 K1 correct limit  4y3  1 =  + y  3  0 K1 integrate correctly 7 = OR equivalent 3 N1 5 x −1 (c) V= π∫ dx K1 integrate 4 1 π ∫ y 2 dx K1 correct limit π  x2 5 =  − x 4 2  1 K1 integrate correctly = 2π N1 10 7
  • 7. N0. SOLUTION MARKS 9 (a) 4 K1 Use ratio of cos ∠ POQ = 10 trigonometry or equivalent ∠ POQ = 1.16 rad. N1 (b) ( 2π – 1.16 ) rad P1 PQ = 10 ( 2π – 1.16 ) K1 Use s = rθ = 51.24 cm N1 (c) P1 10 2 − 4 2 = 9.17 cm 1 K1 Area of trapezium POQR = ( 6 + 10 ) × 9.17 * 2 = 73.36 cm2 1 K1 Use formula Area of sector POQ = (10) 2 (1.16) 2 1 A = r 2θ = 58 cm2 2 Area of shaded region = 73.36 – 58 K1 = 15.36 cm2 N1 10 8
  • 8. N0. SOLUTION MARKS 10. (a) Equation of str. line PQR : 1 K1 m= − 2 1 N1 y= − x+1 2 (b) 1 K1 solving 2x + 6 = − x+1 2 simultaneous equation P( –2, 2) N1 (c) 1( x) + 2(−2) 1( y ) + 2(2) K1 Use the ratio =0 or =1 1+ 2 1+ 2 rule R( 4, –1) N1 (d) (i) 1 K1 Use distance ( x − 4) 2 + ( y + 1) 2 = ( x + 2) 2 + ( y − 2) 2 2 formula 4 [ x2 – 8x + 16 + y2 + 2y +1 ] = x2 + 4x + 4 + y2 – 4y +4 x2 + y2 – 12x + 4y + 15 = 0 N1 (ii) Substitute x = 0, y2 + 4y + 15 = 0 K1 Substitute x = 0 b2 – 4ac = (4)2 – 4(1)(15) 2 and use b – 4ac = – 44 < 0 to make a conclusion ⇒ No real root for y, ⇒ The locus does not intercept the y-axis. N1 if b2 – 4ac = -44 9
  • 9. 10 N0. SOLUTION MARKS 11 (a) µ = 80, σ = 12 65 − 80 X −µ P ( X ≥ 65 ) = P ( Z ≥ ) K1 Use Z = 12 σ = P ( Z ≥ − 1.25 ) = 1 – 0.1056 K1 Use 1 – Q(Z) = 0.8944 N1 (b) 0.1056 × 4000 K1 = 422 or 423 N1 (c) 200 P1 = 0.05 4000 Q( Z ) = 0.05 Z = 1.645 K1 Find value of Z m − 80 m−µ = − 1.645 K1 Use 12 σ K1 Use negative value m = 60.26 g N1 10 10
  • 10. N0. SOLUTION MARKS 12 (a) - 5 ms-1 N1 (b) v<0 K1 2 t - 4t - 5 < 0 K1 (t – 5) (t +1) < 0 0<t<5 N1 v (c) 8 7 7 6 P1 (for shape ) 4 2 -5 0 0 2 5 6 10 15 t -2 2 6 -4 P1 min(2,-9) , (6,7) -5 -5 -6 &(0,-5) must be -8 seen -9 -9 -10 -12 (d) Total dis tan ce 5 6 K1 for = ∫ vdt ∫ + vdt 5 6 0 5 ∫ 0 and ∫ 5 5 6 t3  t3  =  − 2t 2 − 5 t  +  − 2 t 2 − 5 t  3  0  3  5  K1 (for Integration; either one)  5 3    216  5 3  =  − 2 (5 ) 2 − 5 (5 )  − ( 0 )  +   2( 36 ) − 30  −  − 2 (5 ) 2 − 5 (5 )    3      3     3    K1 (for use and summation) 1  1  = −33 +  −30 − (−33 )  3  3  2 = 36 m 3 N1 11
  • 11. 10 N0. SOLUTION MARKS 13 P09 (a) × 100 = 125 K1 60 N1 P09 = RM 75 (b) (125 × 4 ) + (120 m) + (80 × 5 ) + 150 m + 450 K1 (i) 120 = 12 + 2 m K1 (use formula) 1440 + 240 m = 1350 + 270 m N1 m = 3 (ii) 100 P07 = RM 30 × K1 120 N1 = RM 25 (c) 120 + (120 × 0.15) = 138 K1 K1 (125 × 4 ) + (138 × 3) + (80 × 5 ) + (150 × 6 ) I 10 / 07 = 18 N1 = 123 12
  • 12. 10 N0. SOLUTION MARKS 14 (a) y ≥ 200 N1 x+y ≤ 800 N1 4x + y ≤ 1400 N1 (b) y 1000 4x + y = 1400 900 800 700 600 (200,600) 500 400 R 300 y = 200 200 100 x + y = 800 x 100 200 300 400 500 600 700 800 900 • At least one straight line is drawn correctly from inequalities K1 involving x and y. N1 • All the three straight lines are drawn correctly • Region is correctly shaded N1 (c) (i) 650 N1 (ii) Maximum point (200, 600) N1 Maximum profit = 20(200) + 6(600) K1 = RM 7600 N1 13
  • 13. 10 N0. SOLUTION MARKS 15 (a) TQ2 = 92 + 62 – 2(9)(6)cos56o K1 TQ = 7.524 cm N1 (b) sin ∠QTR sin 56 0 K1 = 6 7.524 ∠QTR = 41o 23’ N1 (c) 1 K1 42.28 = ( RS )(6 )sin 56 o 2 RS = 17 ST = 17 − 9 (or ST + 9 in formula of area) K1 = 8 cm N1 (d) 1 Area ∆ QTR = (9)(6) sin 56 0 2 K1 2 = 22.38 cm Area of quadrilateral PQTS = 2(42.28) – 22.38 K1 = 62.18 cm2 N1 10 END OF MARKING SCHEME 14