Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
23
RETOOLING OF COLOR IMAGING IN THE
QUATERNION ALGEBRA
Artyom M. Grigoryan and Sos S. Agaian
Department of Electrical and Computer Engineering,
University of Texas at San Antonio, USA
ABSTRACT
A novel quaternion color representation tool is proposed to the images and videos efficiently. In this work,
we consider a full model for representation and processing color images in the quaternion algebra. Color
images are presented in the threefold complex plane where each color component is described by a
complex image. Our preliminary experimental results show significant performance improvements of the
proposed approach over other well-known color image processing techniques. Moreover, we have shown
how a particular image enhancement of the framework leads to excellent color enhancement (better than
other algorithms tested). In the framework of the proposed model, many other color processing algorithms,
including filtration and restoration, can be expressed.
KEYWORDS
Image Color Analysis, Discrete Fourier Transform, Quaternion Fourier Transformation
1. INTRODUCTION
Color image processing has attracted much interest in the recent years [1],[2] ,[43],[52]. The
reason of these are: a) color features are robust to several image processing procedures (for
example translation and rotation of the regions of interest) b) color features are efficiently used in
many vision tasks, including object recognition, tracking, image segmentation and retrieval,
image registration etc.; c) color is of vital importance in many real life applications such as visual
communications, multimedia systems, fashion and food industries, computer vision,
entertainment, consumer electronics, production printing and proofing, book publishing, digital
photography, digital artwork reproduction, industrial inspection, and biomedical applications
[1],[2],[5],[43],[44]. Over the years, several important contributions were made in the color image
processing systems [2],[52]. Additionally, the traditional color image processing approaches are
based on dealing out each color-channel (red, green, and blue) separately [1],[2],[44]. However,
this methodology fails to capture the inherent correlation between the components and results in
color artefacts [6],[28],[43],[44]. It is natural to ask, how to couple the information contained in
the given color- channels, how to process the three color components as a whole unit without loss
of the spectral relation that is present in them, or how to develop a mathematical color model
that may help to process the color components simultaneously.
Recently, the theory of the quaternion algebra has been used in the application of color science
and color systems which process the three color channels simultaneously [6]-[10]. Quaternions
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
24
were first discovered by Hamilton in 1843โ€ [3]. A quaternion q is an extension of complex
numbers and has four components; one is a โ€œrealโ€ scalar number, and the other three mutually
orthogonal components i,j,k, i.e., q=a+bi+cj+dk, where the coefficients a,b,c, and d are real [6]-
[10],[53]. Currently, quaternions have an awe-inspiring amount of influence on various areas of
mathematics and physics, including group theory, topology, quantum mechanics, computer
graphic, etc [4],[5],[34],[35]. More recently, quaternions have been employed in bioinformatics,
navigation systems [5], and image and video processing [6]-[8],[53]. Quaternion algebra for color
image was first used by Pei and it led to the description of new tools, such as quaternion Fourier
transforms and correlation for image processing by represented the red, green, and blue values at
each pixel in the color image as a single pure quaternion valued pixel [6]. In recent years, there
have been a number of studies on quaternions in color image processing [12]-[13],[32]-[36],[53].
But all these color processing systems are using pure complex quaternions representation but not
the complete quaternions components. Therefore, it is natural to ask, how to use the complete
quaternions representation, or more precisely, how to use the โ€œrealโ€ scalar number information in
the color image processing applications, or what the advantage of the use of the complete
representation model over the pure complex quaternions model, particularly in the color image
processing applications.
In this paper, we provide a new view of expressing color images using quaternion-based
representation. We consider a full model for representation and processing color images in the
quaternion algebra. Color images are presented in the threefold complex plane where each color
component is described by a complex image. The key contributions of this work are a) an
extending model for representing and processing color images by describing each color
component as a complex image, b) the practice of the complete quaternions representation models
in color image processing application, c) the advantages of the presented approach by using a
color image enhancement procedure. The rest of this paper is organized as follows. Section II
introduces the background of quaternion algebra and color representation models. Section III
presents a new view of expressing color images using quaternion-based representation. Section
IV gives the experimental results for color image enhancement by using presented new view of
expressing color images using quaternion. Finally, it concludes in Section V that the proposed
new quaternion image model is a powerful tool in color image analysis and processing domain
which may have many other applications.
2. QUATERNION NUMBERS AND COLOR IMAGES
In recent years, the quaternion algebra has been applied more and more in color image
processing. In quaternions the imaginary part of the complex number is extended to three
dimensions, i.e., it has three imaginary parts. The imaginary dimensions are represented as , ,
and , which are orthogonal to each other and to real numbers. Any quaternion is represented in
a hyper-complex form as  =  + (
 +  +
)=  + 
 +  +
, where the coefficients
, 
, , and
are real numbers and , , and  are three imaginary units with the following
multiplication laws:
 = โˆ’ = ,  = โˆ’ = ,  = โˆ’ = โˆ’, 
= 
= 
=  = โˆ’1.
The number  is referred to as the โ€œrealโ€ part of q and (
 +  +
) is the โ€œimaginaryโ€ part of
. We also will use the following notation for the quaternion number:  =  +  +  + .
The quaternion conjugate and modulus of q equal =  โˆ’ (
 +  +
) and
|| = โˆš + 
 +  +
, respectively. The quaternion conjugate is 
 =  โˆ’  โˆ’  โˆ’ .
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
25
The quaternion can be represented in classic polar form as  = ||exp(), where  is a unit
pure quaternion  =  +  + , such that || = 1, and  is a real angle in the interval
[0, !]. The exponential number is defined as exp() = cos() +  sin(). When multiplying
quaternion numbers, it should be noted that commutate property does not hold in quaternion
algebra, i.e., ( โ‰  (. In matrix form, the product of these numbers is
*
+
+
,
(()
(()
(()
(()-
.
.
/
=
*
+
+
+
,
(() โˆ’ (() โˆ’ (() โˆ’ (()
(() + (() โˆ’ (() + (()
(() + (() + (() โˆ’ (()
(() โˆ’ (() + (() + (()-
.
.
.
/
*
+
+
,
()
()
()
()-
.
.
/
.
The quaternion number  =  +  +  +  is referred to as a vector  = (, , , ) in
the 4-D real space 01 with basic vectors 2 = (1,0,0,0), i= (0,1,0,0), j= (0,0,1,0), and k=
(0,0,0,1). The dot product of two quaternion numbers ( and  is defined as
( โˆ™  = |(4|| cos(5 = (()() + (()() + (()() + (()().
2.1. Color Image Models
In this section, we consider a few models of colors that are used in color imaging [44].
RGB Model: Three primary color components, R(ed), G(reen), and B(lue) of a pixel are
transferred to three imaginary parts of quaternion numbers with dimensions , , and ,
respectively. A discrete color image 6
7,8 can therefore be transformed into the imaginary part of
quaternion numbers, by considering the red, green, and blue components of the image as pure
quaternions (with zero real part):
6
7,8 = 0 + (97,8 + :7,8  + 
7,8 ).
Figure 1 shows the color map of the colors (9, :, 
) into the quaternion space (1, , , ).
Figure 1. RBG color cube in the quaternion subspace.
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
26
The colors in this model are calculated by color components as ; = 90 + : + 
=. Practically,
the color is expressed as the triplet (9, :, 
), each component of which can vary from zero to a
defined maximum value. For example, the triplet (9, :, 
) = (255,0,0) is expressed the red color
(1,0,0); the triplet (0,255,0) expresses the green color (0,1,0); the triplet (0,0,255) expresses the
blue color (0,0,1). If the triplet (9, :, 
) is (0,255,255) the result is expressed the magenta color
(@ = 0 + = = (1,0, 0) + (0,0,1) = (1,0,1), if all components are at zero, the result is black; if
all components are at maximum, the result is the brightest representable white. The red and green
lights together produce the yellow. Approximately 65% of all cones in the retina are sensitive to
the red light, 33% are sensitive to the green light and about 2% are sensitive to the blue light
(most sensitive). This RGB color model was described by Thomas Young and Herman Helmholtz
in their publication Theory of trichromatic color vision (first half of the 19th century) and by
James Maxwell's (color triangle). RGB is a convenient color model for computer graphics and it
is mostly used for recording colors in digital cameras/scanners, including still image and video
cameras. There are various types of models based on commonly used RGB color model, for
example, RGB ProPhoto RGB, scRGB, and CIE RGB and sRGB.
CMYK color model: The mixed colors in this model are the primary colors of pigment, which are
C(yan), M(agenta), and Y(ellow). This model of colors covers a large part of the human color
space. The primary colors from RGB color space are transferred to CMYK space by the
following simple operations:
; = 1 โˆ’ 0, @ = 1 โˆ’ , A = 1 โˆ’ =,
and the additional forth color, black, as B = min(;, @, A) with the following change of colors:
; = ; โˆ’ B, @ = @ โˆ’ B, and A = A โˆ’ B.
HSI color model: The Hue-Saturation-Intensity color model is a non-linear transformation of the
RGB color space. The transformation of colors R, G, and B into the corresponding H, S, and I
values in this model is calculated as follows:
D = E
, if = โ‰ค 
360 โˆ’ , if =  
K
L =
0 +  + =
3
M = 1 โˆ’
minN0, , =O
L
.
Here, the angle (in degrees) is calculated by
cos() =
1
2
20 โˆ’  โˆ’ =
P(0 โˆ’ ) + (0 โˆ’ =)( โˆ’ =)
.
In quaternion space, these three components of the HSI model are defined in the following way
[45]. The value (L) component is referred as the norm of the quaternion vector  on the gray axis
(axis of real part of ), which is ( โˆ™ ), where for instance  = (1 +  + )/โˆš3. The saturation
is referred to as the angle between the vectors corresponding to numbers  and . The hue is
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
27
defined by a reference vector R which is orthogonal to , for instance, a vector in red color
direction. These three values of the color model can be calculated as
D = atan U
| โˆ’ RR|
| โˆ’ RR|
V ,
W = ( โˆ’ )/2, M = | + |/2.
CIE XYZ color model: In the XYZ model, a mathematical formula is used to convert the RGB
data to a system of positive integers as values X, A, and Y, which are approximately correspond to
red, green, and blue values, respectively. To obtain the XAY tristimulus values from the primary
colors R, G, and B, the following formula is used:
Z
X
A
Y
[ =
1
0.17697
Z
0.49 0.31 0.2
0.17697 0.8124 0.01063
0 0.01 0.99
[Z
0

=
[.
The transformation of values X, A, and Y into the quaternion space is similar to the RGB color
model, i.e., (X, A, Y) โ†’ 0 + (X + A + Y).
Since the color information of the image is transformed in quaternions, the discrete color image in
the quaternion algebra is processed as a single matrix. In the traditional approach, the color image
is processed separately by each color component. In other words, the processing of the color
image is reduced to processing of three gray-scale images independently. It was shown in [36],
that the use of quaternions type representation is that a color image is treated as a vector field or
the hyper-complex Fourier transforms can handle color image pixels as vectors and thus offer
scope to process color images holistically; rather than as separated luminance and chrominance,
or separate color space components (example: red, green, blue). The use of the Fourier transform
in color imaging is a new and interesting topic in image processing [24]-[27]. As the
generalization of the traditional Fourier transform, the quaternion Fourier transform was first
defined to process quaternion signals [22]. Later, some practical works related to the quaternion
discrete Fourier transforms (QDFT) and their applications in color image processing were
presented in [23] and [28].
3. MODIFIED COLOR IMAGE REPRESENTATION AND THE 2-D QDFT
In this section, we consider new methods of representation of color image in the quaternion space
and their 2-D QDFTs. Different 2-D quaternion DFTs can be used in image processing, including
the right-side and left-side DQFTs [23],[24],[27]. These two transforms are described similarly.
Therefore, we consider the right-side 2-D DQFT.
The color image 67,8 is considered to be of size a ร— @. For the color image in the RGB color
space 6
7,8 = (97,8, :7,8, 
7,8) represented in the quaternion algebra as
67,8 = c97,85 + c:7,85 + c
7,85, (1)
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
28
the right-side 2-D QDFTs are defined as
de,f = g h g 6
7,8ij;l
8f
lm(
8no
p i
j;q
7e
, r = 0: (a โˆ’ 1), t = 0: (@ โˆ’ 1),
qm(
7no
(2)
where  is an unit pure quaternion  = u(  + u + uv, 
= โˆ’1. The kernel of the
transform is defined by the periodic exponential functions
ij;q
w
= exp xโˆ’
2!y
a
z = cosx
2!y
a
z โˆ’  sin x
2!y
a
z , y = 0: (a โˆ’ 1),
and ij;l
w
defined similarly. The inverse 2-D QDFT is calculated by
6
7,8 =
1
a@
g {g de,fi
j;q
m7e
qm(
eno
| ij;l
m8f
, } = 0: (a โˆ’ 1), u = 0: (@ โˆ’ 1).
lm(
fno
(3)
As an example, the color โ€œLenaโ€ image of size 256 ร— 256 is shown in Figure 2 in part a.
Figure 2. (a) Color image and (b) 2-D QDFT of the quaternion the image.
The 2-D QDFT of the quaternion image 67,8 in absolute scale and shifted to the center in part b.
3.1. Model with Gray-Scale Average Image
In this section, we consider a few models which are used in our study for color image
enhancement. A quaternion number has four components, and when transforming the color image
67,8 from the RGB color space into the quaternion algebra, the color image is presented as
67,8 = (97,8 + :7,8 + 
7,8), i.e., with the real part equal zero. Color imaged can be
represented in different color model for different applications. A color model is an abstract
mathematical model describing a way the colors can be represented as }-tuple (ordered list of
elements) of numbers (e.g. (red, green, blue) in the RGB color model and (hue, saturation,
intensity) in HSI model, or four in CMYK (cyan, magenta, yellow and black). Another question
arises here how to handle the 4-tuple (CMYK) cases, and what is a best way to plug the primary
colors into the quaternion representation. Since the 2-D QDFT is defined not only to process
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
29
color images in the frequency domain, and quaternion images with non zero real parts, we suggest
to fill the real part of the quaternion image by a gray-scale image and use the complete 2-D
QDFT. Figure 3 shows the threefold complex plane ;~
or three complex planes intersected
between themselves along one real line 0( in part a. This is a space for all quaternion numbers.
These three complex planes ;
of the threefold complex space are colored in the primary colors,
red, green, and blue, since we want to use these planes for the RGB color model. The traditional
representation of color images from the RGB color space into the quaternion subspace of
numbers with zero real parts is shown in part b. In part c, the mapping of quaternions into a subset
of numbers with non zero real parts is given.
Figure 3. Transformations from the 6-D complex space: (a) The threefold complex plane ((;
)v
or ;~
) of
quaternions, (b) the subset (0v
) of quaternions for color images in RGB model, and (c) a new subset (01
) of
quaternions for the model of color images with nonzero gray images.
For model shown in c, the image 7,8 = (97,8 + :7,8 + 
7,8)/3 can be considered as such
gray-scale image. Our preliminary results in image enhancement by the quaternion discrete
Fourier transform show, that this real gray-scale component of the quaternion image can be
enhanced together with the color image [28]. This enhancement differs from the gray-scale image
calculated as the average of processed three color components. Therefore, we define the
quaternion-color image by
7,8 = 7,8 + 67,8 =
97,8 + :7,8 + 
7,8
3
+ c97,8 + :7,8 + 
7,85. (4)
This quaternion image can be written as a sum of three complex images
7,8 = โ‚ฌ
97,8
3
+ 97,8ย + โ‚ฌ
:7,8
3
+ :7,8ย + x

7,8
3
+ 
7,8z (5)
new proposed
traditional
Projections to color space
(a)
(b)
(c)
green
blue
red
k
j
i
0
0(
0(
0(
0(
;
;
;
k i
j
0(
0(
0(
0(
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
30
and
7,8 = x
1
3
+ z 97,8 + x
1
3
+ z :7,8 + x
1
3
+ z 
7,8 . (6)
The right-side 2-D QDFT over the quaternion image 7,8 is defined as
โ€še,f = g h g 7,8ij;l
8f
lm(
8no
pi
j;q
7e
, r = 0: (a โˆ’ 1), t = 0: (@ โˆ’ 1).
qm(
7no
(7)
This also can be written as the modified QDFT (mQDFT)
โ€še,f = g h g 7,8ij;l
8f
lm(
8no
p i
j;q
7e
+ de,f .
qm(
7no
(8)
As an example, Figure 4 shows the gray and color tree images in part a and b, respectively.
Fig. 4. (a) The gray-scale tree image, (b) color three image, (c) 2-D QDFT of the quaternion tree image, and
(d) the difference of 2-D QDFTs of the quaternion and color tree images (in absolute scale).
In this case, the real part 7,8 of the quaternion image is the image in a and the imaginary part is
the color image 6
7,8 in b. The 2-D QDFT of the quaternion tree image :7,8 in absolute scale and
shifted to the center is shown in part c, and the difference of 2-D QDFTs of the quaternion and
color tree images in d. The processing of the quaternion image will result in not only a new color
image and a new gray-scale image as well. (An example of processing different gray-scale and
color images in one quaternion image is given in Section IV.)
The number of operations for calculating this 2-D QDFT will increase on the amount required for
calculating a complex @-point 1-D QDFTs instead of real @-point 1-D QDFTs. Here, we
remind that the complex @-point 1-D QDFT can be accomplished by two complex @-point
DFTs, and the real @-point 1-D QDFT can be accomplished by one complex and one real @-
point DFTs, for which fast algorithms can be used [13]-[21].The time difference for calculating
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
31
the 2-D QDFTs โ€še,f and de,f is therefore small, as shown in Table 1 for a few cases when @ = a
and a is a power of two. The transforms were calculated in MATLAB on a personal computer
with Intel(R) Core(TM) i3 CPU Processor at 3.20GHz speed.
Table 1: Time data for calculating the a ร— a-point real and complex 2-D QDFTs.
3.2. Model with Gray-Scale Image
Other models of complete quaternion images composed from the color image can also be
considered for the 2-D QDFT. For example, the following quaternion image being a sum of three
complex images can be taken:
7,8 = x
1
3
+ 
2
3
z 97,8 + x
1
3
+ 
2
3
z :7,8 + x
1
3
+ 
2
3
z 
7,8. (9)
In this model, all three color components of the image are distributed between the real and
imaginary parts in the same way. The color image can be calculated from this quaternion image
as
67,8 =
3
2
ฦ’7,8 โˆ’ Real(7,8) โ€  =
3
2
โ€ก7,8 โˆ’
97,8 + :7,8 + 
7,8
3
ห†. (10)
If we denote three imaginary components of the quaternion image 7,8 by (7,8), (7,8), and
(7,8), the color image can be defined as
97,8 =
3
2
(7,8), 
7,8 =
3
2
(7,8), 
7,8 =
3
2
(7,8).
We now consider a general model of the color image in the quaternion space. Let (, , v, and
โ€ฐ(, โ€ฐ, and โ€ฐv be some numbers from the interval (0,1). The color image 6
7,8 can be represented
as the following quaternion image:
7,8 = (( + โ€ฐ()97,8 + ( + โ€ฐ):7,8 + (v + โ€ฐv)
7,8 (11)
or
7,8 = c(97,8 + :7,8 + v
7,85 + โ€ฐ(97,8 + โ€ฐ:7,8 + โ€ฐv
7,8.
To reconstruct the color image, the following calculations can be used when โ€ฐ7 โ‰  0, } = 1,2,3:
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
32
97,8 =
1
โ€ฐ(
(7,8), :7,8 =
1
โ€ฐ
(7,8), 
7,8 =
1
โ€ฐv
(7,8),
where } = 0: (a โˆ’ 1) and u = 0: (@ โˆ’ 1). Thus, we have a parameterized representation of the
color image in the quaternion space, or threefold complex space ;~
. For instance, the coefficients
(, , v, and โ€ฐ(, โ€ฐ, and โ€ฐv can be chosen in such a way that 7 + โ€ฐ7 = 1 for } = 1,2,3. When
the coefficients ( = v = v = 0, the quaternion image 7,8 is referred to as the tradition
representation of the color image. The ( = v = v = 1 case corresponds to the gray-scale
image 7,8 = (97,8 + :7,8 + 
7,8)/3.
It should be mentioned, that in the quaternion space, we can consider and process simultaneously
two different images, gray-scale R7,8 and color 6
7,8 images, by combining them into a
quaternion image, for instance, as follows:
7,8 = (R7,8, 67,8) = R7,8 + (97,8 + :7,8 + 
7,8). (12)
Then, after processing this image 7,8 โ†’ 
ล 7,8 = (R
ล 7,8, 6
โ€น
7,8) the output gray-scale and color
images are considered to be
R
ล 7,8 = Realc
ล 7,85, c9ฬ‚7,8 + :
ล 7,8 + 

ย7,85 = Imagc
ล 7,85,
and color components of the new color image 6
โ€น
7,8 are calculated as
9ฬ‚7,8 = (
ล 7,8), :
ล 7,8 = (
ล 7,8), 

ย7,8 = (
ล 7,8) .
As an example, Figure 5 shows the gray-scale โ€œLenaโ€ image in part a and color tree image in b.
These two images compose one quaternion image with four components. In parts c and d, the
results of enhancement of the quaternion image are shown. The real component of 7,8 is shown
in c and the image composed by three color components of the imaginary part in d. โ€œLenaโ€ image
and color tree image were enhanced by a single operator in the quaternion space.
Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014
33
Figure 5. (a) The gray-scale image and (b) color image before and (c) gray-scale image and (d) color image
after processing together in the quaternion space.
4. 2-D MQDFT IN IMAGE ENHANCEMENT
In this section, we consider application of the proposed models of color images in the quaternion
space for image enhancement in the frequency domain. The enhancement by the 2-D mQDFT can
be described as shown in Figure 6. The 2-D discrete QDFT of the color image is calculated and
its amplitude only changes by using an operator @, and then, the inverse 2-D QDFT is calculated,
67,8 โ†’ ยd
e,f = (|d
e,f|, e,f)โ€˜ โ†’ ยd
ยe,f = (@[|de,f|], e,f)โ€˜ โ†’ ย6
โ€น
7,8โ€˜ (13)
Here, e,f is the phase and (|d
e,f|, e,f) is a polar representation of de,f .
Figure 6. Block-diagram of the image enhancement.
We consider the well-known method of โ€™-rooting for enhancement of images [20],[29]-[31], [39],
when the magnitude of the quaternion Fourier transform of the image is transformed as
de,f โ†’ @[|de,f|] = |de,f|โ€œ

More Related Content

PDF
RETOOLING OF COLOR IMAGING IN THE QUATERNION ALGEBRA
PPT
Chapter 6 - Matrix Algebra
PDF
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...
ย 
PDF
A LEAST ABSOLUTE APPROACH TO MULTIPLE FUZZY REGRESSION USING Tw- NORM BASED O...
ย 
PDF
Introduction to Szemerรฉdi regularity lemma
PDF
Graphs-LeX12016
PDF
PPTX
Application of graph theory in drug design
RETOOLING OF COLOR IMAGING IN THE QUATERNION ALGEBRA
Chapter 6 - Matrix Algebra
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...
ย 
A LEAST ABSOLUTE APPROACH TO MULTIPLE FUZZY REGRESSION USING Tw- NORM BASED O...
ย 
Introduction to Szemerรฉdi regularity lemma
Graphs-LeX12016
Application of graph theory in drug design

What's hot (15)

DOC
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
PPT
Introductory maths analysis chapter 15 official
PDF
Intro. to computational Physics ch2.pdf
PPT
Introductory maths analysis chapter 03 official
DOCX
Permutation & Combination (t) Part 1
PPTX
Graph theory and life
PPT
Introductory maths analysis chapter 06 official
PPT
Introductory maths analysis chapter 09 official
PDF
Solving Fuzzy Maximal Flow Problem Using Octagonal Fuzzy Number
PPT
Introductory maths analysis chapter 04 official
PDF
Ev4301897903
PDF
A Method for Solving Balanced Intuitionistic Fuzzy Assignment Problem
PPT
Introductory maths analysis chapter 07 official
PDF
A method for solving unbalanced intuitionistic fuzzy transportation problems
PPT
Introductory maths analysis chapter 12 official
NUMERICAL METHODS MULTIPLE CHOICE QUESTIONS
Introductory maths analysis chapter 15 official
Intro. to computational Physics ch2.pdf
Introductory maths analysis chapter 03 official
Permutation & Combination (t) Part 1
Graph theory and life
Introductory maths analysis chapter 06 official
Introductory maths analysis chapter 09 official
Solving Fuzzy Maximal Flow Problem Using Octagonal Fuzzy Number
Introductory maths analysis chapter 04 official
Ev4301897903
A Method for Solving Balanced Intuitionistic Fuzzy Assignment Problem
Introductory maths analysis chapter 07 official
A method for solving unbalanced intuitionistic fuzzy transportation problems
Introductory maths analysis chapter 12 official
Ad

Similar to RETOOLING OF COLOR IMAGING IN THE QUATERNION ALGEBRA (20)

PDF
RETOOLING OF COLOR IMAGING IN THE QUATERNION ALGEBRA
PDF
RETOOLING OF COLOR IMAGING IN THE QUATERNION ALGEBRA
PDF
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
PDF
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
PDF
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
PDF
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
PDF
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
PDF
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
PDF
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
PDF
Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...
PDF
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
PDF
Colour-Texture Image Segmentation using Hypercomplex Gabor Analysis
ย 
PDF
An analysis between different algorithms for the graph vertex coloring problem
PDF
A Simple Method to Build a Paper-Based Color Check Print of Colored Fabrics b...
PPTX
Color Image Processing.pptx
DOCX
Vector sparse representation of color image using quaternion matrix analysis
PDF
Information Hiding for โ€œColor to Gray and backโ€ with Hartley, Slant and Kekre...
PDF
Color to Gray and backโ€™ using normalization of color components with Cosine, ...
PDF
Lecture50
PDF
MATLAB
RETOOLING OF COLOR IMAGING IN THE QUATERNION ALGEBRA
RETOOLING OF COLOR IMAGING IN THE QUATERNION ALGEBRA
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...
MODIFIED ALPHA-ROOTING COLOR IMAGE ENHANCEMENT METHOD ON THE TWO-SIDE 2-DQUAT...
Colour-Texture Image Segmentation using Hypercomplex Gabor Analysis
ย 
An analysis between different algorithms for the graph vertex coloring problem
A Simple Method to Build a Paper-Based Color Check Print of Colored Fabrics b...
Color Image Processing.pptx
Vector sparse representation of color image using quaternion matrix analysis
Information Hiding for โ€œColor to Gray and backโ€ with Hartley, Slant and Kekre...
Color to Gray and backโ€™ using normalization of color components with Cosine, ...
Lecture50
MATLAB
Ad

More from mathsjournal (20)

PDF
DID FISHING NETS WITH CALCULATED SHELL WEIGHTS PRECEDE THE BOW AND ARROW? DIG...
PDF
MULTIPOINT MOVING NODES FOR P ARABOLIC EQUATIONS
PDF
THE VORTEX IMPULSE THEORY FOR FINITE WINGS
PDF
On Ideals via Generalized Reverse Derivation On Factor Rings
PDF
A PROBABILISTIC ALGORITHM FOR COMPUTATION OF POLYNOMIAL GREATEST COMMON WITH ...
PDF
DID FISHING NETS WITH CALCULATED SHELL WEIGHTS PRECEDE THE BOW AND ARROW? DIG...
PDF
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
PDF
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
PDF
On Nano Semi Generalized B - Neighbourhood in Nano Topological Spaces
PDF
A Mathematical Model in Public Health Epidemiology: Covid-19 Case Resolution ...
PDF
On a Diophantine Proofs of FLT: The First Case and the Secund Case zโ‰ก0 (mod p...
PDF
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
PDF
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
PDF
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
PDF
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...
PDF
A NEW STUDY OF TRAPEZOIDAL, SIMPSONโ€™S1/3 AND SIMPSONโ€™S 3/8 RULES OF NUMERICAL...
PDF
Fractional pseudo-Newton method and its use in the solution of a nonlinear sy...
PDF
LASSO MODELING AS AN ALTERNATIVE TO PCA BASED MULTIVARIATE MODELS TO SYSTEM W...
PDF
SENTIMENT ANALYSIS OF COMPUTER SCIENCE STUDENTSโ€™ ATTITUDES TOWARD PROGRAMMING...
PDF
SENTIMENT ANALYSIS OF COMPUTER SCIENCE STUDENTSโ€™ ATTITUDES TOWARD PROGRAMMING...
DID FISHING NETS WITH CALCULATED SHELL WEIGHTS PRECEDE THE BOW AND ARROW? DIG...
MULTIPOINT MOVING NODES FOR P ARABOLIC EQUATIONS
THE VORTEX IMPULSE THEORY FOR FINITE WINGS
On Ideals via Generalized Reverse Derivation On Factor Rings
A PROBABILISTIC ALGORITHM FOR COMPUTATION OF POLYNOMIAL GREATEST COMMON WITH ...
DID FISHING NETS WITH CALCULATED SHELL WEIGHTS PRECEDE THE BOW AND ARROW? DIG...
COMMON FIXED POINT THEOREMS IN COMPATIBLE MAPPINGS OF TYPE (P*) OF GENERALIZE...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
On Nano Semi Generalized B - Neighbourhood in Nano Topological Spaces
A Mathematical Model in Public Health Epidemiology: Covid-19 Case Resolution ...
On a Diophantine Proofs of FLT: The First Case and the Secund Case zโ‰ก0 (mod p...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
Numerical solution of fuzzy differential equations by Milneโ€™s predictor-corre...
A NEW STUDY TO FIND OUT THE BEST COMPUTATIONAL METHOD FOR SOLVING THE NONLINE...
A NEW STUDY OF TRAPEZOIDAL, SIMPSONโ€™S1/3 AND SIMPSONโ€™S 3/8 RULES OF NUMERICAL...
Fractional pseudo-Newton method and its use in the solution of a nonlinear sy...
LASSO MODELING AS AN ALTERNATIVE TO PCA BASED MULTIVARIATE MODELS TO SYSTEM W...
SENTIMENT ANALYSIS OF COMPUTER SCIENCE STUDENTSโ€™ ATTITUDES TOWARD PROGRAMMING...
SENTIMENT ANALYSIS OF COMPUTER SCIENCE STUDENTSโ€™ ATTITUDES TOWARD PROGRAMMING...

Recently uploaded (20)

PDF
advance database management system book.pdf
PDF
HVAC Specification 2024 according to central public works department
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
International_Financial_Reporting_Standa.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PDF
Hazard Identification & Risk Assessment .pdf
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
My India Quiz Book_20210205121199924.pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
ย 
PDF
What if we spent less time fighting change, and more time building whatโ€™s rig...
PPTX
Computer Architecture Input Output Memory.pptx
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PPTX
History, Philosophy and sociology of education (1).pptx
ย 
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PPTX
20th Century Theater, Methods, History.pptx
advance database management system book.pdf
HVAC Specification 2024 according to central public works department
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
International_Financial_Reporting_Standa.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Hazard Identification & Risk Assessment .pdf
Uderstanding digital marketing and marketing stratergie for engaging the digi...
My India Quiz Book_20210205121199924.pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
ย 
What if we spent less time fighting change, and more time building whatโ€™s rig...
Computer Architecture Input Output Memory.pptx
Cambridge-Practice-Tests-for-IELTS-12.docx
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Introduction to pro and eukaryotes and differences.pptx
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
History, Philosophy and sociology of education (1).pptx
ย 
Environmental Education MCQ BD2EE - Share Source.pdf
20th Century Theater, Methods, History.pptx

RETOOLING OF COLOR IMAGING IN THE QUATERNION ALGEBRA

  • 1. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 23 RETOOLING OF COLOR IMAGING IN THE QUATERNION ALGEBRA Artyom M. Grigoryan and Sos S. Agaian Department of Electrical and Computer Engineering, University of Texas at San Antonio, USA ABSTRACT A novel quaternion color representation tool is proposed to the images and videos efficiently. In this work, we consider a full model for representation and processing color images in the quaternion algebra. Color images are presented in the threefold complex plane where each color component is described by a complex image. Our preliminary experimental results show significant performance improvements of the proposed approach over other well-known color image processing techniques. Moreover, we have shown how a particular image enhancement of the framework leads to excellent color enhancement (better than other algorithms tested). In the framework of the proposed model, many other color processing algorithms, including filtration and restoration, can be expressed. KEYWORDS Image Color Analysis, Discrete Fourier Transform, Quaternion Fourier Transformation 1. INTRODUCTION Color image processing has attracted much interest in the recent years [1],[2] ,[43],[52]. The reason of these are: a) color features are robust to several image processing procedures (for example translation and rotation of the regions of interest) b) color features are efficiently used in many vision tasks, including object recognition, tracking, image segmentation and retrieval, image registration etc.; c) color is of vital importance in many real life applications such as visual communications, multimedia systems, fashion and food industries, computer vision, entertainment, consumer electronics, production printing and proofing, book publishing, digital photography, digital artwork reproduction, industrial inspection, and biomedical applications [1],[2],[5],[43],[44]. Over the years, several important contributions were made in the color image processing systems [2],[52]. Additionally, the traditional color image processing approaches are based on dealing out each color-channel (red, green, and blue) separately [1],[2],[44]. However, this methodology fails to capture the inherent correlation between the components and results in color artefacts [6],[28],[43],[44]. It is natural to ask, how to couple the information contained in the given color- channels, how to process the three color components as a whole unit without loss of the spectral relation that is present in them, or how to develop a mathematical color model that may help to process the color components simultaneously. Recently, the theory of the quaternion algebra has been used in the application of color science and color systems which process the three color channels simultaneously [6]-[10]. Quaternions
  • 2. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 24 were first discovered by Hamilton in 1843โ€ [3]. A quaternion q is an extension of complex numbers and has four components; one is a โ€œrealโ€ scalar number, and the other three mutually orthogonal components i,j,k, i.e., q=a+bi+cj+dk, where the coefficients a,b,c, and d are real [6]- [10],[53]. Currently, quaternions have an awe-inspiring amount of influence on various areas of mathematics and physics, including group theory, topology, quantum mechanics, computer graphic, etc [4],[5],[34],[35]. More recently, quaternions have been employed in bioinformatics, navigation systems [5], and image and video processing [6]-[8],[53]. Quaternion algebra for color image was first used by Pei and it led to the description of new tools, such as quaternion Fourier transforms and correlation for image processing by represented the red, green, and blue values at each pixel in the color image as a single pure quaternion valued pixel [6]. In recent years, there have been a number of studies on quaternions in color image processing [12]-[13],[32]-[36],[53]. But all these color processing systems are using pure complex quaternions representation but not the complete quaternions components. Therefore, it is natural to ask, how to use the complete quaternions representation, or more precisely, how to use the โ€œrealโ€ scalar number information in the color image processing applications, or what the advantage of the use of the complete representation model over the pure complex quaternions model, particularly in the color image processing applications. In this paper, we provide a new view of expressing color images using quaternion-based representation. We consider a full model for representation and processing color images in the quaternion algebra. Color images are presented in the threefold complex plane where each color component is described by a complex image. The key contributions of this work are a) an extending model for representing and processing color images by describing each color component as a complex image, b) the practice of the complete quaternions representation models in color image processing application, c) the advantages of the presented approach by using a color image enhancement procedure. The rest of this paper is organized as follows. Section II introduces the background of quaternion algebra and color representation models. Section III presents a new view of expressing color images using quaternion-based representation. Section IV gives the experimental results for color image enhancement by using presented new view of expressing color images using quaternion. Finally, it concludes in Section V that the proposed new quaternion image model is a powerful tool in color image analysis and processing domain which may have many other applications. 2. QUATERNION NUMBERS AND COLOR IMAGES In recent years, the quaternion algebra has been applied more and more in color image processing. In quaternions the imaginary part of the complex number is extended to three dimensions, i.e., it has three imaginary parts. The imaginary dimensions are represented as , , and , which are orthogonal to each other and to real numbers. Any quaternion is represented in a hyper-complex form as = + ( + +
  • 3. )= + + +
  • 4. , where the coefficients , , , and
  • 5. are real numbers and , , and are three imaginary units with the following multiplication laws: = โˆ’ = , = โˆ’ = , = โˆ’ = โˆ’, = = = = โˆ’1. The number is referred to as the โ€œrealโ€ part of q and ( + +
  • 6. ) is the โ€œimaginaryโ€ part of . We also will use the following notation for the quaternion number: = + + + . The quaternion conjugate and modulus of q equal = โˆ’ ( + +
  • 7. ) and || = โˆš + + +
  • 8. , respectively. The quaternion conjugate is = โˆ’ โˆ’ โˆ’ .
  • 9. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 25 The quaternion can be represented in classic polar form as = ||exp(), where is a unit pure quaternion = + + , such that || = 1, and is a real angle in the interval [0, !]. The exponential number is defined as exp() = cos() + sin(). When multiplying quaternion numbers, it should be noted that commutate property does not hold in quaternion algebra, i.e., ( โ‰  (. In matrix form, the product of these numbers is * + + , (() (() (() (()- . . / = * + + + , (() โˆ’ (() โˆ’ (() โˆ’ (() (() + (() โˆ’ (() + (() (() + (() + (() โˆ’ (() (() โˆ’ (() + (() + (()- . . . / * + + , () () () ()- . . / . The quaternion number = + + + is referred to as a vector = (, , , ) in the 4-D real space 01 with basic vectors 2 = (1,0,0,0), i= (0,1,0,0), j= (0,0,1,0), and k= (0,0,0,1). The dot product of two quaternion numbers ( and is defined as ( โˆ™ = |(4|| cos(5 = (()() + (()() + (()() + (()(). 2.1. Color Image Models In this section, we consider a few models of colors that are used in color imaging [44]. RGB Model: Three primary color components, R(ed), G(reen), and B(lue) of a pixel are transferred to three imaginary parts of quaternion numbers with dimensions , , and , respectively. A discrete color image 6 7,8 can therefore be transformed into the imaginary part of quaternion numbers, by considering the red, green, and blue components of the image as pure quaternions (with zero real part): 6 7,8 = 0 + (97,8 + :7,8 + 7,8 ). Figure 1 shows the color map of the colors (9, :, ) into the quaternion space (1, , , ). Figure 1. RBG color cube in the quaternion subspace.
  • 10. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 26 The colors in this model are calculated by color components as ; = 90 + : + =. Practically, the color is expressed as the triplet (9, :, ), each component of which can vary from zero to a defined maximum value. For example, the triplet (9, :, ) = (255,0,0) is expressed the red color (1,0,0); the triplet (0,255,0) expresses the green color (0,1,0); the triplet (0,0,255) expresses the blue color (0,0,1). If the triplet (9, :, ) is (0,255,255) the result is expressed the magenta color (@ = 0 + = = (1,0, 0) + (0,0,1) = (1,0,1), if all components are at zero, the result is black; if all components are at maximum, the result is the brightest representable white. The red and green lights together produce the yellow. Approximately 65% of all cones in the retina are sensitive to the red light, 33% are sensitive to the green light and about 2% are sensitive to the blue light (most sensitive). This RGB color model was described by Thomas Young and Herman Helmholtz in their publication Theory of trichromatic color vision (first half of the 19th century) and by James Maxwell's (color triangle). RGB is a convenient color model for computer graphics and it is mostly used for recording colors in digital cameras/scanners, including still image and video cameras. There are various types of models based on commonly used RGB color model, for example, RGB ProPhoto RGB, scRGB, and CIE RGB and sRGB. CMYK color model: The mixed colors in this model are the primary colors of pigment, which are C(yan), M(agenta), and Y(ellow). This model of colors covers a large part of the human color space. The primary colors from RGB color space are transferred to CMYK space by the following simple operations: ; = 1 โˆ’ 0, @ = 1 โˆ’ , A = 1 โˆ’ =, and the additional forth color, black, as B = min(;, @, A) with the following change of colors: ; = ; โˆ’ B, @ = @ โˆ’ B, and A = A โˆ’ B. HSI color model: The Hue-Saturation-Intensity color model is a non-linear transformation of the RGB color space. The transformation of colors R, G, and B into the corresponding H, S, and I values in this model is calculated as follows: D = E , if = โ‰ค 360 โˆ’ , if = K L = 0 + + = 3 M = 1 โˆ’ minN0, , =O L . Here, the angle (in degrees) is calculated by cos() = 1 2 20 โˆ’ โˆ’ = P(0 โˆ’ ) + (0 โˆ’ =)( โˆ’ =) . In quaternion space, these three components of the HSI model are defined in the following way [45]. The value (L) component is referred as the norm of the quaternion vector on the gray axis (axis of real part of ), which is ( โˆ™ ), where for instance = (1 + + )/โˆš3. The saturation is referred to as the angle between the vectors corresponding to numbers and . The hue is
  • 11. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 27 defined by a reference vector R which is orthogonal to , for instance, a vector in red color direction. These three values of the color model can be calculated as D = atan U | โˆ’ RR| | โˆ’ RR| V , W = ( โˆ’ )/2, M = | + |/2. CIE XYZ color model: In the XYZ model, a mathematical formula is used to convert the RGB data to a system of positive integers as values X, A, and Y, which are approximately correspond to red, green, and blue values, respectively. To obtain the XAY tristimulus values from the primary colors R, G, and B, the following formula is used: Z X A Y [ = 1 0.17697 Z 0.49 0.31 0.2 0.17697 0.8124 0.01063 0 0.01 0.99 [Z 0 = [. The transformation of values X, A, and Y into the quaternion space is similar to the RGB color model, i.e., (X, A, Y) โ†’ 0 + (X + A + Y). Since the color information of the image is transformed in quaternions, the discrete color image in the quaternion algebra is processed as a single matrix. In the traditional approach, the color image is processed separately by each color component. In other words, the processing of the color image is reduced to processing of three gray-scale images independently. It was shown in [36], that the use of quaternions type representation is that a color image is treated as a vector field or the hyper-complex Fourier transforms can handle color image pixels as vectors and thus offer scope to process color images holistically; rather than as separated luminance and chrominance, or separate color space components (example: red, green, blue). The use of the Fourier transform in color imaging is a new and interesting topic in image processing [24]-[27]. As the generalization of the traditional Fourier transform, the quaternion Fourier transform was first defined to process quaternion signals [22]. Later, some practical works related to the quaternion discrete Fourier transforms (QDFT) and their applications in color image processing were presented in [23] and [28]. 3. MODIFIED COLOR IMAGE REPRESENTATION AND THE 2-D QDFT In this section, we consider new methods of representation of color image in the quaternion space and their 2-D QDFTs. Different 2-D quaternion DFTs can be used in image processing, including the right-side and left-side DQFTs [23],[24],[27]. These two transforms are described similarly. Therefore, we consider the right-side 2-D DQFT. The color image 67,8 is considered to be of size a ร— @. For the color image in the RGB color space 6 7,8 = (97,8, :7,8, 7,8) represented in the quaternion algebra as 67,8 = c97,85 + c:7,85 + c 7,85, (1)
  • 12. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 28 the right-side 2-D QDFTs are defined as de,f = g h g 6 7,8ij;l 8f lm( 8no p i j;q 7e , r = 0: (a โˆ’ 1), t = 0: (@ โˆ’ 1), qm( 7no (2) where is an unit pure quaternion = u( + u + uv, = โˆ’1. The kernel of the transform is defined by the periodic exponential functions ij;q w = exp xโˆ’ 2!y a z = cosx 2!y a z โˆ’ sin x 2!y a z , y = 0: (a โˆ’ 1), and ij;l w defined similarly. The inverse 2-D QDFT is calculated by 6 7,8 = 1 a@ g {g de,fi j;q m7e qm( eno | ij;l m8f , } = 0: (a โˆ’ 1), u = 0: (@ โˆ’ 1). lm( fno (3) As an example, the color โ€œLenaโ€ image of size 256 ร— 256 is shown in Figure 2 in part a. Figure 2. (a) Color image and (b) 2-D QDFT of the quaternion the image. The 2-D QDFT of the quaternion image 67,8 in absolute scale and shifted to the center in part b. 3.1. Model with Gray-Scale Average Image In this section, we consider a few models which are used in our study for color image enhancement. A quaternion number has four components, and when transforming the color image 67,8 from the RGB color space into the quaternion algebra, the color image is presented as 67,8 = (97,8 + :7,8 + 7,8), i.e., with the real part equal zero. Color imaged can be represented in different color model for different applications. A color model is an abstract mathematical model describing a way the colors can be represented as }-tuple (ordered list of elements) of numbers (e.g. (red, green, blue) in the RGB color model and (hue, saturation, intensity) in HSI model, or four in CMYK (cyan, magenta, yellow and black). Another question arises here how to handle the 4-tuple (CMYK) cases, and what is a best way to plug the primary colors into the quaternion representation. Since the 2-D QDFT is defined not only to process
  • 13. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 29 color images in the frequency domain, and quaternion images with non zero real parts, we suggest to fill the real part of the quaternion image by a gray-scale image and use the complete 2-D QDFT. Figure 3 shows the threefold complex plane ;~ or three complex planes intersected between themselves along one real line 0( in part a. This is a space for all quaternion numbers. These three complex planes ; of the threefold complex space are colored in the primary colors, red, green, and blue, since we want to use these planes for the RGB color model. The traditional representation of color images from the RGB color space into the quaternion subspace of numbers with zero real parts is shown in part b. In part c, the mapping of quaternions into a subset of numbers with non zero real parts is given. Figure 3. Transformations from the 6-D complex space: (a) The threefold complex plane ((; )v or ;~ ) of quaternions, (b) the subset (0v ) of quaternions for color images in RGB model, and (c) a new subset (01 ) of quaternions for the model of color images with nonzero gray images. For model shown in c, the image 7,8 = (97,8 + :7,8 + 7,8)/3 can be considered as such gray-scale image. Our preliminary results in image enhancement by the quaternion discrete Fourier transform show, that this real gray-scale component of the quaternion image can be enhanced together with the color image [28]. This enhancement differs from the gray-scale image calculated as the average of processed three color components. Therefore, we define the quaternion-color image by 7,8 = 7,8 + 67,8 = 97,8 + :7,8 + 7,8 3 + c97,8 + :7,8 + 7,85. (4) This quaternion image can be written as a sum of three complex images 7,8 = โ‚ฌ 97,8 3 + 97,8ย + โ‚ฌ :7,8 3 + :7,8ย + x 7,8 3 + 7,8z (5) new proposed traditional Projections to color space (a) (b) (c) green blue red k j i 0 0( 0( 0( 0( ; ; ; k i j 0( 0( 0( 0(
  • 14. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 30 and 7,8 = x 1 3 + z 97,8 + x 1 3 + z :7,8 + x 1 3 + z 7,8 . (6) The right-side 2-D QDFT over the quaternion image 7,8 is defined as โ€še,f = g h g 7,8ij;l 8f lm( 8no pi j;q 7e , r = 0: (a โˆ’ 1), t = 0: (@ โˆ’ 1). qm( 7no (7) This also can be written as the modified QDFT (mQDFT) โ€še,f = g h g 7,8ij;l 8f lm( 8no p i j;q 7e + de,f . qm( 7no (8) As an example, Figure 4 shows the gray and color tree images in part a and b, respectively. Fig. 4. (a) The gray-scale tree image, (b) color three image, (c) 2-D QDFT of the quaternion tree image, and (d) the difference of 2-D QDFTs of the quaternion and color tree images (in absolute scale). In this case, the real part 7,8 of the quaternion image is the image in a and the imaginary part is the color image 6 7,8 in b. The 2-D QDFT of the quaternion tree image :7,8 in absolute scale and shifted to the center is shown in part c, and the difference of 2-D QDFTs of the quaternion and color tree images in d. The processing of the quaternion image will result in not only a new color image and a new gray-scale image as well. (An example of processing different gray-scale and color images in one quaternion image is given in Section IV.) The number of operations for calculating this 2-D QDFT will increase on the amount required for calculating a complex @-point 1-D QDFTs instead of real @-point 1-D QDFTs. Here, we remind that the complex @-point 1-D QDFT can be accomplished by two complex @-point DFTs, and the real @-point 1-D QDFT can be accomplished by one complex and one real @- point DFTs, for which fast algorithms can be used [13]-[21].The time difference for calculating
  • 15. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 31 the 2-D QDFTs โ€še,f and de,f is therefore small, as shown in Table 1 for a few cases when @ = a and a is a power of two. The transforms were calculated in MATLAB on a personal computer with Intel(R) Core(TM) i3 CPU Processor at 3.20GHz speed. Table 1: Time data for calculating the a ร— a-point real and complex 2-D QDFTs. 3.2. Model with Gray-Scale Image Other models of complete quaternion images composed from the color image can also be considered for the 2-D QDFT. For example, the following quaternion image being a sum of three complex images can be taken: 7,8 = x 1 3 + 2 3 z 97,8 + x 1 3 + 2 3 z :7,8 + x 1 3 + 2 3 z 7,8. (9) In this model, all three color components of the image are distributed between the real and imaginary parts in the same way. The color image can be calculated from this quaternion image as 67,8 = 3 2 ฦ’7,8 โˆ’ Real(7,8) โ€  = 3 2 โ€ก7,8 โˆ’ 97,8 + :7,8 + 7,8 3 ห†. (10) If we denote three imaginary components of the quaternion image 7,8 by (7,8), (7,8), and (7,8), the color image can be defined as 97,8 = 3 2 (7,8), 7,8 = 3 2 (7,8), 7,8 = 3 2 (7,8). We now consider a general model of the color image in the quaternion space. Let (, , v, and โ€ฐ(, โ€ฐ, and โ€ฐv be some numbers from the interval (0,1). The color image 6 7,8 can be represented as the following quaternion image: 7,8 = (( + โ€ฐ()97,8 + ( + โ€ฐ):7,8 + (v + โ€ฐv) 7,8 (11) or 7,8 = c(97,8 + :7,8 + v 7,85 + โ€ฐ(97,8 + โ€ฐ:7,8 + โ€ฐv 7,8. To reconstruct the color image, the following calculations can be used when โ€ฐ7 โ‰  0, } = 1,2,3:
  • 16. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 32 97,8 = 1 โ€ฐ( (7,8), :7,8 = 1 โ€ฐ (7,8), 7,8 = 1 โ€ฐv (7,8), where } = 0: (a โˆ’ 1) and u = 0: (@ โˆ’ 1). Thus, we have a parameterized representation of the color image in the quaternion space, or threefold complex space ;~ . For instance, the coefficients (, , v, and โ€ฐ(, โ€ฐ, and โ€ฐv can be chosen in such a way that 7 + โ€ฐ7 = 1 for } = 1,2,3. When the coefficients ( = v = v = 0, the quaternion image 7,8 is referred to as the tradition representation of the color image. The ( = v = v = 1 case corresponds to the gray-scale image 7,8 = (97,8 + :7,8 + 7,8)/3. It should be mentioned, that in the quaternion space, we can consider and process simultaneously two different images, gray-scale R7,8 and color 6 7,8 images, by combining them into a quaternion image, for instance, as follows: 7,8 = (R7,8, 67,8) = R7,8 + (97,8 + :7,8 + 7,8). (12) Then, after processing this image 7,8 โ†’ ล 7,8 = (R ล 7,8, 6 โ€น 7,8) the output gray-scale and color images are considered to be R ล 7,8 = Realc ล 7,85, c9ฬ‚7,8 + : ล 7,8 + ย7,85 = Imagc ล 7,85, and color components of the new color image 6 โ€น 7,8 are calculated as 9ฬ‚7,8 = ( ล 7,8), : ล 7,8 = ( ล 7,8), ย7,8 = ( ล 7,8) . As an example, Figure 5 shows the gray-scale โ€œLenaโ€ image in part a and color tree image in b. These two images compose one quaternion image with four components. In parts c and d, the results of enhancement of the quaternion image are shown. The real component of 7,8 is shown in c and the image composed by three color components of the imaginary part in d. โ€œLenaโ€ image and color tree image were enhanced by a single operator in the quaternion space.
  • 17. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 33 Figure 5. (a) The gray-scale image and (b) color image before and (c) gray-scale image and (d) color image after processing together in the quaternion space. 4. 2-D MQDFT IN IMAGE ENHANCEMENT In this section, we consider application of the proposed models of color images in the quaternion space for image enhancement in the frequency domain. The enhancement by the 2-D mQDFT can be described as shown in Figure 6. The 2-D discrete QDFT of the color image is calculated and its amplitude only changes by using an operator @, and then, the inverse 2-D QDFT is calculated, 67,8 โ†’ ยd e,f = (|d e,f|, e,f)โ€˜ โ†’ ยd ยe,f = (@[|de,f|], e,f)โ€˜ โ†’ ย6 โ€น 7,8โ€˜ (13) Here, e,f is the phase and (|d e,f|, e,f) is a polar representation of de,f . Figure 6. Block-diagram of the image enhancement. We consider the well-known method of โ€™-rooting for enhancement of images [20],[29]-[31], [39], when the magnitude of the quaternion Fourier transform of the image is transformed as de,f โ†’ @[|de,f|] = |de,f|โ€œ
  • 18. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 34 for each frequency-point (r, t). The value of โ€™ is taken from the interval (0,1) and can be selected by the user, or can be found automatically [19],[20],[28],[37],[41]. To select values of โ€™ for image enhancement, we can analyze the color image, by using the measure CEME introduced in [41]. The discrete color image 6 7,8 of size a ร— @ is divided by ( blocks of size โ€( ร— โ€ each, where integers 7 = โ€ขa7/โ€7โ€“, } = 1,2. Here, โ€ขโˆ™โ€“ denotes the floor function. The overlapping of these blocks can also be considered [42].The quantitative measure of enhancement of the color image processed by the 2-D QDFT transform, 6 = (6โ€”, 6หœ, 6โ„ข) โ†’ 6 โ€น = (6 โ€น , 6 โ€นโ€”, 6 โ€นหœ, 6 โ€นโ„ข), is defined as follows: ลกโ€บ(โ€™) = ;ลก@ลกโ€œc6 โ€น5 = 1 ( g g 20 ล“ ยn( ลพ n( log(o ลธ max,ย(6 โ€นโ€”, 6 โ€นหœ, 6 โ€นโ„ข) min,ย(6 โ€นโ€”, 6 โ€นหœ, 6 โ€นโ„ข) ย . (14) Here, max,ย(6 โ€น) and min,ย(6 โ€น) respectively are the maximum and minimum of colors of the image 6 โ€น 7,8 inside the (, ยก)th block, and ฮฑ is a parameter of the enhancement algorithm. ;ลก@ลกโ€œc6 โ€น5 is called a measure of enhancement, or measure of improvement of the image 6 7,8. The โ€œbestโ€ image enhancement parameter ฮฑ is considered to be the one which maximizes the value of the ;ลก@ลก, i.e., ;ลก@ลกโ€œc6 โ€น5 = max ;ลก@ลก(6 โ€น). When considering the quaternion image 6 โ€น with non zero real part, the enhancement measure CEME is calculated as ลกโ€บ(โ€™) = ;ลก@ลกโ€œc6 โ€น5 = 1 ( g g 20 ล“ ยn( ลพ n( log(o ลธ max,ย(6 โ€น , 6 โ€นโ€”, 6 โ€นหœ, 6 โ€นโ„ข) min,ย(6 โ€น , 6 โ€นโ€”, 6 โ€นหœ, 6 โ€นโ„ข) ย . (15) Now, we consider an example of image enhancement by using the measure ;ลก@ลก. Figure 7 shows the color image of size 240 ร— 320 in part a. The image has the measure CEME equal 14.7848 when calculated with blocks of size 7 ร— 7. Figure 7. (a) The color image, (b) the 0.8850-rooting by the 2-D DQFT, and (c) the enhancement function of the image.
  • 19. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 35 The curve of the function ลกโ€บ(โ€™) for this image is given in part c, when ฮฑ runs the interval [0.1,1). The maximum value of the enhancement is 19.0166 at the point โ€™ = 0.8850. The corresponding 0.8850-rooting of the color image is shown in part b. We also consider an example of enhancement of a quaternion image with non zero real part. Figure 8 shows the color tree image in part a, and the enhanced image in b, when the 2-D QDFT- based 0.96-rooting is applied. Figure 8. (a) Color image and (b) image enhanced by 0.96-rooting. The enhancement was performed over the image with the real part shown in part a of Figure 9. The CEME measure of the image has a high value at point โ€™ = 0.96. The real part of the inverse 2-D QDFT after โ€™-rooting is shown in b. For comparison, the gray-scale image calculated from the last three components as their average is shown in c. One can observe that after processing simultaneously the gray-scale and color tree images, the result of processing of the gray-scale image is better, than the average of the color components of the quaternion image. Figure 9. (a) Gray-scale tree image in the quaternion image, (b) enhanced real part of the image, and (c) average of three imaginary components of the enhanced quaternion image. Recently, gradient based gray level image enhancement has been introduced [46]-[48]. For color image in the quaternion space, we apply the following measure of enhancement calculated on the image gradients: ;ลก@ลกc6 โ€น5 = 1 ( g g 20 ล“ ยn( ลพ n( log(o ลธ max,ยยฃยคยฅ(6 โ€น) min,ยยฃยคยฅ(6 โ€น) ย , (16)
  • 20. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 36 where the gradient operators ยฃยคยฅ = ยฃ + ยฅ or ยฃยคยฅ = (ยฃ, ยฅ). Here, the gradients along the ยฆ- and ยง-axes are calculated over the components of the quaternion image as cยฃฦ’6 โ€นโ€”โ€ , ยฃฦ’6 โ€นหœโ€ , ยฃฦ’6 โ€นโ„ขโ€ 5 and cยฅฦ’6 โ€นโ€”โ€ , ยฅฦ’6 โ€นหœโ€ , ยฅฦ’6 โ€นโ„ขโ€ 5, respectively. Different gradient operators are used in digital image processing. We apply the following well- known operations [43],[44]: Sobel's gradients3 ร— 3: ยฃ = 1 4 Z 1 0 โˆ’1 2 0 โˆ’2 1 0 โˆ’1 [, ยฅ = 1 4 Z โˆ’1 โˆ’2 โˆ’1 0 0 0 1 2 โˆ’1 [. Prewitt's gradients 3 ร— 3: ยฃ = 1 3 Z 1 0 โˆ’1 1 0 โˆ’1 1 0 โˆ’1 [, ยฅ = 1 3 Z โˆ’1 โˆ’1 โˆ’1 0 0 0 1 1 โˆ’1 [. Robert's gradients 3 ร— 3: ยฃ = Z 0 0 โˆ’1 0 1 0 0 0 0 [, ยฅ = 1 4 Z โˆ’1 0 0 0 1 0 0 0 0 [. Frei-Chen's gradients 3 ร— 3: ยฃ = 1 1 + โˆš2 Z 1 0 โˆ’1 โˆš2 0 โˆ’โˆš2 1 0 โˆ’1 [, ยฅ = 1 1 + โˆš2 ยจ โˆ’1 โˆ’โˆš2 โˆ’1 0 0 0 1 โˆš2 โˆ’1 ยฉ. Agaian-Frei-Chen's gradients 5 ร— 5: ยฃ = * + + + + , 1 โˆš2 0 โˆ’โˆš2 โˆ’1 โˆš2 2 0 โˆ’2 โˆ’โˆš2 2 โˆš8 0 โˆ’โˆš8 โˆ’2 โˆš2 2 0 โˆ’2 โˆ’โˆš2 1 โˆš2 0 โˆ’โˆš2 โˆ’1- . . . . / , ยฅ = * + + + + , 1 โˆš2 2 โˆš2 1 โˆš2 2 โˆš8 2 โˆš2 0 0 0 0 0 โˆ’โˆš2 โˆ’2 โˆ’โˆš8 โˆ’2 โˆ’โˆš2 โˆ’1 โˆ’โˆš2 โˆ’2 โˆ’โˆš2 โˆ’1- . . . . / . Many other gradient operators, including the extension of Frei-Chen's gradients of large sizes, can be found in [49]-[52]. 5. CONCLUSION In this paper, a new view of expressing color images using quaternion-based representation was provided. In this work, we consider a full model for representation and processing color images in the quaternion algebra. We have presented a fully quaternion-based color processing framework
  • 21. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 37 in which several color analysis problems may be solved. We have shown how a particular image enhancement in the framework of proposed model leads to an excellent color enhancement (better than other algorithms tested). Many other color processing algorithms in the framework of the proposed model can be expressed, including filtration and restoration. REFERENCES [1] H.J. Trussell, E. Saber, and M. Vrhel, (2005) โ€œColor image processing,โ€ IEEE Signal Processing Magazine, vol. 22, no.1, pp.14โ€“ 22. [2] A. Tremeau, S. Tominaga, and K.N. Plataniotis, (2008) โ€œColor in image and video processing: Most recent trends and future research directions,โ€ EURASIP Journal on Image and Video Processing, vol. 2008, 26 p., doi:10.1155/2008/581371. [3] W.R. Hamilton, (1843) Lectures on quaternions: Containing a systematic statement of a new mathematical method, Dublin: Hodges and Smith. [4] K. Shoemake, (1985) โ€œAnimating rotation with quaternion curves,โ€ SIGGRAPH Comput. Graph. vol. 19, no. 3, pp. 245โ€“254. [5] J.B. Kuipers, (2002) Quaternions and rotation sequences: A primer with applications to orbits, aerospace and virtual reality. Princeton University Press, Princeton. [6] S.C. Pei and C.M. Cheng, (1996) โ€œA novel block truncation coding of color images by using quaternion-moment-preserving principle,โ€ In: IEEE International Symposium on Circuits and Systems, ISCAS 1996, โ€œConnecting the World,โ€ vol. 2, pp. 684โ€“687. [7] S. Sangwine, (1996) โ€œFourier transforms of colour images using quaternion or hypercomplex numbers,โ€ Electronic Letters, vol. 32, no. 21, pp. 1979โ€“1980. [8] A.R. Leon-Garcia, (1994) Probability and random processes for electrical engineering, Addison- Wesley, Mass. [9] C.E. Moxey, S.T. Sangwine, and T.A. Ell, (2002) โ€œHypercomplex operators and vector correlation,โ€ in: Proceedings of the 11th European Signal Processing Conference (EUSIPCO). Toulouse, France, vol.3, pp. 247-250. [10] P. Denis, P. Carre, and C. Fernandez-Maloigne, (2007) โ€œSpatial and spectral quaternionic approaches for colour images, Comput. Vis. Image Und., vol. 107, pp. 74โ€“87. [11] F.-Y. Lang,etc., (2007) โ€œQuaternion and color image edge detection, Computer Science,โ€ vol. 34, no. 11, pp. 212-216. [12] ร–.N. Subakan, B.C. Vemuri, (2011) โ€œA Quaternion framework for color image smoothing and segmentation,โ€ Int. Journal Comput. Vis, vol. 91, pp. 233โ€“250. [13] A.M. Grigoryan and S.S. Agaian, (2003) Multidimensional Discrete Unitary Transforms: Representation, Partitioning, and Algorithms, New York: Marcel Dekker. [14] A.M. Grigoryan and S.S. Agaian, (2000) โ€œEfficient algorithm for computing the 2-D discrete Hadamard transform,โ€ IEEE Transactions on Circuits and Systems II, vol. 47, no. 10, pp. 1098-1103. [15] A.M. Grigoryan, and S.S. Agaian, (2000) โ€œSplit manageable efficient algorithm for Fourier and Hadamard transforms,โ€ IEEE Trans. on Signal Processing, vol. 48, no. 1, pp. 172-183. [16] S.S. Agaian, (1990) โ€œAdvances and problems of the fast orthogonal transforms for signal-images processing applications (Part 1),โ€ in: Pattern Recognition, Classification, Forecasting. Yearbook, The Russian Academy of Sciences, Nauka, Moscow, no. 3, pp. 146-215.. [17] S.S. Agaian, H.G. Sarukhanyan, K.O. Egiazarian, and J. Astola, (2011) Hadamard transforms, SPIE Press. [18] A.M. Grigoryan, (2010) โ€œMultidimensional Discrete Unitary Transforms,โ€ chapter 19, in Transforms and Applications Handbook (3rd edition, A. Poularikas), CRC Press, p. 69. [19] S.S. Agaian, K. Panetta, and A.M. Grigoryan, (2001) โ€œTransform-based image enhancement algorithms,โ€ IEEE Trans. on Image Processing, vol. 10, pp. 367-382. [20] A.M. Grigoryan and S.S. Agaian, (2004) โ€œTransform-based image enhancement algorithms with performance measure,โ€ Advances in Imaging and Electron Physics, Academic Press, vol. 130, pp. 165-242. [21] R. Narayanam, P. Parimal, and A.M. Grigoryan, (2011) โ€œPerformances of Texas Instruments DSP and Xilinx FPGAs for Cooley-Tukey and Grigoryan FFT algorithms,โ€ SOURCE Journal of Engineering Technology, vol. 1, no. 2, p.83.
  • 22. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 38 [22] T.A. Ell, (1993) โ€œQuaternion-Fourier transforms for analysis of 2-dimensional linear time-invariant partial differential systems,โ€ in Proc. of the 3nd IEEE Conference on Decision and Control, vol. 1-4, pp. 1830-1841, San Antonio, Texas, USA. [23] M.H. Yeh, (2008) โ€œRelationships among various 2-D quaternion Fourier transforms,โ€ IEEE Signal Processing Letters, vol. 15, pp. 669-โ€“672. [24] S.J. Sangwine, (1996) โ€œFourier transforms of colour images using quaternion, or hypercomplex, numbers, Electronics Letters, vol. 32, no. 21, pp. 1979-1980. [25] S.J. Sangwine, (1997) โ€œThe discrete quaternion-Fourier transform,โ€ IPA97, Conference Publication, 443, pp. 790-793. [26] S.J. Sangwine, T.A. Ell, J.M. Blackledge, and M.J. Turner, (2000) โ€œThe discrete Fourier transform of a color image,โ€ in Proc. Image Processing II Mathematical Methods, Algorithms and Applications, pp. 430-441. [27] S.J. Sangwine and T.A. Ell, (2001) โ€œHypercomplex Fourier transforms of color images,โ€ in Proc. IEEE Intl. Conf. Image Processing, vol. 1, pp. 137โ€“140. [28] A.M. Grigoryan and S.S. Agaian, (2014) โ€œAlpha-rooting method of color image enhancement by discrete quaternion Fourier transform,โ€ [9019-3], in Proc. SPIE 9019, Image Processing: Algorithms and Systems XII, 901904; 12 p., doi: 10.1117/12.2040596. [29] J.H. McClellan, (1980) โ€œArtifacts in alpha-rooting of images,โ€ Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, pp. 449-452. [30] A. Grigoryan, and S. Agaian, (2003) โ€œTensor form of image representation: enhancement by image- signals,โ€ in Proc. IST/SPIEโ€™s Symposium on Electronic Imaging Science Technology, San Jose, CA. [31] F.T. Arslan and A.M. Grigoryan, (2006) โ€œFast splitting alpha-rooting method of image enhancement: Tensor representation,โ€ IEEE Trans. on Image Processing, vol. 15, no. 11, pp. 3375-3384. [32] Z. Yang and S.-I. Kamata, (2011) โ€œHypercomplex polar Fourier analysis for color image, in Proc. International Conference on Image Processing, ICIP 2011. [33] A. Greenblatt, C. Mosquera-Lopez, S.S. Agaian, (2013) โ€œQuaternion neural networks applied to prostate cancer Gleason grading, in Proc. Man and Cybernetics, SMC 2013. IEEE International Conference, Manchester, pp. 1144-1149, 2013. [34] L. Guo, M. Dai, and M. Zhu, (2014) โ€œQuaternion moment and its invariants for color object classification, Information Sciences, vol. 273, pp. 132โ€“143. [35] S.C. Pei, J.J. Ding, and J.H. Chang, (2001) โ€œEfficient implementation of quaternion Fourier transform, convolution and correlation by 2-D complex FFT,โ€ IEEE Trans. Signal Processing, vol. 49, pp. 2783-2797. [36] T.A. Ell and S.J. Sangwine, (2007) โ€œHypercomplex Fourier transforms of color images,โ€ IEEE Trans. Image Processing, vol. 16, no. 1, pp. 22-35. [37] A.M. Grigoryan and M.M. Grigoryan, (2009) Brief notes in advanced DSP: Fourier analysis with MATLAB, CRC Press Taylor and Francis Group. [38] S. Sangwine and N.L. Bihan, Quaternion toolbox for MATLAB. Available online: http://qtfm.sourceforge.net/ [39] S.S. Agaian, K. Panetta, and A.M. Grigoryan, (2000) โ€œA new measure of image enhancement,โ€ in Proc. IASTED Int. Conf. Signal Processing Communication, Marbella, Spain. [40] A.M. Grigoryan, (2001) โ€œ2-D and 1-D multi-paired transforms: Frequency-time type wavelets,โ€ IEEE Trans. on Signal Processing, vol. 49, no. 2, pp. 344-353. [41] A.M. Grigoryan and S.S. Agaian, (2014) โ€œAlpha-rooting method of color image enhancement by discrete quaternion Fourier transform,โ€ [9019-3], SPIE proceedings, 2014 Electronic Imaging: Image Processing: Algorithms and Systems XII, February 2-6, San Francisco, California. [42] M. Trivedi, A. Jaiswal, and V. Bhateja, (2012) โ€œA novel HSV based image contrast measurement index,โ€ in Proc. of the Fourth International Conference on Signal and Image processing 2012 (ICIP 2012), pp. 545-555. [43] W.K. Pratt, (2000) Digital Image Processing, New York: Wiley. [44] R.C. Gonzalez and R.E. Woods, (2002) Digital Image Processing, 2nd Edition, Prentice Hall. [45] P. Denis, P. Carre, and C.F. Maloigne, (2007) โ€œSpatial and spectral quaternionic approaches for color images,โ€ Computer Vision and Image Understanding, vol. 107, pp. 74-87. [46] S. Nercessian, K. Panetta, and S. Agaian, (2009) โ€œA generalized set of kernels for edge and line detection,โ€ Proc. SPIE, vol. 7245, 72450U.
  • 23. Applied Mathematics and Sciences: An International Journal (MathSJ ), Vol. 1, No. 3, December 2014 39 [47] E.J. Wharton, K. Panetta, and S.S. Agaian, (2007) โ€œLogarithmic edge detection with applications,โ€ Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on, pp. 3346-โ€“3352, Montreal, 7-10. [48] K. Panetta, S. Qazi, and S. Agaian, (2008) โ€œTechniques for detection and classification of edges in color images,โ€ Proc. SPIE 6982, Mobile Multimedia/Image Processing, Security, and Applications 2008, 69820W; doi:10.1117/12.777703. [49] S. Nercessian. S.S. Agaian, and K.A. Panetta, (2012) โ€œMulti-scale image enhancement using a second derivative-like measure of contrast,โ€ Proc. SPIE 8295, Image Processing: Algorithms and Systems X; and Parallel Processing for Imaging Applications II, 82950Q; doi:10.1117/12.906494. [50] S. Agaian, (1999) โ€œVisual morphology,โ€ Proc. SPIE, vol. 3646, pp. 139-150. [51] K. Panetta, C Gao, and S. Agaian, (2013) โ€œNo reference color image contrast and quality measures,โ€ IEEE Trans. on Consumer Electronics, vol. 59, no. 3, pp. 643-651. [52] S. Nercessian, K.A. Panetta, and S.S. Agaian, (2013) โ€œNon-linear direct multi-scale image enhancement based on the luminance and contrast masking characteristics of the human visual system,โ€ IEEE Trans. on Image Processing, vol. 22, no. 9. [53] ร–.N. Subakan and B.C. Vemuri, (2009) โ€œColor image Segmentation in a quaternion framework, energy minimization methods,โ€ Comput. Vis. Pattern. Recognition, pp. 401โ€“414. Authors Artyom M. Grigoryan is Associate Professor in the Electrical and Computer Engineering at the University of Texas, San Antonio. He is the author of three books, three book-chapters, two patents, and many journal papers and specializing in the theory and application of fast Fourier transforms, image enhancement, computerized tomography, processing biomedical images, and image cryptography. Sos S. Agaian is Professor of Electrical and Computer Engineering at the University of Texas, San Antonio. He has seven books, 500 scientific papers, and holds 14 patents. He is a Fellow of the International Society for Photo-Optical Instrumentation Engineers and Fellow Imaging Sciences and Technology (IST).