MTH-4108 C
                              Quadratic Functions
                             ANSWER KEY
1. Graph the following equations. Be sure to include the coordinates of at least 5
   points, including the vertex, the zeros (if any) and y-intercept.

a) y = 3.2x2 + 4x
                         y

                                                                    −b −∆
                                                                         ,    
                                                                     2a 4 a 
                                                            Vertex:  − 4 − 16 
                                                                         ,     
                                                                     6.4 12.8 
                                                                    ( − 0.625,−1.25)

                                                   x               −b± ∆
                                                                        2a
                                                            Zeros: − 4 ± 16
                                                                        6.4
                                                                   { − 1.25,0}
                                                                           y = 3.2(0) + 4(0)
                                                            y-intercept:
                                                                           y=0

b) y = ¼x2 – 3x +1
                         y

                                                          Vertex:
                                                          −b −∆
                                                              ,  
                                                           2a 4a 
                                                           3 − ( 9 − 4( 0.25)(1) ) 
                                                               ,                   
                                                           0.5        1            
                                                          ( 6,−8)
                                                   x
                                                                 −b± ∆
                                                                      2a
                                                          Zeros: 3 ± 8
                                                                    0.5
                                                                 { 0.343,11.65}
                                                          y-intercept:
                                                           y = 0.25(0) − 3(0) + 1
                                                           y =1
c) y = –3x2 + x – 2                                                     Vertex:
                          y                                             −b −∆
                                                                            ,  
                                                                         2a 4a 
                                                                         − 1 − (1 − 4( − 3)( − 2 ) ) 
                                                                             ,                       
                                                                        −6           − 12            
                                                                        ( 0.166,−1.9166)

                                                                               −b± ∆
                                                                                   2a
                                                                x       Zeros: − 1 ± − 23
                                                                                    −6
                                                                               { ∅}
                                                                        y-intercept:
                                                                         y = −3(0) + (0) − 2
                                                                         y = −2



                                                                                                          /30

2. Solve the following equations by factoring:

       a) 8x2 – 2x = 0        2 x(4 x − 1) = 0

                              2x ⇒ 2x = 0 ⇒ x = 0
                              ( 4 x − 1) ⇒ 4 x = 1 ⇒ x = 1 4

       b) 3/5x2 – 2/5x + 1/5= 0            (            )
                                       1 3x 2 − 2 x − 1 = 0
                                         5
                                       3x 2 − 3x + 1x − 1 = 0
                                       3x( x − 1) + 1( x − 1)
                                       (3x + 1)( x − 1) = 0
                                       ( 3x + 1) ⇒ 3x = −1 ⇒ x = − 13
                                       ( x − 1) ⇒ x = 1                                                    /5

3. Identify the true statement(s) below which pertain to quadratic functions in the
   form: y = ax2 + bx + c

       a) If a = 0, it means that the function is no longer quadratic.                       TRUE
                  ____________

                                                             FALSE
       b) If c = 0, it means that the vertex is at (0,0). ____________
                                                                              TRUE
       c) If b = 0, it means that the function is situated on the y-axis. ____________

       d) If a > 0, it means that the function opens upward.                       TRUE
                                                                               ____________

       e) If c > 0, it means that the function is above the x-axis.                        FALSE
                                                                                        ____________


                                                                                                           /5
4. Solve the following equations using the quadratic formula. Clearly indicate the
   value of ∆ and round your answers to the nearest thousandth when necessary.
              5
        a)      /3x2 – 2/5x + 1/2= 0   Zeros:
                                       −b± ∆
                                           2a
                                       0.4 ± ( 0.16 − 4(1.667 )( 0.5) )
                                                     1
                                       0.4 ± − 3.1733
                                              1
                                       { ∅}
        b) 2x – 3x2 +2 = 0
                                              −b± ∆
                                                   2a
                                       Zeros: − 2 ± ( 4 − 4( − 3)( 2 ) )
                                                        −6
                                              { − 0.5485,1.2152}
                                                                                        /10

5. Every month, Irene sells 6 dozen roses that she grows in her garden for $20 per
   dozen. For every additional dozen roses she grows, she can reduce her price by $2
   per dozen. How many dozen roses should she grow every month in order to
   maximize her total sales? Complete the following table and write the equation that
   can be used to solve the problem. Your equation should be in the form y = ax2 +
   bx + c
    Number of            Total number of Selling Price ($) Total Sales ($)
    additional           dozens of roses                         y
    dozens of roses
    x
    0                    6                  20                   6 × 20 = 120
    1                    6+1=7              20 – 2 = 18          7 × 18 = 126
    2                    6+2=8              20 – 2(2) = 16       8 × 16 = 128
    3                    6+3=9              20 – 2(3) = 14       9 × 14 = 126
    x                    6+x                20 – 2x              (20 – 2x)( 6 + x)


        Write the equation in the form ax2 + bx + c which illustrates this situation.

      ( 20 − 2 x )( 6 + x )
      120 + 20 x − 12 x − 2 x 2
      y = −2 x 2 + 8 x + 120




                                                                                        /10
6. Answer the following questions using the graph below:
                                              y




                                                                     x




       True or False?
                                     TRUE
       a) Point (-2,0) is a zero. ____________

                                       TRUE
       b) Point (0,-1) is a vertex. ____________

                                                              FALSE
       c) The equation for the axis of symmetry is: y = 0. ____________


                                         TRUE
       d) Point (-0,-1) is a minimum. ____________


                                             FALSE
       e) Point (2,0) is the y-intercept. ____________


                                                                                        /5

7. Without calculating, write the equation in the form ax2 + bx + c which illustrates
   the following situation:

   A mother’s present age is triple her son’s age. In 15 years, the product of their
   ages will be 60 times her son’s age then.

     Let x = Son’s age
     Let 3x = Mother’s age

     ( x + 15)( 3x + 15) = 60( x + 15)
     3 x 2 + 15 x + 45 x + 225 = 60 x + 900
     3 x 2 − 675 = 0
                                                                                        /5
8. The hypotenuse of a right triangle is 10 cm. Find the length of the other two sides
   if one side is 2 cm longer than the other, using the Pythagorean Theorem.

    Let x = small side
    Let 2 + x = LARGE side

     x 2 + ( x + 2) 2 = 10 2
                                             x 2 + 2 x − 48 = 0
     x 2 + x 2 + 4 x + 4 = 100
                                      Zeros: ( x + 8)( x − 6) = 0
    2 x 2 + 4 x − 96 = 0
                                             { − 8,6}
     x 2 + 2 x − 48 = 0

    2 + (6) = 8
                                      ANS: The two sides measure 6 cm and 8 cm
                                                                                     /5

9. A School principal paid $180 for a certain number of desks. If the desks cost 3
   dollars less, she could have bought 5 more desks for the same price. How many
   desks did the principal order?

    Let x = number of desks ordered

    180        180
         −3=
     x         x+5
    180 − 3 x 180
              =                                     x 2 + 5 x − 300 = 0
        x       x+5
    180 x + 900 − 3 x 2 − 15 x = 180 x       Zeros: ( x − 15)( x + 20)

    − 3 x 2 − 15 x + 900 = 0
                                                    { − 20,15}

    x 2 + 5 x − 300 = 0
                                             ANS: The principal ordered 15 desks.

                                                                                    /10


10. The function h = 24t – 6t2 represents the height (h) in centimeters reached by a
    champion jumping frog after t seconds. Use the method of your choice to find the
    frog’s maximum height.

                          Round your answers to the nearest hundredth.

                    − b − ∆   − 24 − ( 576 ) 
           Vertex:     ,    ⇒     ,           ⇒ ( 2,24 )
                    2a 4a   − 12 − 24 


                                                                                     /5
11. Tarzan swings on a vine from a tall tree, across a river, and rises upwards to
    another tree in a parabolic arc. The equation f = 0.04x2 – 5x + 28 describes his
    motion, withboth the fall (f) and distance (x) between the two trees measured in
    feet. Use the method of your choice to answer the following questions:


       a) What is the distance between the two trees?

                   −b± ∆         5 ± (−5) 2 − 4( 0.04)( 28)   5 ± 20.52
                              ⇒                             ⇒
                        2a               2(0.04)                 0.08
           Zeros:
                   { 5.876,119.123}
                   119.123 − 5.876 = 113.2475
       b) What is the measure of the vertical drop?

                     − b − ∆   5 − ( 20.52 ) 
            Vertex:     ,    ⇒
                                   ,            ⇒ ( 62.5,−128.25)
                                                
                     2a 4a   0.08 4(0.04) 

                                                                                   /10

More Related Content

DOC
Mth 4108-1 a (ans)
DOC
Mth 4108-1 b (ans)
DOC
C1 january 2012_mark_scheme
PDF
Chapter 07
PPT
Graph functions
PDF
009 solid geometry
PDF
S101-52國立新化高中(代理)
PDF
Chapter 15
Mth 4108-1 a (ans)
Mth 4108-1 b (ans)
C1 january 2012_mark_scheme
Chapter 07
Graph functions
009 solid geometry
S101-52國立新化高中(代理)
Chapter 15

What's hot (17)

DOC
5 marks scheme for add maths paper 2 trial spm
PDF
48 circle part 1 of 2
PDF
Calculo y geometria analitica (larson hostetler-edwards) 8th ed - solutions m...
PDF
answers tutor 8
PDF
Lesson 25: Unconstrained Optimization I
PDF
5HBC Conic Solutions
PDF
Lesson 22: Graphing
PDF
Lesson 22: Graphing
PPT
Tangents + intersections
PDF
Day 11 slope
PDF
09 trial melaka_s2
DOC
Statistics Project1
PDF
Summer Task - MATHS - Yr 12 preparation
PDF
2010 mathematics hsc solutions
PDF
Differential equation study guide for exam (formula sheet)
PDF
calculo vectorial
PDF
5 marks scheme for add maths paper 2 trial spm
48 circle part 1 of 2
Calculo y geometria analitica (larson hostetler-edwards) 8th ed - solutions m...
answers tutor 8
Lesson 25: Unconstrained Optimization I
5HBC Conic Solutions
Lesson 22: Graphing
Lesson 22: Graphing
Tangents + intersections
Day 11 slope
09 trial melaka_s2
Statistics Project1
Summer Task - MATHS - Yr 12 preparation
2010 mathematics hsc solutions
Differential equation study guide for exam (formula sheet)
calculo vectorial
Ad

Viewers also liked (8)

ODP
DOC
Proyecto1
PPT
Passatempo Fotos Quinta de Gomariz
DOC
Mth 4106-1 c
PPTX
βερα καρυωτη-α1-θρησκευτικα-για-21-1-2015
PPTX
οι δεκα-εντολες1
PPTX
νεκρα θαλασσα
PPTX
νεκρά θάλασσα παυλινα παπαβασιλειου
Proyecto1
Passatempo Fotos Quinta de Gomariz
Mth 4106-1 c
βερα καρυωτη-α1-θρησκευτικα-για-21-1-2015
οι δεκα-εντολες1
νεκρα θαλασσα
νεκρά θάλασσα παυλινα παπαβασιλειου
Ad

Similar to Mth 4108-1 c (ans) (20)

DOC
Mth 4108-1 a (ans)
DOC
Mth 4108-1 b (ans)
DOC
15815265 form-4-amat-formulae-and-note
PPT
Mat 128 11 3
PDF
Ch33 11
PDF
Algebra review
PDF
Emat 213 midterm 2 winter 2006
PDF
March 9 Quadratic Formula
PDF
March 9 Quadratic Formula
PDF
Summary (chapter 1 chapter6)
PDF
Jacobi and gauss-seidel
DOC
Handout basic algebra
PDF
Add Maths 2
PDF
Add maths 2
PDF
Vans Scribe
ODP
Quadratic functions
PDF
2 senarai rumus add maths k1 trial spm sbp 2010
PDF
2 senarai rumus add maths k2 trial spm sbp 2010
DOC
Simultaneous eqn2
PDF
5 marks scheme for add maths paper 2 trial spm
Mth 4108-1 a (ans)
Mth 4108-1 b (ans)
15815265 form-4-amat-formulae-and-note
Mat 128 11 3
Ch33 11
Algebra review
Emat 213 midterm 2 winter 2006
March 9 Quadratic Formula
March 9 Quadratic Formula
Summary (chapter 1 chapter6)
Jacobi and gauss-seidel
Handout basic algebra
Add Maths 2
Add maths 2
Vans Scribe
Quadratic functions
2 senarai rumus add maths k1 trial spm sbp 2010
2 senarai rumus add maths k2 trial spm sbp 2010
Simultaneous eqn2
5 marks scheme for add maths paper 2 trial spm

More from outdoorjohn (20)

DOC
Mth 4101-2 b
DOC
Mth 4101-2 a
DOC
Mth 4101-2 d
DOC
Mth 4101-2 c
DOC
Mth 4108-1 c
DOC
Mth 4108-1 c (ans)
DOC
Mth 4108-1 b
DOC
Mth 4108-1 a
DOC
Mth 4108-1 - chapter 9
DOC
Mth 4108-1 - chapter 9 (ans)
DOC
Mth 4108-1 c
DOC
Mth 4108-1 b
DOC
Mth 4108-1 a
DOC
Shape & pythagoras review
DOC
Mth 2007 d
DOC
Mth 2007 c
DOC
Mth 2007 b
DOC
Mth 2007 a
DOC
Mth 2007-2 - review
DOC
Mth 4102-1 c
Mth 4101-2 b
Mth 4101-2 a
Mth 4101-2 d
Mth 4101-2 c
Mth 4108-1 c
Mth 4108-1 c (ans)
Mth 4108-1 b
Mth 4108-1 a
Mth 4108-1 - chapter 9
Mth 4108-1 - chapter 9 (ans)
Mth 4108-1 c
Mth 4108-1 b
Mth 4108-1 a
Shape & pythagoras review
Mth 2007 d
Mth 2007 c
Mth 2007 b
Mth 2007 a
Mth 2007-2 - review
Mth 4102-1 c

Recently uploaded (20)

PPT
Module 1.ppt Iot fundamentals and Architecture
PDF
Architecture types and enterprise applications.pdf
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Unlock new opportunities with location data.pdf
DOCX
search engine optimization ppt fir known well about this
PPTX
The various Industrial Revolutions .pptx
PDF
CloudStack 4.21: First Look Webinar slides
PDF
Getting started with AI Agents and Multi-Agent Systems
PPTX
Modernising the Digital Integration Hub
PPTX
Tartificialntelligence_presentation.pptx
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PDF
STKI Israel Market Study 2025 version august
PDF
Hybrid model detection and classification of lung cancer
PDF
Getting Started with Data Integration: FME Form 101
PPTX
observCloud-Native Containerability and monitoring.pptx
PDF
1 - Historical Antecedents, Social Consideration.pdf
PPTX
Benefits of Physical activity for teenagers.pptx
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
PDF
Hindi spoken digit analysis for native and non-native speakers
Module 1.ppt Iot fundamentals and Architecture
Architecture types and enterprise applications.pdf
Chapter 5: Probability Theory and Statistics
Unlock new opportunities with location data.pdf
search engine optimization ppt fir known well about this
The various Industrial Revolutions .pptx
CloudStack 4.21: First Look Webinar slides
Getting started with AI Agents and Multi-Agent Systems
Modernising the Digital Integration Hub
Tartificialntelligence_presentation.pptx
A contest of sentiment analysis: k-nearest neighbor versus neural network
STKI Israel Market Study 2025 version august
Hybrid model detection and classification of lung cancer
Getting Started with Data Integration: FME Form 101
observCloud-Native Containerability and monitoring.pptx
1 - Historical Antecedents, Social Consideration.pdf
Benefits of Physical activity for teenagers.pptx
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
DASA ADMISSION 2024_FirstRound_FirstRank_LastRank.pdf
Hindi spoken digit analysis for native and non-native speakers

Mth 4108-1 c (ans)

  • 1. MTH-4108 C Quadratic Functions ANSWER KEY 1. Graph the following equations. Be sure to include the coordinates of at least 5 points, including the vertex, the zeros (if any) and y-intercept. a) y = 3.2x2 + 4x y −b −∆  ,   2a 4 a  Vertex:  − 4 − 16   ,   6.4 12.8  ( − 0.625,−1.25) x −b± ∆ 2a Zeros: − 4 ± 16 6.4 { − 1.25,0} y = 3.2(0) + 4(0) y-intercept: y=0 b) y = ¼x2 – 3x +1 y Vertex: −b −∆  ,   2a 4a   3 − ( 9 − 4( 0.25)(1) )   ,   0.5 1  ( 6,−8) x −b± ∆ 2a Zeros: 3 ± 8 0.5 { 0.343,11.65} y-intercept: y = 0.25(0) − 3(0) + 1 y =1
  • 2. c) y = –3x2 + x – 2 Vertex: y −b −∆  ,   2a 4a   − 1 − (1 − 4( − 3)( − 2 ) )   ,  −6 − 12  ( 0.166,−1.9166) −b± ∆ 2a x Zeros: − 1 ± − 23 −6 { ∅} y-intercept: y = −3(0) + (0) − 2 y = −2 /30 2. Solve the following equations by factoring: a) 8x2 – 2x = 0 2 x(4 x − 1) = 0 2x ⇒ 2x = 0 ⇒ x = 0 ( 4 x − 1) ⇒ 4 x = 1 ⇒ x = 1 4 b) 3/5x2 – 2/5x + 1/5= 0 ( ) 1 3x 2 − 2 x − 1 = 0 5 3x 2 − 3x + 1x − 1 = 0 3x( x − 1) + 1( x − 1) (3x + 1)( x − 1) = 0 ( 3x + 1) ⇒ 3x = −1 ⇒ x = − 13 ( x − 1) ⇒ x = 1 /5 3. Identify the true statement(s) below which pertain to quadratic functions in the form: y = ax2 + bx + c a) If a = 0, it means that the function is no longer quadratic. TRUE ____________ FALSE b) If c = 0, it means that the vertex is at (0,0). ____________ TRUE c) If b = 0, it means that the function is situated on the y-axis. ____________ d) If a > 0, it means that the function opens upward. TRUE ____________ e) If c > 0, it means that the function is above the x-axis. FALSE ____________ /5
  • 3. 4. Solve the following equations using the quadratic formula. Clearly indicate the value of ∆ and round your answers to the nearest thousandth when necessary. 5 a) /3x2 – 2/5x + 1/2= 0 Zeros: −b± ∆ 2a 0.4 ± ( 0.16 − 4(1.667 )( 0.5) ) 1 0.4 ± − 3.1733 1 { ∅} b) 2x – 3x2 +2 = 0 −b± ∆ 2a Zeros: − 2 ± ( 4 − 4( − 3)( 2 ) ) −6 { − 0.5485,1.2152} /10 5. Every month, Irene sells 6 dozen roses that she grows in her garden for $20 per dozen. For every additional dozen roses she grows, she can reduce her price by $2 per dozen. How many dozen roses should she grow every month in order to maximize her total sales? Complete the following table and write the equation that can be used to solve the problem. Your equation should be in the form y = ax2 + bx + c Number of Total number of Selling Price ($) Total Sales ($) additional dozens of roses y dozens of roses x 0 6 20 6 × 20 = 120 1 6+1=7 20 – 2 = 18 7 × 18 = 126 2 6+2=8 20 – 2(2) = 16 8 × 16 = 128 3 6+3=9 20 – 2(3) = 14 9 × 14 = 126 x 6+x 20 – 2x (20 – 2x)( 6 + x) Write the equation in the form ax2 + bx + c which illustrates this situation. ( 20 − 2 x )( 6 + x ) 120 + 20 x − 12 x − 2 x 2 y = −2 x 2 + 8 x + 120 /10
  • 4. 6. Answer the following questions using the graph below: y x True or False? TRUE a) Point (-2,0) is a zero. ____________ TRUE b) Point (0,-1) is a vertex. ____________ FALSE c) The equation for the axis of symmetry is: y = 0. ____________ TRUE d) Point (-0,-1) is a minimum. ____________ FALSE e) Point (2,0) is the y-intercept. ____________ /5 7. Without calculating, write the equation in the form ax2 + bx + c which illustrates the following situation: A mother’s present age is triple her son’s age. In 15 years, the product of their ages will be 60 times her son’s age then. Let x = Son’s age Let 3x = Mother’s age ( x + 15)( 3x + 15) = 60( x + 15) 3 x 2 + 15 x + 45 x + 225 = 60 x + 900 3 x 2 − 675 = 0 /5
  • 5. 8. The hypotenuse of a right triangle is 10 cm. Find the length of the other two sides if one side is 2 cm longer than the other, using the Pythagorean Theorem. Let x = small side Let 2 + x = LARGE side x 2 + ( x + 2) 2 = 10 2 x 2 + 2 x − 48 = 0 x 2 + x 2 + 4 x + 4 = 100 Zeros: ( x + 8)( x − 6) = 0 2 x 2 + 4 x − 96 = 0 { − 8,6} x 2 + 2 x − 48 = 0 2 + (6) = 8 ANS: The two sides measure 6 cm and 8 cm /5 9. A School principal paid $180 for a certain number of desks. If the desks cost 3 dollars less, she could have bought 5 more desks for the same price. How many desks did the principal order? Let x = number of desks ordered 180 180 −3= x x+5 180 − 3 x 180 = x 2 + 5 x − 300 = 0 x x+5 180 x + 900 − 3 x 2 − 15 x = 180 x Zeros: ( x − 15)( x + 20) − 3 x 2 − 15 x + 900 = 0 { − 20,15} x 2 + 5 x − 300 = 0 ANS: The principal ordered 15 desks. /10 10. The function h = 24t – 6t2 represents the height (h) in centimeters reached by a champion jumping frog after t seconds. Use the method of your choice to find the frog’s maximum height. Round your answers to the nearest hundredth.  − b − ∆   − 24 − ( 576 )  Vertex:  , ⇒ ,  ⇒ ( 2,24 )  2a 4a   − 12 − 24  /5
  • 6. 11. Tarzan swings on a vine from a tall tree, across a river, and rises upwards to another tree in a parabolic arc. The equation f = 0.04x2 – 5x + 28 describes his motion, withboth the fall (f) and distance (x) between the two trees measured in feet. Use the method of your choice to answer the following questions: a) What is the distance between the two trees? −b± ∆ 5 ± (−5) 2 − 4( 0.04)( 28) 5 ± 20.52 ⇒ ⇒ 2a 2(0.04) 0.08 Zeros: { 5.876,119.123} 119.123 − 5.876 = 113.2475 b) What is the measure of the vertical drop?  − b − ∆   5 − ( 20.52 )  Vertex:  , ⇒  ,  ⇒ ( 62.5,−128.25)   2a 4a   0.08 4(0.04)  /10