SlideShare a Scribd company logo
2
Most read
3
Most read
4
Most read
SPM TRIAL EXAM 2010
                          MARK SCHEME ADDITIONAL MATHEMATICS PAPER 2

                                      SECTION A (40 MARKS)
No.                                      Mark Scheme           Total
                                                               Marks

1     x = 1− 2y                                                 P1
      2(1 − 2 y ) + y + (1 − 2 y )( y ) = 5
                  2      2
                                                                K1
      7y2 − 7y − 3 = 0

           − (− 7 ) ±        (− 7 )2 − 4(7 )(− 3)
      y=
                              2(7 )
                                                                K1
      y = 1.324 , − 0.324
                                                                N1
      x = −1.648 , 1.648
                                                                N1
      OR

           1− x
      y=
            2
                                                                P1
             1− x  1− x 
      2x 2 +       + x  =5
              2   2                                         K1

      7 x 2 − 19 = 0

           − (0 ) ±     (0)2 − 4(7 )(− 19)
      x=
                          2(7 )
                                                                K1
      x = −1.648 , 1.648
                                                                N1
      y = 1.324 , − 0.324
                                                                N1




                                                                 5
2   (a)
               (
     f ( x ) = − x 2 − 4 x − 21   )
                                                                         K1
                    −4 −4
                          2      2
                                     
    = − x 2 − 4 x +     −   − 21
       
                     2   2      
                                     
                                                                         N1
    = −( x − 2 ) + 25
                2




    (b) Max Value = 25                                                   N1

    (c)                         f (x )

                               25                   (2,25)


                               21



                                                                     x
                      -3                        2                7

                                        Shape graph                      N1
                                        Max point                        N1
                        f ( x ) intercept or point (0,21)                N1

    d) f ( x ) = ( x − 2 ) − 25                                          N1
                           2




                                                                         7

3                            1     1
    a) List of Areas ; xy,     xy, xy                                    K1
                             4    16
                             1
         T2 ÷ T1 = T3 ÷ T2 =
                             4
                                                             1
         This is Geometric Progression and r =                           N1
                                                             4
                               n −1
                     1                   25
    b)       12800 ×                =
                     4                  512
n −1                                                     K1
               1                  1
                           =
               4                262144
                      n −1           9
               1      1
                 = 
               4      4
                 n −1 = 9                                                      K1
                    n = 10

                        12800                                                  N1
     (c)       S∞ =
                           1
                        1−
                           4                                                   K1

                         2                                                     N1
                  = 17066 cm 2
                         3

                                                                               7

4   a)
    4 cos 2 − 1 − 1                                                            K1
    4 cos 2 − 2
     (
    2 2 cos 2 − 1 )                                                            N1
    2 cos 2θ

    b) i)
                             2

                             1


                                                       π                  2π
                             -1

                             -2
                                                                               P1
         -    shape of cos graph                                               P1
         -    amplitude (max = 2 and min = -2)                                 P1
         -    2 periodic/cycle in 0 ≤ θ ≤ 2π
                        θ
    b) ii) y = 1 −                   (equation of straight line)               K1
                        π

             Number of solution = 4               (without any mistake done)   N1


                                                                               7
5   a)
     Score        0–9         10 – 19   20 – 29   30 – 39   40 – 49
     Number        3             4         9         9        10      N1

                   1         
                    (35) − 7                                        P1
    b) Q1 = 19.5 +  4        10
                      9      
                                                                    K1
                             
          = 21.44

                3          
                 (35) − 25 
    Q3 = 39.5 +  4         10                                       K1
                   10      
                           
                           
       = 40.75

    Interquatile range                                                K1
    = 40.75 − 21.44
    = 19.31                                                           N1


                                                                      6

6   (a)    OQ = OA + AQ                                               K1
           OQ = (1 − m ) a + m b                                      N1
                          ~     ~



    (b)                   (
           PO + OQ = n PO + OR      )                                 K1

           OQ = (1 − n ) a + 3n b
                4                                                     N1
                5        ~      ~



    (c)
                  4 4                                               K1
           (i)     − n  = 1 − m or 3n = m
                  5 5 
                      3      1
                  m=    ,n=                                           N1
                     11     11                                        N1
                           8    3
           (ii)    OQ =      a+ b                                     N1
                          11 ~ 11 ~


                                                                      8
2
7
           =       ∫ ( 2 y − y )dy
                             2
    (a)(i) Area                                                                     K1
                    0
                                 2
                         y3 
                  =  y2 − 
                         3 0
                    4                                                               N1
                  = unit 2
                    3
                                     1        2
          (ii) Area region P =       ∫ y dy + ∫ ( 2 y − y )dy
                                                        2
                                                                                    K1
                                     0        1
                                                                2
                          1               y3 
                        =  × 1× 1 +  y 2 −                                      K1
                          2               3 1
                           7                                                        N1
                         = unit 2
                           6
                       4 7 1
    (b) Area region Q = − = unit 2
                       3 6 6                                                        K1
                       7 1
                      = :
                       6 6
                      =7:1                                                          N1
                        1
    (c) Volume π ∫ ( 2 y − y 2 ) dy
                                     2
         =
                        0                                                           K1
                                          1
                 4 y3       y5 
             = π      − y4 +                                                      K1
                 3          5 0
                8
              = π unit 3                                                            N1
               15



                                                                                    10



8   (a)             x       0.000         0.7071     1.000          1.414   1.732   N1
                 log10 y    1.000         1.330      1.477          1.672   1.826   N1

    Using the correct, uniform scale and axes                                       P1
    All points plotted correctly                                                    P1
    Line of best fit                                                                P1

                    1                                                               P1
    =
    (b) log10 y       x log10 p + log10 k
                    3
(i) use ∗ c = 10 k
                    log                                  K1
               k = 10.0                                  N1
                      1.83 − 1.0   1
       (ii) =
            use * m     = 0.47977= log10 p               K1
                       1.73 − 0    3
                                                         N1
                        p = 27.5

                                                         10


9
              1                                        K1
             2 π
    (a) ∠COD = 
              6 
                  1                                      N1
             =      π
                   = 1.047 rad
                  3
                          1       20                   K1
    (b) (i) Arc ABC =  π − π  or = π
                     10
                          3       3

                                        1      
    Length=
          AC        202 − 102 or 20 cos  π rad         K1
                                        6      
              20        1
    Perimeter = + 20 cos π = cm
                 π         38.267                        N1
              3         6

                     =
     (ii) Area of shaded region
                                   1
                                   2
                                     ( ) 2
                                         3
                                                  2 
                                     102  π − sin π 
                                                  3 
                                                         K1

                                 = 61.432cm2
                                                         N1
                  1
    (c) ∠CDE = =
             ∠CAD   π rad ( alternate segments )         K1
                  6

    Area =
             1
             2
              ( )  1 
               102  π 
                   6 
                                                         K1
                                                         N1
         = 26.183cm2




                                                         10
10   (a) T ( 4, 2 )                                                                      P1
     6+ x         6+ y
             = 4,      =2                                                                K1
       2           2
     S ( 2, −2 )                                                                         N1

     (b) y − 2 2 ( x − 4 )
             =                                                                          K1 K1
     = 2x − 6
     y                                                                                   N1

           3 x + 24        3 y + 24                                                      K1
     (c)            = 2 or          = −2
               7               7

        10 38                                                                          N1
     U − ,− 
        3   3 
                                                                                         K1
     (d)     ( x − 2) + ( y + 2) = 2
                      2          2
                                          ( x − 4) + ( y − 2)
                                                 2              2

                                                                                         N1
     3 x 2 + 3 y 2 − 28 x − 20 y + 72 =
                                      0



                                                                                         10


11   (a) (i) P ( X 0=
                 = )         C0 (0.6)0 (0.4)10 or P ( X 1=
                            10
                                                       = )          10
                                                                     C1 (0.6)1 (0.4)9    K1
              P ( X ≥ 2) = − [ P ( X = + P( X = ]
                          1           0)       1)
                      = 1 ─ 10C0 (0.6)0 (0.4)10 ─ 10C1 (0.6)1 (0.4)9                     K1
                      = 0.9983                                                           N1
                     2
          (ii) 800 ×                                                                     K1
                     5
                                                                                         N1
               = 320
     (b)(i) P ( −0.417 ≤ z ≤ 1.25 )                                                      K1
              = 1 − 0.3383 − 0.1057
              = 0.556                                                                    N1
           (ii) P ( X > t ) =0.7977
                     Z = −0.833                                                          P1
                                t − 4.5
                      −0.833 =                                                           K1
                                  1.2
                      t = 3.5004
                                                                                         N1

                                                                                         10
Sub    Total
 No                                Mark Scheme
                                                  Marks   Mark
         1
12a i)     (14) (5) sin θ = 21                     K1      3
         2
         θ = ° or 36° 52 '
             36.87

         ∠ BAC 180° − 36.87°
             =                                     K1
               = ° or 143° 8'
               143.13
                                                   N1

 ii)     BC 2 = 142 + 52 − 2(14)(5) cos 143.13°    K1      2
         BC 2 = 333
         BC = 18.25 cm                             N1

 iii)    sin θ sin 143.13°
               =                                   K1      2
           5      18.25
         θ = ° or 9° 28'
             9.46                                  N1

 b i)                                A'

                 14 cm                             N1      1
                                   5 cm

         B'                   C'

 ii)     ∠ ACB 180° − 143.13° − 9.46°
             =                                     K1      2
           = 27.41°

         ∠ A ' C ' B ' 180° − 27.41°
                    =
                      = ° or 152° 35'
                       152.59                      N1      10
Sub    Total
No                                 Mark Scheme
                                                             Marks   Mark
13 a)        4.55                      n                              3
        =
        m         × 100       or         × 100 =
                                               112            K1
             3.50                      4
        m = 130                        n = RM 4.48           N1 N1


 b)     110(70) + * 130( x) + 120( x + 1) + 112(2)            K1      2
                                                   = 116.5
                     7 + x + x +1+ 2
        x=3                                                   N1


c i)    See 140                                               P1      3
        x (116.5)
                  = 140                                       K1
           100
                  x = 120.17 / 120.2                          N1

 ii)     x
           × 100 =
                 140                                          K1      2
        25
                  x = RM 35                                   N1      10
Sub    Total
No                                    Mark Scheme
                                                         Marks   Mark
15 a)   v 0 = − 30 ms −1                                  N1      1

 b)     − 3t 2 + 21t − 30 > 0                             K1      2
        ( t − 5)( t − 2 ) < 0
        2<t<5                                             N1


 c)     a = 6t + 21
           −                                              K1      3
        a 5 = + 21
            − 6(5)                                        K1
        a 5 = − 9 ms − 2                                  N1

 d)        − 3t 3    21t 2                                K1      4
        S =       +         − 30t
             3         2
                   21t 2
        S =t +
           −  3
                          − 30t
                    2

                   21(3) 2
        S3 = 3 +
           − (3)           − 30(3) =
                                   − 22.5           or    K1
                     2
                   21(5) 2
        S5 = +
           − (5) 3
                           − 30(5) =
                                   −12.5
                     2

        Total distance = − 22.5 + (− 22.5) − (−12.5)      K1

                           = 32.5 m                       N1      10
Answer for question 14

                                        (a)       I.      x + y ≤ 70      N1

          y                                       II.     x ≤ 2y          N1

                                                  III.    y − 2 x ≤ 10    N1

                                        (b)       Refer to the graph,
                                                                          K1
                                                  1 graph correct
                                                  3 graphs correct               N1

 90                                               Correct area
                                                                          N1

                                        (c) i) 15 ≤ y ≤ 40                N1

 80                                           ii) k = 10x + 20y

                                                  max point ( 20,50 )       N1

 70                                               Max fees         = 10(20) + 20(50)        K1


                         (20,50)                                   = RM 1,200          N1
                                                                                                 10
 60


 50


 40


 30


 20


 10


                                                                                                      x
      0          10      20        30    40              50          60          70         80
log10 y    Answer for question 8




2.0



1.9

                                                                       X
1.8


1.7
                                                           X


1.6


1.5
                                               X


1.4

                                     X
1.3



1.2


1.1


1.0 X


                                                                                 x
  0        0.2       0.4       0.6       0.8   1.0   1.2   1.4   1.6       1.8

More Related Content

DOC
5 marks scheme for add maths paper 2 trial spm
PDF
Maths Answer Ppsmi2006 F4 P2
PDF
F4 Answer Maths Ppsmi 2007 P2
PDF
Trial Sbp 2007 Answer Mm 1 & 2
PDF
F4 Final Sbp 2006 Math Skema P 1 & P 2
PDF
F4 Final Sbp 2007 Maths Skema P 1 & P2
PDF
09 trial melaka_s2
PDF
Solucionario c.t. álgebra 5°
5 marks scheme for add maths paper 2 trial spm
Maths Answer Ppsmi2006 F4 P2
F4 Answer Maths Ppsmi 2007 P2
Trial Sbp 2007 Answer Mm 1 & 2
F4 Final Sbp 2006 Math Skema P 1 & P 2
F4 Final Sbp 2007 Maths Skema P 1 & P2
09 trial melaka_s2
Solucionario c.t. álgebra 5°

What's hot (17)

PDF
One way to see higher dimensional surface
PDF
009 solid geometry
PDF
Add Maths 2
PPT
Teknik menjawab-percubaan-pmr-melaka-2010
PDF
Functions
PDF
48 circle part 1 of 2
PPTX
Algebra 1 chapter 2 notes
PDF
Chapter 07
PDF
5HBC Conic Solutions
PDF
001 basic concepts
PDF
Trial spm kedah_2013_maths_paper2_[a]
PDF
001 matrices and_determinants
DOC
Mth 4108-1 b (ans)
PDF
Pc12 sol c04_4-4
PDF
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
PPTX
Group Cycloid Factoring
DOC
Mth 4108-1 c (ans)
One way to see higher dimensional surface
009 solid geometry
Add Maths 2
Teknik menjawab-percubaan-pmr-melaka-2010
Functions
48 circle part 1 of 2
Algebra 1 chapter 2 notes
Chapter 07
5HBC Conic Solutions
001 basic concepts
Trial spm kedah_2013_maths_paper2_[a]
001 matrices and_determinants
Mth 4108-1 b (ans)
Pc12 sol c04_4-4
ตัวอย่างข้อสอบเก่า วิชาคณิตศาสตร์ ม.6 ปีการศึกษา 2553
Group Cycloid Factoring
Mth 4108-1 c (ans)
Ad

Similar to 5 marks scheme for add maths paper 2 trial spm (20)

PDF
Add maths 2
PDF
S101-52國立新化高中(代理)
DOC
2 senarai rumus add maths k1 trial spm sbp 2010
DOC
2 senarai rumus add maths k2 trial spm sbp 2010
PDF
2 senarai rumus add maths k1 trial spm sbp 2010
PDF
2 senarai rumus add maths k2 trial spm sbp 2010
DOC
Math report
PDF
Trial kedah 2014 spm add math k2 skema
PDF
Dsp U Lec10 DFT And FFT
PDF
Ch33 11
PPT
Decimation in time and frequency
PDF
PDF
Formulas
PPTX
Yr.12 Transition Workshop 2012-2013
PPTX
Yr.12 Transition Workshop 2012- 2013
PDF
Den5200 ps1
PPS
Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...
PPT
Chapter 9 computation of the dft
PDF
PDF
Emat 213 midterm 2 winter 2006
Add maths 2
S101-52國立新化高中(代理)
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
Math report
Trial kedah 2014 spm add math k2 skema
Dsp U Lec10 DFT And FFT
Ch33 11
Decimation in time and frequency
Formulas
Yr.12 Transition Workshop 2012-2013
Yr.12 Transition Workshop 2012- 2013
Den5200 ps1
Testing the Stability of GPS Oscillators within Serbian Permanent GPS Station...
Chapter 9 computation of the dft
Emat 213 midterm 2 winter 2006
Ad

More from zabidah awang (20)

ZIP
Attachments 2012 04_1
PPT
Janjang aritmetik
DOC
Teknik Peningkatan Prestasi
DOC
Skills In Add Maths
ZIP
Add10kelantan
ZIP
Add10sabah
ZIP
Add10terengganu
ZIP
Add10perak
ZIP
Add10ns
ZIP
Add10johor
PPT
Strategi pengajaran pembelajaran
DOC
Soalan ptk tambahan
PPT
Refleksi
PPT
Perancangan pengajaran pembelajaran
PPT
Penilaian
PPT
Pengurusan bilik darjah
PPT
Pengurusan murid
PPT
Penguasaan mata pelajaran
PPT
Penggunaan sumber dalam p & p
PPT
Pemulihan dan pengayaan
Attachments 2012 04_1
Janjang aritmetik
Teknik Peningkatan Prestasi
Skills In Add Maths
Add10kelantan
Add10sabah
Add10terengganu
Add10perak
Add10ns
Add10johor
Strategi pengajaran pembelajaran
Soalan ptk tambahan
Refleksi
Perancangan pengajaran pembelajaran
Penilaian
Pengurusan bilik darjah
Pengurusan murid
Penguasaan mata pelajaran
Penggunaan sumber dalam p & p
Pemulihan dan pengayaan

Recently uploaded (20)

PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
PDF
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
PPTX
Cell Structure & Organelles in detailed.
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Classroom Observation Tools for Teachers
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PPTX
Institutional Correction lecture only . . .
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
01-Introduction-to-Information-Management.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Computing-Curriculum for Schools in Ghana
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Lesson notes of climatology university.
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
GENETICS IN BIOLOGY IN SECONDARY LEVEL FORM 3
Cell Structure & Organelles in detailed.
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Classroom Observation Tools for Teachers
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
Institutional Correction lecture only . . .
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Final Presentation General Medicine 03-08-2024.pptx
O7-L3 Supply Chain Operations - ICLT Program
01-Introduction-to-Information-Management.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Computing-Curriculum for Schools in Ghana
Anesthesia in Laparoscopic Surgery in India
Lesson notes of climatology university.
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
2.FourierTransform-ShortQuestionswithAnswers.pdf
Pharma ospi slides which help in ospi learning
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?

5 marks scheme for add maths paper 2 trial spm

  • 1. SPM TRIAL EXAM 2010 MARK SCHEME ADDITIONAL MATHEMATICS PAPER 2 SECTION A (40 MARKS) No. Mark Scheme Total Marks 1 x = 1− 2y P1 2(1 − 2 y ) + y + (1 − 2 y )( y ) = 5 2 2 K1 7y2 − 7y − 3 = 0 − (− 7 ) ± (− 7 )2 − 4(7 )(− 3) y= 2(7 ) K1 y = 1.324 , − 0.324 N1 x = −1.648 , 1.648 N1 OR 1− x y= 2 P1 1− x  1− x  2x 2 +   + x =5  2   2  K1 7 x 2 − 19 = 0 − (0 ) ± (0)2 − 4(7 )(− 19) x= 2(7 ) K1 x = −1.648 , 1.648 N1 y = 1.324 , − 0.324 N1 5
  • 2. 2 (a) ( f ( x ) = − x 2 − 4 x − 21 ) K1  −4 −4 2 2  = − x 2 − 4 x +   −  − 21    2   2    N1 = −( x − 2 ) + 25 2 (b) Max Value = 25 N1 (c) f (x ) 25 (2,25) 21 x -3 2 7 Shape graph N1 Max point N1 f ( x ) intercept or point (0,21) N1 d) f ( x ) = ( x − 2 ) − 25 N1 2 7 3 1 1 a) List of Areas ; xy, xy, xy K1 4 16 1 T2 ÷ T1 = T3 ÷ T2 = 4 1 This is Geometric Progression and r = N1 4 n −1 1 25 b) 12800 ×   = 4 512
  • 3. n −1 K1 1 1   = 4 262144 n −1 9 1 1   =  4 4 n −1 = 9 K1 n = 10 12800 N1 (c) S∞ = 1 1− 4 K1 2 N1 = 17066 cm 2 3 7 4 a) 4 cos 2 − 1 − 1 K1 4 cos 2 − 2 ( 2 2 cos 2 − 1 ) N1 2 cos 2θ b) i) 2 1 π 2π -1 -2 P1 - shape of cos graph P1 - amplitude (max = 2 and min = -2) P1 - 2 periodic/cycle in 0 ≤ θ ≤ 2π θ b) ii) y = 1 − (equation of straight line) K1 π Number of solution = 4 (without any mistake done) N1 7
  • 4. 5 a) Score 0–9 10 – 19 20 – 29 30 – 39 40 – 49 Number 3 4 9 9 10 N1 1   (35) − 7  P1 b) Q1 = 19.5 +  4 10  9    K1   = 21.44 3   (35) − 25  Q3 = 39.5 +  4 10 K1  10      = 40.75 Interquatile range K1 = 40.75 − 21.44 = 19.31 N1 6 6 (a) OQ = OA + AQ K1 OQ = (1 − m ) a + m b N1 ~ ~ (b) ( PO + OQ = n PO + OR ) K1 OQ = (1 − n ) a + 3n b 4 N1 5 ~ ~ (c) 4 4  K1 (i)  − n  = 1 − m or 3n = m 5 5  3 1 m= ,n= N1 11 11 N1 8 3 (ii) OQ = a+ b N1 11 ~ 11 ~ 8
  • 5. 2 7 = ∫ ( 2 y − y )dy 2 (a)(i) Area K1 0 2  y3  =  y2 −   3 0 4 N1 = unit 2 3 1 2 (ii) Area region P = ∫ y dy + ∫ ( 2 y − y )dy 2 K1 0 1 2 1   y3  =  × 1× 1 +  y 2 −  K1 2   3 1 7 N1 = unit 2 6 4 7 1 (b) Area region Q = − = unit 2 3 6 6 K1 7 1 = : 6 6 =7:1 N1 1 (c) Volume π ∫ ( 2 y − y 2 ) dy 2 = 0 K1 1  4 y3 y5  = π − y4 +  K1  3 5 0 8 = π unit 3 N1 15 10 8 (a) x 0.000 0.7071 1.000 1.414 1.732 N1 log10 y 1.000 1.330 1.477 1.672 1.826 N1 Using the correct, uniform scale and axes P1 All points plotted correctly P1 Line of best fit P1 1 P1 = (b) log10 y x log10 p + log10 k 3
  • 6. (i) use ∗ c = 10 k log K1 k = 10.0 N1 1.83 − 1.0 1 (ii) = use * m = 0.47977= log10 p K1 1.73 − 0 3 N1 p = 27.5 10 9 1  K1 2 π (a) ∠COD =  6  1 N1 = π = 1.047 rad 3  1  20 K1 (b) (i) Arc ABC =  π − π  or = π 10  3  3 1  Length= AC 202 − 102 or 20 cos  π rad  K1 6  20 1 Perimeter = + 20 cos π = cm π 38.267 N1 3 6 = (ii) Area of shaded region 1 2 ( ) 2 3 2  102  π − sin π  3  K1 = 61.432cm2 N1 1 (c) ∠CDE = = ∠CAD π rad ( alternate segments ) K1 6 Area = 1 2 ( ) 1  102  π  6  K1 N1 = 26.183cm2 10
  • 7. 10 (a) T ( 4, 2 ) P1 6+ x 6+ y = 4, =2 K1 2 2 S ( 2, −2 ) N1 (b) y − 2 2 ( x − 4 ) = K1 K1 = 2x − 6 y N1 3 x + 24 3 y + 24 K1 (c) = 2 or = −2 7 7  10 38  N1 U − ,−   3 3  K1 (d) ( x − 2) + ( y + 2) = 2 2 2 ( x − 4) + ( y − 2) 2 2 N1 3 x 2 + 3 y 2 − 28 x − 20 y + 72 = 0 10 11 (a) (i) P ( X 0= = ) C0 (0.6)0 (0.4)10 or P ( X 1= 10 = ) 10 C1 (0.6)1 (0.4)9 K1 P ( X ≥ 2) = − [ P ( X = + P( X = ] 1 0) 1) = 1 ─ 10C0 (0.6)0 (0.4)10 ─ 10C1 (0.6)1 (0.4)9 K1 = 0.9983 N1 2 (ii) 800 × K1 5 N1 = 320 (b)(i) P ( −0.417 ≤ z ≤ 1.25 ) K1 = 1 − 0.3383 − 0.1057 = 0.556 N1 (ii) P ( X > t ) =0.7977 Z = −0.833 P1 t − 4.5 −0.833 = K1 1.2 t = 3.5004 N1 10
  • 8. Sub Total No Mark Scheme Marks Mark 1 12a i) (14) (5) sin θ = 21 K1 3 2 θ = ° or 36° 52 ' 36.87 ∠ BAC 180° − 36.87° = K1 = ° or 143° 8' 143.13 N1 ii) BC 2 = 142 + 52 − 2(14)(5) cos 143.13° K1 2 BC 2 = 333 BC = 18.25 cm N1 iii) sin θ sin 143.13° = K1 2 5 18.25 θ = ° or 9° 28' 9.46 N1 b i) A' 14 cm N1 1 5 cm B' C' ii) ∠ ACB 180° − 143.13° − 9.46° = K1 2 = 27.41° ∠ A ' C ' B ' 180° − 27.41° = = ° or 152° 35' 152.59 N1 10
  • 9. Sub Total No Mark Scheme Marks Mark 13 a) 4.55 n 3 = m × 100 or × 100 = 112 K1 3.50 4 m = 130 n = RM 4.48 N1 N1 b) 110(70) + * 130( x) + 120( x + 1) + 112(2) K1 2 = 116.5 7 + x + x +1+ 2 x=3 N1 c i) See 140 P1 3 x (116.5) = 140 K1 100 x = 120.17 / 120.2 N1 ii) x × 100 = 140 K1 2 25 x = RM 35 N1 10
  • 10. Sub Total No Mark Scheme Marks Mark 15 a) v 0 = − 30 ms −1 N1 1 b) − 3t 2 + 21t − 30 > 0 K1 2 ( t − 5)( t − 2 ) < 0 2<t<5 N1 c) a = 6t + 21 − K1 3 a 5 = + 21 − 6(5) K1 a 5 = − 9 ms − 2 N1 d) − 3t 3 21t 2 K1 4 S = + − 30t 3 2 21t 2 S =t + − 3 − 30t 2 21(3) 2 S3 = 3 + − (3) − 30(3) = − 22.5 or K1 2 21(5) 2 S5 = + − (5) 3 − 30(5) = −12.5 2 Total distance = − 22.5 + (− 22.5) − (−12.5) K1 = 32.5 m N1 10
  • 11. Answer for question 14 (a) I. x + y ≤ 70 N1 y II. x ≤ 2y N1 III. y − 2 x ≤ 10 N1 (b) Refer to the graph, K1 1 graph correct 3 graphs correct N1 90 Correct area N1 (c) i) 15 ≤ y ≤ 40 N1 80 ii) k = 10x + 20y max point ( 20,50 ) N1 70 Max fees = 10(20) + 20(50) K1 (20,50) = RM 1,200 N1 10 60 50 40 30 20 10 x 0 10 20 30 40 50 60 70 80
  • 12. log10 y Answer for question 8 2.0 1.9 X 1.8 1.7 X 1.6 1.5 X 1.4 X 1.3 1.2 1.1 1.0 X x 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8