Discriminant analysis (DA) is a statistical technique used to predict group membership when the dependent variable is categorical and the independent variables are continuous. It identifies which variables discriminate between two or more naturally occurring groups. DA develops a linear equation to predict group membership based on weighted combinations of predictor variables. It aims to maximize the distance between group means to achieve strong discriminatory power. Like regression, DA assumes variables are normally distributed, cases are randomly sampled, and groups are mutually exclusive and collectively exhaustive. It requires at least two groups with minimal overlap and similar group sizes of at least five cases. DA can classify new cases into groups based on the discriminant functions derived from existing data.