SlideShare a Scribd company logo
An Assisted Autopilot for
Unfavorable Road Conditions
TEAM MEMBERS:
Shakthi Priya Gowri
Karthik Devarajan Raghunathan
Roshni Prasad
Karthikeyan Sadatsharan
Jayanathan Ilango
THE UNIVERSITY OF TEXAS AT DALLAS
EERF 6395 – RF/Microwave Systems Engineering
INTRODUCTION
• Technological advancements have given rise to “Smart” cars using Autopilot. In a few
years, all vehicles will have inbuilt autopilot systems.
• However, autonomous driving fails in unpredictable conditions. Studies show that
autonomous driving increases the rate of accidents in certain cases.
• Applying the predefined set of solutions for example, to stop or slow down the car, may
not be the best option and may in turn, worsen the outcome.
• Due to the untimely application of autopilot mode, the reliability on such systems
remains a question mark.
• To overcome this conundrum of whether autonomous driving is an option, we have
designed a system that uses:
• Weather
• Road Conditions
• Behavioral Pattern of driver in the vehicle ahead
• After evaluating these parameters, our system categorizes the risk into 3 levels, namely,
safe, moderate and risky.
DESCRIPTION OF SYSTEM
• The proposed system aims at adapting the existing system and incorporating
an algorithm to improve the efficiency of the autopilot.
• The designed system has two uses:
• Assist the driver to evaluate whether the vehicle can be put on autopilot.
• Assist the driver/autopilot in driving.
• This is done using a radar system and two communication channels.
• The radar system’s goal is to caution the driver on front and rear collision.
• One communication system is used for V2V (Vehicle to Vehicle)
communication while the other communication link is to acquire information
such as weather forecast, road conditions, construction sights, irregularities
on the road from a command center which is connected to the cloud.
• The V2V communication helps in evaluating the reliability on autopilot
depending on the behavioral pattern of the driver.
KEY RF SPECIFICATIONS
• Communication System 1: Vehicle to Vehicle
 Antenna - Ultra Wide Band Omnidirectional Antenna
 Frequency – 16.6 GHz to 17.2 GHz (Ku - Band)
• Communication System 2: Vehicle to Command Center
 Antenna: Ultra Wide Band Omnidirectional Antenna
 Frequency: 13.4 GHz to 13.75GHz (Ku – Band)
• RADAR
 Antenna – Pyramidal Horn Antenna
 Monostatic RADAR
 RADAR Frequency – 24 GHz to 40 GHz (Ka - Band)
Center Frequency – 30 GHz
SYSTEM BLOCK DIAGRAM
Tx
Rx
COMMAND
CENTER
COMMAND
CENTER
COMMAND
CENTER
CLOUD
Comm Link 2
Comm Link 1
Radar
How the RADAR works?
• The radar deployed in the car transmits a signal operating at 30 GHz.
• This signal hits the moving vehicle/ stationary object which is ahead as it
approaches close to the vehicle.
• With the principle of Doppler effect, this signal is reflected with an shift in
frequency (Operating frequency +/- Doppler frequency).
• This reflected signal is received by the receiver, which alerts the driver about the
vehicle present ahead along with its distance.
• Doppler frequency can be calculated as
Doppler Effect of RADAR
Assume the speed with which car was moving = 60 mph (26.8224 meter/s)
Operating frequency (f) = 30 GHz
We know that λ = c/f
Therefore, the wavelength (λ ) = 0.01 m
Doppler Frequency (fd) = (2 * Vr )/ λ
= (2 * 26.8224 ) / (0.01)
= 5364.48 Hz
= 5.365 KHz
RADAR System Block Diagram
Signal
Source
BPF BPF
Driver
Amp
PA
BPFBPF
Local
Oscillator
LNA
TX Antenna
RX Antenna
IF Amp
Transmitter
Receiver
Circulator
Mixer
Mixer
Transmitter System Diagram
PORT
P=1
Z=_Z0 Ohm
BPFB
ID=F2
LOSS=3 dB
N=3
FP1=24 GHz
FP2=40 GHz
AP=3.0103 dB
NOISE=Auto
fc: 30 GHz
SPwr: 5.80539 dBm
1 2
3
CIRCULATOR
ID=S1
LOSS=0.3 dB
ISOL=20 dB
VSWR=1.2
NOISE=Auto
Z=_Z0 Ohm
fc: 30 GHz
SPwr: 28.1875 dBm
fc: 30 GHz
SPwr: 8.48755 dBm
LPFB
ID=F1
LOSS=0.5 dB
N=3
FP=0.5 GHz
NOISE=Auto
fc: 0.355 GHz
SPwr: 18.8015 dBm
IN OUT
LO
MIXER_B
ID=A2
MODE=SUM
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-7.5 dB
P1DB=
IP3=25 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=4 dB
NOISE=Auto
fc: 30 GHz
SPwr: 8.8088 dBm
TONE
ID=A1
FRQ=0.355 GHz
PWR=-10 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 0.355 GHz
SPwr: -10 dBm
TONE
ID=A4
FRQ=29.645 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 29.645 GHz
SPwr: 0 dBm
TP
ID=TP1
TP
ID=TP6
TP
ID=TP7
AMP_B
ID=A5
GAIN=23 dB
P1DB=33 dBm
IP3=43 dBm
IP2=
MEASREF=
OPSAT=
NF=3.5 dB
NOISE=Auto
RFIFRQ=
fc: 30 GHz
SPwr: 28.4875 dBm
TP
ID=TP5
TP
ID=TP4
AMP_B
ID=A3
GAIN=32 dB
P1DB=19 dBm
IP3=32 dBm
IP2=
MEASREF=
OPSAT=
NF=2.8 dB
NOISE=Auto
RFIFRQ=
fc: 0.355 GHz
SPwr: 19.8273 dBm
TP
ID=TP2
TP
ID=TP3
Cascaded Gain (dB) of Radar TX
Noise Figure (dB) of Radar TX
OIP3 (dBm) of Radar TX
Radar TX Hand Calculations
Power Added Efficiency:
Pdc =(85mA*12V) + (600mA*6V)= 3600 mW
Pin = -10 dBm
Pout = 28.1875 dBm (outside the transmitter before antenna)
PAE = (Pout – Pin) / Pdc
= 14.25 %
Maximum Range for Minimum Detectable Signal at RX:
Pmin= MDS = -100dBm
Pt = 28.1875 dBm
Rmax= ((Pt G2*σ*λ2) / (Pmin*(4*π)3))^1/4
= 214.7 m
EIRP = Pt (dBm) + Gt (dB) = 28.1875 dBm + 20dBi = 48.1875dBm
= 68.75 W
Company Keysight Technologies
MXG X-Series N5181B
Frequency Range 9 KHz to 3 GHz
Output Power (Max) 24 dBm
Noise Figure 50 Ohms
TX – Vector Signal Generator TX – Driver Amplifier
Company Teledyne Cougar AC618
Frequency Range 10 – 600 MHz
Gain 32 dB
Noise Figure 2.8 dB
P1dB 19 dBm
IP3 32 dB
VDD 12 V
ID 85 mA
TX – Low Pass Filter (IF)
Company Mini Circuits Coaxial
Low Pass Filter
Low Insertion Loss Range 0 – 500 MHz
3-dB Cutoff 630 MHz
Insertion loss 0.5 dB (Typical)
Company Advanced Microwave Inc
IF Frequency Range 0 - 4 GHz
LO Frequency Range 25 GHz – 32 GHz
RF Frequency Range 25 GHz – 32 GHz
Conversion Loss 7.5 dB
IIP3 20 dBm
TX – Mixer for Up-conversion
Company Crescent Frequency
Products CXA53
Frequency Of Operation 10 – 1500 GHz
Voltage Supply 2.5 – 3.3 V
Current 30 – 70 mA
TX – Local Oscillator TX – Band Pass Filter (RF)
Company Planar Monolithics
Industries 15CL32G-16G-
292FF
Center frequency 30 GHz
Frequency Range 24 GHz to 40 GHz
Insertion loss 3 dB (Typical)
TX – Power Amplifier
Company Qorvo TGA2594
Frequency Range 27.5 GHz – 31 GHz
Gain 23 dB
Noise Figure 3.5 dB
P1dB 33 dBm
IP3 43 dBm
VDD 20 V
ID 140 mA
Company Kete Microwave Electronics
KTWC320-21
Frequency Range 26.4 GHz – 40.1 GHz
Insertion Loss 0.3 dB
Isolation (Min.) 20 dB
VSWR (Max.) 1.2
TX – Circulator
Receiver System Diagram
AMP_B
ID=A4
GAIN=32 dB
P1DB=19 dBm
IP3=32 dBm
IP2=
MEASREF=
OPSAT=
NF=2.8 dB
NOISE=Auto
RFIFRQ=
fc: 0.355 GHz
SPwr: 10.839 dBm
BPFB
ID=F2
LOSS=1.9 dB
N=3
FP1=0.31 GHz
FP2=0.4 GHz
AP=3.0103 dB
NOISE=Auto
fc: 0.355 GHz
SPwr: -21.0888 dBm
1 2
3
CIRCULATOR
ID=S1
LOSS=0.3 dB
ISOL=20 dB
VSWR=1
NOISE=Auto
Z=_Z0 Ohm
fc: 30 GHz
SPwr: -44.1757 dBm
fc: 30 GHz
SPwr: -63.8757 dBm
IN OUT
LO
MIXER_B
ID=A3
MODE=DIFF
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-2 dB
P1DB=
IP3=35 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=3.02 dB
NOISE=RF Budget only
fc: 0.355 GHz
SPwr: -19.182 dBm
TONE
ID=A1
FRQ=30 GHz
PWR=-43.8757 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 30 GHz
SPwr: -43.8757 dBm
PORT
P=1
Z=_Z0 Ohm
TONE
ID=A5
FRQ=30.355 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 30.355 GHz
SPwr: 0 dBm
TP
ID=TP1
TP
ID=TP2
TP
ID=TP3
TP
ID=TP4 TP
ID=TP5
TP
ID=TP6
TP
ID=TP7BPFB
ID=F1
LOSS=3 dB
N=3
FP1=24 GHz
FP2=40 GHz
AP=3.0103 dB
NOISE=Auto
fc: 30 GHz
SPwr: -17.1819 dBm
AMP_B
ID=A2
GAIN=30 dB
P1DB=10 dBm
IP3=
IP2=
MEASREF=
OPSAT=
NF=2.5 dB
NOISE=Auto
RFIFRQ=
fc: 30 GHz
SPwr: -14.1785 dBm
Cascaded Gain (dB) of Radar RX
Noise Figure (dB) of Radar RX
OIP3(dBm) of Radar RX
Radar RX Hand Calculations
Free Space Path Loss: = 10Log(4πR/λ)2
R=200 m
λ= 0.01 m
FSPL= -108.004 dB
Company B&Z Technology BZ-
29003100-251030-101515
Frequency Range 29 GHz – 31 GHz
Gain 30 dB
Noise Figure 2.5 dB
P1dB 10 dBm
RX – Low Noise Amplifier
Company Kete Microwave
Electronics KTWC320-21
Frequency Range 26.4 GHz – 40.1 GHz
Insertion Loss 0.3 dB
Isolation (Min.) 20 dB
VSWR (Max.) 1.2
RX – Circulator
RX – Band Pass Filter (RF)
Company Planar Monolithics
Industries 15CL32G-16G-
292FF
Center frequency 30 GHz
Frequency Range 24 GHz to 40 GHz
Insertion loss 3 dB (Typical)
RX – Mixer for Downconverter
Company Advanced Microwave Inc
IF Frequency Range 0 - 4 GHz
LO Frequency Range 25 GHz – 32 GHz
RF Frequency Range 25 GHz – 32 GHz
Conversion Loss 7.5 dB
IIP3 20 dBm
RX – IF Amplifier (IF)RX – Band Pass Filter (IF)
Company Surface Mount
Center frequency 355 MHz
Frequency Range 310-400 MHz
Insertion loss 1.90 dB (Typical)
Company Teledyne Cougar AC618
Frequency Range 10 – 600 MHz
Gain 32 dB
Noise Figure 2.8 dB
P1dB 19 dBm
IP3 32 dB
VDD 12 V
ID 85 mA
RADAR Link – System Diagram
PORT
P=1
Z=_Z0 Ohm
PORT
P=2
Z=_Z0 Ohm
AMP_B
ID=A3
GAIN=30 dB
P1DB=28 dBm
IP3=
IP2=
MEASREF=
OPSAT=
NF=3.5 dB
NOISE=Auto
RFIFRQ=
fc: 30 GHz
SPwr: 24.4283 dBm
AMP_B
ID=A5
GAIN=30 dB
P1DB=28 dBm
IP3=
IP2=
MEASREF=
OPSAT=
NF=3.5 dB
NOISE=Auto
RFIFRQ=
fc: 0.355 GHz
SPwr: 19.8834 dBm
BPFB
ID=F2
LOSS=3 dB
N=3
FP1=24 GHz
FP2=40 GHz
AP=3.0103 dB
NOISE=Auto
fc: 30 GHz
SPwr: -5.21174 dBm
1 2
3
CIRCULATOR
ID=S1
LOSS=0.3 dB
ISOL=20 dB
VSWR=1.2
NOISE=Auto
Z=_Z0 Ohm
fc: 30 GHz
SPwr: 24.1283 dBm
fc: 30 GHz
SPwr: 4.42827 dBm
LPFB
ID=F1
LOSS=1.5 dB
N=3
FP=0.5 GHz
NOISE=Auto
fc: 0.355 GHz
SPwr: 17.8576 dBm
IN OUT
LO
MIXER_B
ID=A2
MODE=SUM
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-7 dB
P1DB=2 dBm
IP3=10 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=10 dB
NOISE=Auto
fc: 30 GHz
SPwr: -2.20833 dBm
TONE
ID=A1
FRQ=0.355 GHz
PWR=-10 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 0.355 GHz
SPwr: -10 dBm
TONE
ID=A4
FRQ=29.645 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 29.645 GHz
SPwr: 0 dBm
TP
ID=TP1
TP
ID=TP2
TP
ID=TP3
TP
ID=TP4
TP
ID=TP5
TP
ID=TP6
TP
ID=TP7
1 2
ANTENNA
ID=S2
ANTGAIN=20 dB
NOISE=Auto
fc: 30 GHz
SPwr: -63.8757 dBm
AMP_B
ID=A6
GAIN=30 dB
P1DB=10 dBm
IP3=
IP2=
MEASREF=
OPSAT=
NF=2.5 dB
NOISE=Auto
RFIFRQ=
fc: 30 GHz
SPwr: -14.1786 dBm
AMP_B
ID=A7
GAIN=32 dB
P1DB=19 dBm
IP3=32 dBm
IP2=
MEASREF=
OPSAT=
NF=2.8 dB
NOISE=Auto
RFIFRQ=
fc: 0.355 GHz
SPwr: 5.88923 dBm
BPFB
ID=F3
LOSS=3 dB
N=3
FP1=24 GHz
FP2=40 GHz
AP=3.0103 dB
NOISE=Auto
fc: 30 GHz
SPwr: -17.182 dBm
BPFB
ID=F4
LOSS=1.9 dB
N=3
FP1=0.31 GHz
FP2=0.4 GHz
AP=3.0103 dB
NOISE=Auto
fc: 0.355 GHz
SPwr: -26.0893 dBm
1 2
3
CIRCULATOR
ID=S3
LOSS=0.3 dB
ISOL=20 dB
VSWR=1
NOISE=Auto
Z=_Z0 Ohm
fc: 30 GHz
SPwr: -44.1757 dBm
fc: 30 GHz
SPwr: -63.8757 dBm
IN OUT
LO
MIXER_B
ID=A8
MODE=DIFF
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-7 dB
P1DB=
IP3=25 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=4 dB
NOISE=Auto
fc: 0.355 GHz
SPwr: -24.1825 dBm
TONE
ID=A10
FRQ=30.355 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 30.355 GHz
SPwr: 0 dBm
TP
ID=TP8
TP
ID=TP9
TP
ID=TP10 TP
ID=TP11
TP
ID=TP12
TP
ID=TP13
TP
ID=TP14
12
ANTENNA
ID=S4
ANTGAIN=20 dB
NOISE=Auto
fc: 30 GHz
SPwr: -43.8757 dBm
Node Power (dBm) of the Radar Transceiver
Parameter
Top-level
Spec
Min/
Max
Modified
Spec
Min/
Max
Simulated
Performance
Compliant
(Y/N)
Frequency Band (GHz) 77 – 81 GHz Min 24 – 40 GHz
(30 GHz fc)
Min-
Max
24 – 40 GHz
(30 GHz fc)
Y
Transmit Output Power (dBm) 22.5 Min - Min 23.4 Y
Transmit Channel Gain (dB) 25 Min - Min 38.23 Y
Transmit Channel PAE (%) 10 Min Min 14.25 Y
Receive Noise Figure (dB) 6 Max - Max 5.797 Y
Receive Channel Gain (dB) 25 Min - Min 54.7 Y
Receive Channel OIP3 (dBm) 25 Min - Min 30.8 Y
TX Antenna Az Beamwidth (degrees) 15 Max - Max 15 Y
RX Antenna Az Beamwidth (degrees) 15 Max - Max 15 Y
Maximum Range (m) 200 Min - Min 214.7 Y
Total DC Power Consumption (W) 5.0 Max - Max 4.6 Y
Compliance Matrix – Radar System
RF communication Link-1 Block Diagram(V 2 V)
Signal
Source
BPF BPF PA PA
BPFBPF
Local
Oscillator
LNA
TX Antenna
RX Antenna
IF Amp
Transmitter
Receiver
TRANSMITTER:
BPFB
ID=F1
LOSS=3 dB
N=3
FP1=16.75 GHz
FP2=19.25 GHz
AP=3.0103 dB
NOISE=Auto
SPwr: 0.0392496 mW
SPwr: -14.0616 dBm
fc: 16.9 GHz
BPFB
ID=F2
LOSS=1.9 dB
N=3
FP1=0.31 GHz
FP2=0.4 GHz
AP=1 dB
NOISE=Auto
SPwr: 0.406684 mW
SPwr: -3.90743 dBm
fc: 0.4 GHz
TONE
ID=A2
FRQ=16.5 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
SPwr: 1 mW
SPwr: 0 dBm
fc: 16.5 GHz
IN OUT
LO
MIXER_B
ID=A3
MODE=SUM
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-5.5 dB
P1DB=7 dBm
IP3=18 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=10 dB
NOISE=Auto
SPwr: 0.113103 mW
SPwr: -9.46526 dBm
fc: 16.9 GHz
TONE
ID=A1
FRQ=0.4 GHz
PWR=-1 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
SPwr: 0.794328 mW
SPwr: -1 dBm
fc: 0.4 GHz
TP
ID=TP2
TP
ID=TP4
AMP_B
ID=A5
GAIN=29 dB
P1DB=23 dBm
IP3=30 dBm
IP2=
MEASREF=
OPSAT=
NF=7 dB
NOISE=Auto
RFIFRQ=
SPwr: 29.4231 mW
SPwr: 14.6869 dBm
fc: 16.9 GHz
AMP_B
ID=A6
GAIN=15 dB
P1DB=28 dBm
IP3=36 dBm
IP2=
MEASREF=
OPSAT=
NF=4 dB
NOISE=Auto
RFIFRQ=
SPwr: 738.693 mW
SPwr: 28.6846 dBm
fc: 16.9 GHz
TP
ID=TP5TP
ID=TP3
TP
ID=TP6TP
ID=TP1
GAIN
TRANSMITTED POWER
YIELD ANALYSIS
COMPONENTS
BANDPASS FILTER
Company Surface Mount
Center frequency 355MHz
Frequency Range 310-400MHz
Insertion loss 1.90 dB
MIXER
MR1407
Company Spectrum Microwave
IF Frequency Range DC-800MHz
RF/LO Frequency Range 3-18GHz
Conversion Loss 1.90dB
Input 1 dB Compression 7dB
OIP3 18dB
Operating Temperature
Range
-54 C to +94 C
BANDPASS FILTER
Company NIC
Center frequency 18 GHz
Frequency Range 16.75-19.25 GHz
Insertion loss 1 dB
NIC 0BA69
GaAs pHEMT MMIC
DRIVER AMPLIFIER
Company Analog Devices
Frequency Range 5 – 17 GHz
Gain 29 dB
Noise Figure 7 dB
P1dB 23 dBm
IP3 30 dBm
Supply Voltage +5V
Current 180mA
Company Analog Devices
Frequency Range 18 – 26 GHz
Gain 15 dB
Noise Figure 3 dB
P1dB 28 dBm
IP3 36 dBm
Supply Voltage +5V
Current 200mA
POWER AMPLIFIER
GaAs pHEMT MMIC
QOM-SL-0.9-20-S-SG-R
ANTENNA
Company Steatite
Frequency Range 0.9 – 20 GHz
Gain 6.3 dBi
Antenna Type Ultra Wide Band Omnidirectional
Antenna
Azimuth Beam Width 360º
HAND CALCULATION
Pt=28.7195dBm (744.64mW)
Gt=Gr=6.3dBi (4.265)
F = 16.9GHz
MDS=10-9 mW
1. R_max = [(Pt*Gt*Gr*λ2) / (MDS*(4*π)2]1/2
R_max = 4.97 Km
Operating distance(R) = 3000m
2. Pt=28.7195dBm (744.64mW)
Pr= Pt*Gt*Gr* λ 2/(4*π*R)2= -85.59 dBm
3. EIRP= Pt(dBm) + Gt(dBi) = 28.7195+6.3
= 33.28dBm (2.12W)
4. PAE OF THE SYSTEM
Input power : 0.79mW
Output Power : 744.642 mW
DC Power, PDC : 900 mW + 1000 mW = 1900 mW
ηPAE=(Pout-Pin)/Pdc = 39.31%
RECEIVER
BPFB
ID=F1
LOSS=1.9 dB
N=3
FP1=0.31 GHz
FP2=0.4 GHz
AP=1 dB
NOISE=Auto
SPwr: -71.5938 dBm
fc: 0.4 GHz
AMP_B
ID=A2
GAIN=20.9 dB
P1DB=20.4 dBm
IP3=40 dBm
IP2=
MEASREF=
OPSAT=
NF=2.5 dB
NOISE=Auto
RFIFRQ=
SPwr: -50.6938 dBm
fc: 0.4 GHz
AMP_B
ID=A5
GAIN=27 dB
P1DB=26 dBm
IP3=35 dBm
IP2=
MEASREF=
OPSAT=
NF=2 dB
NOISE=Auto
RFIFRQ=
SPwr: -58.59 dBm
fc: 16.9 GHz
BPFB
ID=F2
LOSS=3 dB
N=3
FP1=16.75 GHz
FP2=19.25 GHz
AP=3.0103 dB
NOISE=Auto
SPwr: -63.1864 dBm
fc: 16.9 GHz
IN OUT
LO
MIXER_B
ID=A3
MODE=DIFF
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-5.5 dB
P1DB=8 dBm
IP3=18 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=10 dB
NOISE=Auto
SPwr: -68.6864 dBm
fc: 0.4 GHz
TP
ID=TP1
TP
ID=TP2
TP
ID=TP3TONE
ID=A1
FRQ=16.9 GHz
PWR=-85.59 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
SPwr: -85.59 dBm
fc: 16.9 GHz
TP
ID=TP5
TONE
ID=A4
FRQ=16.5 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
SPwr: 0 dBm
fc: 16.5 GHz
TP
ID=TP4
TP
ID=TP6
GAIN
NOISE FIGURE
OIP3
YIELD ANALYSIS
YIELD ANALYSIS Contd..
COMPONENTS
Company Analog Devices
Frequency Range 12 – 17 GHz
Gain 27 dB
Noise Figure 2 dB
P1dB 26 dBm
IP3 35 dBm
Supply Voltage +5V
Current 250mA
LOW NOISE AMPLIFIER
BANDPASS FILTER
Company NIC
Center frequency 18 GHz
Frequency Range 16.75-19.25 GHz
Insertion loss 1 dB
NIC 0BA69
MR1407
MIXER
Company Spectrum Microwave
IF Frequency Range DC-800MHz
RF/LO Frequency Range 3-18GHz
Conversion Loss 1.90dB
Input 1 dB Compression 7dB
OIP3 18dB
Operating Temperature
Range
-54 C to +94 C
BANDPASS FILTER
Company Surface Mount
Center frequency 355MHz
Frequency Range 310-400MHz
Insertion loss 1.90 dB
Company Analog
Devices
Frequency Range 0.02 – 0.5 GHz
Gain 20.9 dB
Noise Figure 2.5 dB
P1dB 20.4 dBm
IP3 40 dBm
Supply Voltage +5 V
Current 98 mA
IF AMPLIFIER
QOM-SL-0.9-20-S-SG-R
ANTENNA
Company Steatite
Frequency Range 0.9 – 20 GHz
Gain 6.3 dBi
Antenna Type Ultra Wide Band Omnidirectional
Antenna
Azimuth Beam Width 360º
HAND CALCULATION
Free Space Path Loss: =10Log(4πR/λ)2
R=3000m
λ= 0.017m
FSPL= 126.91 dB
AMP_B
ID=A5
GAIN=29 dB
P1DB=23 dBm
IP3=30 dBm
IP2=
MEASREF=
OPSAT=
NF=7 dB
NOISE=Auto
RFIFRQ=
fc: 16.9 GHz
SPwr: 14.6869 dBm
AMP_B
ID=A6
GAIN=15 dB
P1DB=28 dBm
IP3=36 dBm
IP2=
MEASREF=
OPSAT=
NF=4 dB
NOISE=Auto
RFIFRQ=
fc: 16.9 GHz
SPwr: 28.6846 dBm
BPFB
ID=F1
LOSS=3 dB
N=3
FP1=16.75 GHz
FP2=19.25 GHz
AP=3.0103 dB
NOISE=Auto
fc: 16.9 GHz
SPwr: -14.0616 dBm
BPFB
ID=F2
LOSS=1.9 dB
N=3
FP1=0.31 GHz
FP2=0.4 GHz
AP=1 dB
NOISE=Auto
fc: 0.4 GHz
SPwr: -3.90743 dBm
AMP_B
ID=A4
GAIN=20.9 dB
P1DB=20.4 dBm
IP3=40 dBm
IP2=
MEASREF=
OPSAT=
NF=2.5 dB
NOISE=Auto
RFIFRQ=
fc: 0.4 GHz
SPwr: -50.8192 dBm
TP
ID=TP7
TP
ID=TP10
TP
ID=TP12
TP
ID=TP13
TP
ID=TP5
AMP_B
ID=A7
GAIN=27 dB
P1DB=26 dBm
IP3=35 dBm
IP2=
MEASREF=
OPSAT=
NF=2 dB
NOISE=Auto
RFIFRQ=
fc: 16.9 GHz
SPwr: -58.7154 dBm
TONE
ID=A1
FRQ=0.4 GHz
PWR=-1 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 0.4 GHz
SPwr: -1 dBm
12
ANTENNA
ID=S1
ANTGAIN=6.3 dB
NOISE=Auto
fc: 16.9 GHz
SPwr: 34.9846 dBm
TP
ID=TP2
TP
ID=TP3
TP
ID=TP6
TONE
ID=A10
FRQ=16.5 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 16.5 GHz
SPwr: 0 dBm
TP
ID=TP4
BPFB
ID=F4
LOSS=3 dB
N=3
FP1=16.75 GHz
FP2=19.25 GHz
AP=3.0103 dB
NOISE=Auto
fc: 16.9 GHz
SPwr: -63.3117 dBm
TONE
ID=A2
FRQ=16.5 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 16.5 GHz
SPwr: 0 dBm
IN OUT
LO
MIXER_B
ID=A3
MODE=SUM
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-5.5 dB
P1DB=7 dBm
IP3=18 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=10 dB
NOISE=Auto
fc: 16.9 GHz
SPwr: -9.46526 dBm
TP
ID=TP1
IN OUT
LO
MIXER_B
ID=A8
MODE=DIFF
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-5.5 dB
P1DB=8 dBm
IP3=18 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=10 dB
NOISE=Auto
fc: 0.4 GHz
SPwr: -68.8117 dBm
1 2
ANTENNA
ID=S2
ANTGAIN=6.3 dB
NOISE=Auto
fc: 16.9 GHz
SPwr: -85.7154 dBm
TP
ID=TP8
TP
ID=TP9
TP
ID=TP11
BPFB
ID=F3
LOSS=1.9 dB
N=3
FP1=0.31 GHz
FP2=0.4 GHz
AP=1 dB
NOISE=Auto
fc: 0.4 GHz
SPwr: -71.7192 dBm
TRANSCEIVER
TRANSCEIVER POWER
Compliance Matrix – Communication Link1
Parameter
Top-level
Spec
Min/
Max
Simulated
Performance
Compliant
(Y/N)
Frequency Band (GHz) 16.8-17.2 Min 16.9 Y
Transmit Output Power (dBm) 22.5 Min 28.64 Y
Transmit Channel Gain (dB) 22 Min 29.64 Y
Transmit Channel PAE (%) 30 Min 39.31 Y
Receive Noise Figure (dB) 4 Max 2.6 Y
Receive Channel Gain (dB) 30 Min 34.9 Y
Receive Channel OIP3 (dBm) 23 Min 29.97 Y
TX Antenna Az Beamwidth (degrees) 360 Max 360 Y
RX Antenna Az Beamwidth (degrees) 360 Max 360 Y
Range (m) 4970 Max 3000 Y
Total DC Power Consumption (W) 5.0 Max 1.9W Y
Signal
Source
BPF BPF PA PA
BPFBPF
Local
Oscillator
LNA
TX Antenna
RX Antenna
IF Amp
Transmitter
Receiver
RF communication Link-2 Block Diagram(Vehicle to Command center)
TRANSMITTER:
TONE
ID=A1
FRQ=0.4 GHz
PWR=0 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 0.4 GHz
SPwr: 0 dBm
TP
ID=TP2
IN OUT
LO
MIXER_B
ID=A2
MODE=SUM
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-8.5 dB
P1DB=11.5 dBm
IP3=21 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=10 dB
NOISE=Auto
fc: 13.573 GHz
SPwr: -13.0432 dBm
TONE
ID=A3
FRQ=13.173 GHz
PWR=10 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 13.173 GHz
SPwr: 10 dBm
BPFB
ID=F2
LOSS=1.8 dB
N=3
FP1=13.345 GHz
FP2=14.095 GHz
AP=3.0103 dB
NOISE=Auto
fc: 13.573 GHz
SPwr: -14.8909 dBm
TP
ID=TP4
AMP_B
ID=A4
GAIN=14.5 dB
P1DB=28 dBm
IP3=39 dBm
IP2=
MEASREF=
OPSAT=
NF=3.5 dB
NOISE=Auto
RFIFRQ=
fc: 13.573 GHz
SPwr: 27.5613 dBm
BPFB
ID=F1
LOSS=1.5 dB
N=3
FP1=0.31 GHz
FP2=0.4 GHz
AP=3.0103 dB
NOISE=Auto
fc: 0.4 GHz
SPwr: -4.5188 dBm
TP
ID=TP6
TP
ID=TP3
TP
ID=TP5
TP
ID=TP1
AMP_B
ID=A5
GAIN=29 dB
P1DB=23 dBm
IP3=30 dBm
IP2=
MEASREF=
OPSAT=
NF=7 dB
NOISE=Auto
RFIFRQ=
fc: 13.573 GHz
SPwr: 13.899 dBm
GAIN
TRANSMITTED POWER
YIELD ANALYSIS
HAND CALCULATION
Pt=28.7195dBm (744.64mW)
Gt=Gr=13dBi
F = 13.57GHz
MDS=10-8 mW
1. R_max = [(Pt*Gt*Gr*λ2) / (MDS*(4*π)2]1/2
R_max = 9.53Km
Operating distance(R) = 5000m
2. Pt=28.7195dBm (744.64mW)
Pr= Pt*Gt*Gr* λ 2/(4*π*R)2= -74.39 dBm
3. EIRP= Pt(dBm) + Gt(dBi) = 28.71+13
= 41.71dBm
4. PAE OF THE SYSTEM
Input power : 1mW
Output Power : 744.642 mW
DC Power, PDC : 900 mW + 1000 mW = 1900 mW
ηPAE=(Pout-Pin)/Pdc = 29.95%
COMPONENTS
MIXER
HMC558A
Company Spectrum Microwave
IF Frequency Range DC-6GHz
RF/LO Frequency Range 5.5-14GHz
Conversion Loss -8.5dB
Input 1 dB Compression 11.5dBm
OIP3 21dBm
BANDPASS FILTER
Company Microwave Circuits
Model Number B25400M3
Insertion Loss 1.5 dB
Frequency Range 350 – 450 MHz
Manufacturer Microwave Circuits
Model Number B0513G71
Insertion Loss 1.8 dB
Frequency Range 13.345 GHz – 14.095
GHz
BANDPASS FILTER
GaAs pHEMT MMIC
DRIVER AMPLIFIER
Company Analog Devices
Frequency Range 5 – 17 GHz
Gain 29 dB
Noise Figure 7 dB
P1dB 23 dBm
IP3 30 dBm
Supply Voltage +5V
Current 180mA
Company Analog Devices
Frequency Range 18 – 26 GHz
Gain 15 dB
Noise Figure 3 dB
P1dB 28 dBm
IP3 39 dBm
Supply Voltage +5V
Current 200mA
POWER AMPLIFIER
GaAs pHEMT MMIC
ANTENNA
Company Steatite
Frequency Range 2 – 18 GHz
Gain 13 dBi
Antenna Type Ultra Wide Band
Omnidirectional Antenna
Azimuth Beam Width 360º
RECEIVER
TP
ID=TP5
IN OUT
LO
MIXER_B
ID=A3
MODE=DIFF
LOMULT=1
FCOUT=
RFIFRQ=
GCONV=-8.5 dB
P1DB=11.5 dBm
IP3=21 dBm
LO2OUT=-25 dB
IN2OUT=-20 dB
LO2IN=-25 dB
OUT2IN=-25 dB
PLO=
PLOUSE=Spur reference only
PIN=
PINUSE=IN2OUTH Only
NF=10 dB
NOISE=Auto
fc: 0.402 GHz
SPwr: -70.0477 dBm
TP
ID=TP6
TP
ID=TP3
BPFB
ID=F1
LOSS=1.8 dB
N=3
FP1=13.345 GHz
FP2=14.095 GHz
AP=3.0103 dB
NOISE=Auto
fc: 13.573 GHz
SPwr: -61.5477 dBm
TP
ID=TP4
TP
ID=TP2
TONE
ID=A4
FRQ=13.171 GHz
PWR=10 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 13.171 GHz
SPwr: 10 dBm
AMP_B
ID=A5
GAIN=20.9 dB
P1DB=20.4 dBm
IP3=40 dBm
IP2=
MEASREF=
OPSAT=
NF=2.5 dB
NOISE=Auto
RFIFRQ=
fc: 0.402 GHz
SPwr: -50.6547 dBm
BPFB
ID=F2
LOSS=1.5 dB
N=3
FP1=0.35 GHz
FP2=0.45 GHz
AP=3.0103 dB
NOISE=Auto
fc: 0.402 GHz
SPwr: -71.5547 dBm
TONE
ID=A1
FRQ=13.573 GHz
PWR=-86.7 dBm
PHS=0 Deg
CTRFRQ=
SMPFRQ=
ZS=_Z0 Ohm
TN=_TAMB DegK
NOISE=Auto
PNMASK=
PNOISE=No phase noise
fc: 13.573 GHz
SPwr: -86.7 dBm
TP
ID=TP1
AMP_B
ID=A2
GAIN=27 dB
P1DB=13 dBm
IP3=24 dBm
IP2=
MEASREF=
OPSAT=
NF=1.4 dB
NOISE=Auto
RFIFRQ=
fc: 13.573 GHz
SPwr: -59.7 dBm
GAIN
NOISE FIGURE
OIP3
YIELD ANALYSIS
YIELD ANALYSIS contd…
COMPONENTS
Company Qorvo
Frequency Range 5– 15 GHz
Gain 27 dB
Noise Figure 1.4 dB
P1 dB 13 dBm
IP3 24 dBm
Supply Voltage +5V
Current 160mA
LOW NOISE AMPLIFIER
BANDPASS FILTER
TGA2512
Manufacturer Microwave Circuits
Model Number B0513G71
Insertion Loss 1.8 dB
Frequency Range 13.345 GHz – 14.095
GHz
HMC558A
MIXER
Company Spectrum Microwave
IF Frequency Range DC-6GHz
RF/LO Frequency Range 5.5-14GHz
Conversion Loss -8.5dB
Input 1 dB Compression 11.5dBm
OIP3 21dBm
BANDPASS FILTER
Manufacturer Microwave Circuits
Model Number B25400M3
Insertion Loss 1.5 dB
Frequency Range 0.35-0.45GHz
ANTENNA
Company Steatite
Frequency Range 2 – 18 GHz
Gain 13 dBi
Antenna Type Ultra Wide Band Omnidirectional
Antenna
Azimuth Beam Width 360º
Company Analog
Devices
Frequency Range 0.02 – 0.5 GHz
Gain 20.9 dB
Noise Figure 2.5 dB
P1dB 20.4 dBm
IP3 40 dBm
Supply Voltage +5 V
Current 98 mA
IF AMPLIFIER
Hand Calculation
Free Space Path Loss: =10Log(4πR/λ)2
R=5000m
λ= 0.017m
FSPL= 129.1 dB
Parameter
Top-level
Spec
Min/
Max
Simulated
Performance
Compliant
(Y/N)
Frequency Band (GHz) 13.4-13.75 Min 13.573 Y
Transmit Output Power (dBm) 21.97 Min 29.28 Y
Transmit Channel Gain (dB) 25 Min 27.54 Y
Transmit Channel PAE (%) 20 Min 29.95 Y
Receive Noise Figure (dB) 2.0 Max 1.602 Y
Receive Channel Gain (dB) 30 Min 36.05 Y
Receive Channel OIP3 (dBm) 23 Min 29.06 Y
TX Antenna Az Beamwidth (degrees) 360 Max 360 Y
RX Antenna Az Beamwidth
(degrees)
360 Max 360 Y
Range (m) 9530 Max 5000 Y
Total DC Power Consumption (W) 5.0 Max 1.9 Y
Compliance Matrix – Communication Link1
Compliance to IEEE Power Density Limits for
Human Exposure (Fig 1.5)
• All the communication and radar links in the
system operate in frequencies close to 15 GHz,
where .
• Lower frequencies penetrate with a higher
References
• http://www.ketemicro.com
• https://everythingrf.com
• http://www.advmic.com/m3x08.html

More Related Content

PDF
Link budget
PDF
Pci planning-for-lte
PPTX
Trends and challenges in vlsi
PPTX
Role of Electronics in Defence
PPT
Combinational Logic
PPT
Eca unit 2
DOCX
Interview question for 2g,3g,4g
PPT
TEMS PARAMETERS
Link budget
Pci planning-for-lte
Trends and challenges in vlsi
Role of Electronics in Defence
Combinational Logic
Eca unit 2
Interview question for 2g,3g,4g
TEMS PARAMETERS

What's hot (20)

PPT
Layer 3 messages (2G)
PDF
Journey of Evolution of UMTS and CDMA
PPT
Digital Signal Processor
PDF
Ece 523 project – fully differential two stage telescopic op amp
PPTX
Power delay profile,delay spread and doppler spread
PDF
Wcdma kpi-analysis
PPT
Design Con VNA
DOC
Drive test learning
PDF
GPS satellite signal acquisition and GPS CA(Gold) code generator
DOCX
Rlc unrecoverable error
DOCX
ADC - Dual Slope Integrator
PPTX
Radar Systems for NTU, 1 Nov 2014
PPTX
Design of CMOS operational Amplifiers using CADENCE
PPTX
Negative amplifiers and its types Positive feedback and Negative feedback
PDF
Throughput calculation for LTE TDD and FDD systems
PPT
Chapter3
PPTX
L6_S18_Introduction to PLL.pptx
PDF
Antenna basic
PDF
Log File Analysis in GSM
PDF
UMTS/WCDMA Call Flows for Handovers
Layer 3 messages (2G)
Journey of Evolution of UMTS and CDMA
Digital Signal Processor
Ece 523 project – fully differential two stage telescopic op amp
Power delay profile,delay spread and doppler spread
Wcdma kpi-analysis
Design Con VNA
Drive test learning
GPS satellite signal acquisition and GPS CA(Gold) code generator
Rlc unrecoverable error
ADC - Dual Slope Integrator
Radar Systems for NTU, 1 Nov 2014
Design of CMOS operational Amplifiers using CADENCE
Negative amplifiers and its types Positive feedback and Negative feedback
Throughput calculation for LTE TDD and FDD systems
Chapter3
L6_S18_Introduction to PLL.pptx
Antenna basic
Log File Analysis in GSM
UMTS/WCDMA Call Flows for Handovers
Ad

Similar to Rf sys ppt tx and rx 1 (20)

PPTX
Automated Parking Enforcement Systems
PPTX
Automated Traffic Density Detection and Speed Monitoring
PPTX
Bandwidth optimization
PDF
RF Basics, RF for Non-RF Engineers.pdf
PDF
A CMOS 79GHz PMCW radar SOC
PDF
Digital Implementation of Costas Loop with Carrier Recovery
PDF
Short Range Radar System using Arduino Uno
PDF
system project
PPT
ADF7021 High Performance Narrowband ISM Transceiver
PPTX
Amplification, ROADM and Optical Networking activities at CPqD
PDF
RF—project
PPT
UAV Presentation
PDF
lassercobbbbbnmmunication-170320093403.pdf
PDF
Cma5000a osa
PPTX
Transmission system used for optical fibers
PPTX
Lasser communication
PDF
Standards1
PDF
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
PDF
LTE Features, Link Budget & Basic Principle
PPT
Introduction To Fso Technology
Automated Parking Enforcement Systems
Automated Traffic Density Detection and Speed Monitoring
Bandwidth optimization
RF Basics, RF for Non-RF Engineers.pdf
A CMOS 79GHz PMCW radar SOC
Digital Implementation of Costas Loop with Carrier Recovery
Short Range Radar System using Arduino Uno
system project
ADF7021 High Performance Narrowband ISM Transceiver
Amplification, ROADM and Optical Networking activities at CPqD
RF—project
UAV Presentation
lassercobbbbbnmmunication-170320093403.pdf
Cma5000a osa
Transmission system used for optical fibers
Lasser communication
Standards1
Multiband Transceivers - [Chapter 7] Multi-mode/Multi-band GSM/GPRS/TDMA/AMP...
LTE Features, Link Budget & Basic Principle
Introduction To Fso Technology
Ad

Recently uploaded (20)

PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
additive manufacturing of ss316l using mig welding
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
composite construction of structures.pdf
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Sustainable Sites - Green Building Construction
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPT
Project quality management in manufacturing
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
Artificial Intelligence
PPTX
Construction Project Organization Group 2.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
R24 SURVEYING LAB MANUAL for civil enggi
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
additive manufacturing of ss316l using mig welding
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
composite construction of structures.pdf
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Foundation to blockchain - A guide to Blockchain Tech
UNIT 4 Total Quality Management .pptx
Sustainable Sites - Green Building Construction
bas. eng. economics group 4 presentation 1.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
Project quality management in manufacturing
Lecture Notes Electrical Wiring System Components
Artificial Intelligence
Construction Project Organization Group 2.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx

Rf sys ppt tx and rx 1

  • 1. An Assisted Autopilot for Unfavorable Road Conditions TEAM MEMBERS: Shakthi Priya Gowri Karthik Devarajan Raghunathan Roshni Prasad Karthikeyan Sadatsharan Jayanathan Ilango THE UNIVERSITY OF TEXAS AT DALLAS EERF 6395 – RF/Microwave Systems Engineering
  • 2. INTRODUCTION • Technological advancements have given rise to “Smart” cars using Autopilot. In a few years, all vehicles will have inbuilt autopilot systems. • However, autonomous driving fails in unpredictable conditions. Studies show that autonomous driving increases the rate of accidents in certain cases. • Applying the predefined set of solutions for example, to stop or slow down the car, may not be the best option and may in turn, worsen the outcome. • Due to the untimely application of autopilot mode, the reliability on such systems remains a question mark. • To overcome this conundrum of whether autonomous driving is an option, we have designed a system that uses: • Weather • Road Conditions • Behavioral Pattern of driver in the vehicle ahead • After evaluating these parameters, our system categorizes the risk into 3 levels, namely, safe, moderate and risky.
  • 3. DESCRIPTION OF SYSTEM • The proposed system aims at adapting the existing system and incorporating an algorithm to improve the efficiency of the autopilot. • The designed system has two uses: • Assist the driver to evaluate whether the vehicle can be put on autopilot. • Assist the driver/autopilot in driving. • This is done using a radar system and two communication channels. • The radar system’s goal is to caution the driver on front and rear collision. • One communication system is used for V2V (Vehicle to Vehicle) communication while the other communication link is to acquire information such as weather forecast, road conditions, construction sights, irregularities on the road from a command center which is connected to the cloud. • The V2V communication helps in evaluating the reliability on autopilot depending on the behavioral pattern of the driver.
  • 4. KEY RF SPECIFICATIONS • Communication System 1: Vehicle to Vehicle  Antenna - Ultra Wide Band Omnidirectional Antenna  Frequency – 16.6 GHz to 17.2 GHz (Ku - Band) • Communication System 2: Vehicle to Command Center  Antenna: Ultra Wide Band Omnidirectional Antenna  Frequency: 13.4 GHz to 13.75GHz (Ku – Band) • RADAR  Antenna – Pyramidal Horn Antenna  Monostatic RADAR  RADAR Frequency – 24 GHz to 40 GHz (Ka - Band) Center Frequency – 30 GHz
  • 6. How the RADAR works? • The radar deployed in the car transmits a signal operating at 30 GHz. • This signal hits the moving vehicle/ stationary object which is ahead as it approaches close to the vehicle. • With the principle of Doppler effect, this signal is reflected with an shift in frequency (Operating frequency +/- Doppler frequency). • This reflected signal is received by the receiver, which alerts the driver about the vehicle present ahead along with its distance. • Doppler frequency can be calculated as
  • 7. Doppler Effect of RADAR Assume the speed with which car was moving = 60 mph (26.8224 meter/s) Operating frequency (f) = 30 GHz We know that λ = c/f Therefore, the wavelength (λ ) = 0.01 m Doppler Frequency (fd) = (2 * Vr )/ λ = (2 * 26.8224 ) / (0.01) = 5364.48 Hz = 5.365 KHz
  • 8. RADAR System Block Diagram Signal Source BPF BPF Driver Amp PA BPFBPF Local Oscillator LNA TX Antenna RX Antenna IF Amp Transmitter Receiver Circulator Mixer Mixer
  • 9. Transmitter System Diagram PORT P=1 Z=_Z0 Ohm BPFB ID=F2 LOSS=3 dB N=3 FP1=24 GHz FP2=40 GHz AP=3.0103 dB NOISE=Auto fc: 30 GHz SPwr: 5.80539 dBm 1 2 3 CIRCULATOR ID=S1 LOSS=0.3 dB ISOL=20 dB VSWR=1.2 NOISE=Auto Z=_Z0 Ohm fc: 30 GHz SPwr: 28.1875 dBm fc: 30 GHz SPwr: 8.48755 dBm LPFB ID=F1 LOSS=0.5 dB N=3 FP=0.5 GHz NOISE=Auto fc: 0.355 GHz SPwr: 18.8015 dBm IN OUT LO MIXER_B ID=A2 MODE=SUM LOMULT=1 FCOUT= RFIFRQ= GCONV=-7.5 dB P1DB= IP3=25 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=4 dB NOISE=Auto fc: 30 GHz SPwr: 8.8088 dBm TONE ID=A1 FRQ=0.355 GHz PWR=-10 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 0.355 GHz SPwr: -10 dBm TONE ID=A4 FRQ=29.645 GHz PWR=0 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 29.645 GHz SPwr: 0 dBm TP ID=TP1 TP ID=TP6 TP ID=TP7 AMP_B ID=A5 GAIN=23 dB P1DB=33 dBm IP3=43 dBm IP2= MEASREF= OPSAT= NF=3.5 dB NOISE=Auto RFIFRQ= fc: 30 GHz SPwr: 28.4875 dBm TP ID=TP5 TP ID=TP4 AMP_B ID=A3 GAIN=32 dB P1DB=19 dBm IP3=32 dBm IP2= MEASREF= OPSAT= NF=2.8 dB NOISE=Auto RFIFRQ= fc: 0.355 GHz SPwr: 19.8273 dBm TP ID=TP2 TP ID=TP3
  • 10. Cascaded Gain (dB) of Radar TX
  • 11. Noise Figure (dB) of Radar TX
  • 12. OIP3 (dBm) of Radar TX
  • 13. Radar TX Hand Calculations Power Added Efficiency: Pdc =(85mA*12V) + (600mA*6V)= 3600 mW Pin = -10 dBm Pout = 28.1875 dBm (outside the transmitter before antenna) PAE = (Pout – Pin) / Pdc = 14.25 % Maximum Range for Minimum Detectable Signal at RX: Pmin= MDS = -100dBm Pt = 28.1875 dBm Rmax= ((Pt G2*σ*λ2) / (Pmin*(4*π)3))^1/4 = 214.7 m EIRP = Pt (dBm) + Gt (dB) = 28.1875 dBm + 20dBi = 48.1875dBm = 68.75 W
  • 14. Company Keysight Technologies MXG X-Series N5181B Frequency Range 9 KHz to 3 GHz Output Power (Max) 24 dBm Noise Figure 50 Ohms TX – Vector Signal Generator TX – Driver Amplifier Company Teledyne Cougar AC618 Frequency Range 10 – 600 MHz Gain 32 dB Noise Figure 2.8 dB P1dB 19 dBm IP3 32 dB VDD 12 V ID 85 mA
  • 15. TX – Low Pass Filter (IF) Company Mini Circuits Coaxial Low Pass Filter Low Insertion Loss Range 0 – 500 MHz 3-dB Cutoff 630 MHz Insertion loss 0.5 dB (Typical) Company Advanced Microwave Inc IF Frequency Range 0 - 4 GHz LO Frequency Range 25 GHz – 32 GHz RF Frequency Range 25 GHz – 32 GHz Conversion Loss 7.5 dB IIP3 20 dBm TX – Mixer for Up-conversion
  • 16. Company Crescent Frequency Products CXA53 Frequency Of Operation 10 – 1500 GHz Voltage Supply 2.5 – 3.3 V Current 30 – 70 mA TX – Local Oscillator TX – Band Pass Filter (RF) Company Planar Monolithics Industries 15CL32G-16G- 292FF Center frequency 30 GHz Frequency Range 24 GHz to 40 GHz Insertion loss 3 dB (Typical)
  • 17. TX – Power Amplifier Company Qorvo TGA2594 Frequency Range 27.5 GHz – 31 GHz Gain 23 dB Noise Figure 3.5 dB P1dB 33 dBm IP3 43 dBm VDD 20 V ID 140 mA Company Kete Microwave Electronics KTWC320-21 Frequency Range 26.4 GHz – 40.1 GHz Insertion Loss 0.3 dB Isolation (Min.) 20 dB VSWR (Max.) 1.2 TX – Circulator
  • 18. Receiver System Diagram AMP_B ID=A4 GAIN=32 dB P1DB=19 dBm IP3=32 dBm IP2= MEASREF= OPSAT= NF=2.8 dB NOISE=Auto RFIFRQ= fc: 0.355 GHz SPwr: 10.839 dBm BPFB ID=F2 LOSS=1.9 dB N=3 FP1=0.31 GHz FP2=0.4 GHz AP=3.0103 dB NOISE=Auto fc: 0.355 GHz SPwr: -21.0888 dBm 1 2 3 CIRCULATOR ID=S1 LOSS=0.3 dB ISOL=20 dB VSWR=1 NOISE=Auto Z=_Z0 Ohm fc: 30 GHz SPwr: -44.1757 dBm fc: 30 GHz SPwr: -63.8757 dBm IN OUT LO MIXER_B ID=A3 MODE=DIFF LOMULT=1 FCOUT= RFIFRQ= GCONV=-2 dB P1DB= IP3=35 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=3.02 dB NOISE=RF Budget only fc: 0.355 GHz SPwr: -19.182 dBm TONE ID=A1 FRQ=30 GHz PWR=-43.8757 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 30 GHz SPwr: -43.8757 dBm PORT P=1 Z=_Z0 Ohm TONE ID=A5 FRQ=30.355 GHz PWR=0 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 30.355 GHz SPwr: 0 dBm TP ID=TP1 TP ID=TP2 TP ID=TP3 TP ID=TP4 TP ID=TP5 TP ID=TP6 TP ID=TP7BPFB ID=F1 LOSS=3 dB N=3 FP1=24 GHz FP2=40 GHz AP=3.0103 dB NOISE=Auto fc: 30 GHz SPwr: -17.1819 dBm AMP_B ID=A2 GAIN=30 dB P1DB=10 dBm IP3= IP2= MEASREF= OPSAT= NF=2.5 dB NOISE=Auto RFIFRQ= fc: 30 GHz SPwr: -14.1785 dBm
  • 19. Cascaded Gain (dB) of Radar RX
  • 20. Noise Figure (dB) of Radar RX
  • 22. Radar RX Hand Calculations Free Space Path Loss: = 10Log(4πR/λ)2 R=200 m λ= 0.01 m FSPL= -108.004 dB
  • 23. Company B&Z Technology BZ- 29003100-251030-101515 Frequency Range 29 GHz – 31 GHz Gain 30 dB Noise Figure 2.5 dB P1dB 10 dBm RX – Low Noise Amplifier Company Kete Microwave Electronics KTWC320-21 Frequency Range 26.4 GHz – 40.1 GHz Insertion Loss 0.3 dB Isolation (Min.) 20 dB VSWR (Max.) 1.2 RX – Circulator
  • 24. RX – Band Pass Filter (RF) Company Planar Monolithics Industries 15CL32G-16G- 292FF Center frequency 30 GHz Frequency Range 24 GHz to 40 GHz Insertion loss 3 dB (Typical) RX – Mixer for Downconverter Company Advanced Microwave Inc IF Frequency Range 0 - 4 GHz LO Frequency Range 25 GHz – 32 GHz RF Frequency Range 25 GHz – 32 GHz Conversion Loss 7.5 dB IIP3 20 dBm
  • 25. RX – IF Amplifier (IF)RX – Band Pass Filter (IF) Company Surface Mount Center frequency 355 MHz Frequency Range 310-400 MHz Insertion loss 1.90 dB (Typical) Company Teledyne Cougar AC618 Frequency Range 10 – 600 MHz Gain 32 dB Noise Figure 2.8 dB P1dB 19 dBm IP3 32 dB VDD 12 V ID 85 mA
  • 26. RADAR Link – System Diagram PORT P=1 Z=_Z0 Ohm PORT P=2 Z=_Z0 Ohm AMP_B ID=A3 GAIN=30 dB P1DB=28 dBm IP3= IP2= MEASREF= OPSAT= NF=3.5 dB NOISE=Auto RFIFRQ= fc: 30 GHz SPwr: 24.4283 dBm AMP_B ID=A5 GAIN=30 dB P1DB=28 dBm IP3= IP2= MEASREF= OPSAT= NF=3.5 dB NOISE=Auto RFIFRQ= fc: 0.355 GHz SPwr: 19.8834 dBm BPFB ID=F2 LOSS=3 dB N=3 FP1=24 GHz FP2=40 GHz AP=3.0103 dB NOISE=Auto fc: 30 GHz SPwr: -5.21174 dBm 1 2 3 CIRCULATOR ID=S1 LOSS=0.3 dB ISOL=20 dB VSWR=1.2 NOISE=Auto Z=_Z0 Ohm fc: 30 GHz SPwr: 24.1283 dBm fc: 30 GHz SPwr: 4.42827 dBm LPFB ID=F1 LOSS=1.5 dB N=3 FP=0.5 GHz NOISE=Auto fc: 0.355 GHz SPwr: 17.8576 dBm IN OUT LO MIXER_B ID=A2 MODE=SUM LOMULT=1 FCOUT= RFIFRQ= GCONV=-7 dB P1DB=2 dBm IP3=10 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=10 dB NOISE=Auto fc: 30 GHz SPwr: -2.20833 dBm TONE ID=A1 FRQ=0.355 GHz PWR=-10 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 0.355 GHz SPwr: -10 dBm TONE ID=A4 FRQ=29.645 GHz PWR=0 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 29.645 GHz SPwr: 0 dBm TP ID=TP1 TP ID=TP2 TP ID=TP3 TP ID=TP4 TP ID=TP5 TP ID=TP6 TP ID=TP7 1 2 ANTENNA ID=S2 ANTGAIN=20 dB NOISE=Auto fc: 30 GHz SPwr: -63.8757 dBm AMP_B ID=A6 GAIN=30 dB P1DB=10 dBm IP3= IP2= MEASREF= OPSAT= NF=2.5 dB NOISE=Auto RFIFRQ= fc: 30 GHz SPwr: -14.1786 dBm AMP_B ID=A7 GAIN=32 dB P1DB=19 dBm IP3=32 dBm IP2= MEASREF= OPSAT= NF=2.8 dB NOISE=Auto RFIFRQ= fc: 0.355 GHz SPwr: 5.88923 dBm BPFB ID=F3 LOSS=3 dB N=3 FP1=24 GHz FP2=40 GHz AP=3.0103 dB NOISE=Auto fc: 30 GHz SPwr: -17.182 dBm BPFB ID=F4 LOSS=1.9 dB N=3 FP1=0.31 GHz FP2=0.4 GHz AP=3.0103 dB NOISE=Auto fc: 0.355 GHz SPwr: -26.0893 dBm 1 2 3 CIRCULATOR ID=S3 LOSS=0.3 dB ISOL=20 dB VSWR=1 NOISE=Auto Z=_Z0 Ohm fc: 30 GHz SPwr: -44.1757 dBm fc: 30 GHz SPwr: -63.8757 dBm IN OUT LO MIXER_B ID=A8 MODE=DIFF LOMULT=1 FCOUT= RFIFRQ= GCONV=-7 dB P1DB= IP3=25 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=4 dB NOISE=Auto fc: 0.355 GHz SPwr: -24.1825 dBm TONE ID=A10 FRQ=30.355 GHz PWR=0 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 30.355 GHz SPwr: 0 dBm TP ID=TP8 TP ID=TP9 TP ID=TP10 TP ID=TP11 TP ID=TP12 TP ID=TP13 TP ID=TP14 12 ANTENNA ID=S4 ANTGAIN=20 dB NOISE=Auto fc: 30 GHz SPwr: -43.8757 dBm
  • 27. Node Power (dBm) of the Radar Transceiver
  • 28. Parameter Top-level Spec Min/ Max Modified Spec Min/ Max Simulated Performance Compliant (Y/N) Frequency Band (GHz) 77 – 81 GHz Min 24 – 40 GHz (30 GHz fc) Min- Max 24 – 40 GHz (30 GHz fc) Y Transmit Output Power (dBm) 22.5 Min - Min 23.4 Y Transmit Channel Gain (dB) 25 Min - Min 38.23 Y Transmit Channel PAE (%) 10 Min Min 14.25 Y Receive Noise Figure (dB) 6 Max - Max 5.797 Y Receive Channel Gain (dB) 25 Min - Min 54.7 Y Receive Channel OIP3 (dBm) 25 Min - Min 30.8 Y TX Antenna Az Beamwidth (degrees) 15 Max - Max 15 Y RX Antenna Az Beamwidth (degrees) 15 Max - Max 15 Y Maximum Range (m) 200 Min - Min 214.7 Y Total DC Power Consumption (W) 5.0 Max - Max 4.6 Y Compliance Matrix – Radar System
  • 29. RF communication Link-1 Block Diagram(V 2 V) Signal Source BPF BPF PA PA BPFBPF Local Oscillator LNA TX Antenna RX Antenna IF Amp Transmitter Receiver
  • 30. TRANSMITTER: BPFB ID=F1 LOSS=3 dB N=3 FP1=16.75 GHz FP2=19.25 GHz AP=3.0103 dB NOISE=Auto SPwr: 0.0392496 mW SPwr: -14.0616 dBm fc: 16.9 GHz BPFB ID=F2 LOSS=1.9 dB N=3 FP1=0.31 GHz FP2=0.4 GHz AP=1 dB NOISE=Auto SPwr: 0.406684 mW SPwr: -3.90743 dBm fc: 0.4 GHz TONE ID=A2 FRQ=16.5 GHz PWR=0 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise SPwr: 1 mW SPwr: 0 dBm fc: 16.5 GHz IN OUT LO MIXER_B ID=A3 MODE=SUM LOMULT=1 FCOUT= RFIFRQ= GCONV=-5.5 dB P1DB=7 dBm IP3=18 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=10 dB NOISE=Auto SPwr: 0.113103 mW SPwr: -9.46526 dBm fc: 16.9 GHz TONE ID=A1 FRQ=0.4 GHz PWR=-1 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise SPwr: 0.794328 mW SPwr: -1 dBm fc: 0.4 GHz TP ID=TP2 TP ID=TP4 AMP_B ID=A5 GAIN=29 dB P1DB=23 dBm IP3=30 dBm IP2= MEASREF= OPSAT= NF=7 dB NOISE=Auto RFIFRQ= SPwr: 29.4231 mW SPwr: 14.6869 dBm fc: 16.9 GHz AMP_B ID=A6 GAIN=15 dB P1DB=28 dBm IP3=36 dBm IP2= MEASREF= OPSAT= NF=4 dB NOISE=Auto RFIFRQ= SPwr: 738.693 mW SPwr: 28.6846 dBm fc: 16.9 GHz TP ID=TP5TP ID=TP3 TP ID=TP6TP ID=TP1
  • 31. GAIN
  • 34. COMPONENTS BANDPASS FILTER Company Surface Mount Center frequency 355MHz Frequency Range 310-400MHz Insertion loss 1.90 dB MIXER MR1407 Company Spectrum Microwave IF Frequency Range DC-800MHz RF/LO Frequency Range 3-18GHz Conversion Loss 1.90dB Input 1 dB Compression 7dB OIP3 18dB Operating Temperature Range -54 C to +94 C
  • 35. BANDPASS FILTER Company NIC Center frequency 18 GHz Frequency Range 16.75-19.25 GHz Insertion loss 1 dB NIC 0BA69 GaAs pHEMT MMIC DRIVER AMPLIFIER Company Analog Devices Frequency Range 5 – 17 GHz Gain 29 dB Noise Figure 7 dB P1dB 23 dBm IP3 30 dBm Supply Voltage +5V Current 180mA
  • 36. Company Analog Devices Frequency Range 18 – 26 GHz Gain 15 dB Noise Figure 3 dB P1dB 28 dBm IP3 36 dBm Supply Voltage +5V Current 200mA POWER AMPLIFIER GaAs pHEMT MMIC QOM-SL-0.9-20-S-SG-R ANTENNA Company Steatite Frequency Range 0.9 – 20 GHz Gain 6.3 dBi Antenna Type Ultra Wide Band Omnidirectional Antenna Azimuth Beam Width 360º
  • 37. HAND CALCULATION Pt=28.7195dBm (744.64mW) Gt=Gr=6.3dBi (4.265) F = 16.9GHz MDS=10-9 mW 1. R_max = [(Pt*Gt*Gr*λ2) / (MDS*(4*π)2]1/2 R_max = 4.97 Km Operating distance(R) = 3000m 2. Pt=28.7195dBm (744.64mW) Pr= Pt*Gt*Gr* λ 2/(4*π*R)2= -85.59 dBm 3. EIRP= Pt(dBm) + Gt(dBi) = 28.7195+6.3 = 33.28dBm (2.12W) 4. PAE OF THE SYSTEM Input power : 0.79mW Output Power : 744.642 mW DC Power, PDC : 900 mW + 1000 mW = 1900 mW ηPAE=(Pout-Pin)/Pdc = 39.31%
  • 38. RECEIVER BPFB ID=F1 LOSS=1.9 dB N=3 FP1=0.31 GHz FP2=0.4 GHz AP=1 dB NOISE=Auto SPwr: -71.5938 dBm fc: 0.4 GHz AMP_B ID=A2 GAIN=20.9 dB P1DB=20.4 dBm IP3=40 dBm IP2= MEASREF= OPSAT= NF=2.5 dB NOISE=Auto RFIFRQ= SPwr: -50.6938 dBm fc: 0.4 GHz AMP_B ID=A5 GAIN=27 dB P1DB=26 dBm IP3=35 dBm IP2= MEASREF= OPSAT= NF=2 dB NOISE=Auto RFIFRQ= SPwr: -58.59 dBm fc: 16.9 GHz BPFB ID=F2 LOSS=3 dB N=3 FP1=16.75 GHz FP2=19.25 GHz AP=3.0103 dB NOISE=Auto SPwr: -63.1864 dBm fc: 16.9 GHz IN OUT LO MIXER_B ID=A3 MODE=DIFF LOMULT=1 FCOUT= RFIFRQ= GCONV=-5.5 dB P1DB=8 dBm IP3=18 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=10 dB NOISE=Auto SPwr: -68.6864 dBm fc: 0.4 GHz TP ID=TP1 TP ID=TP2 TP ID=TP3TONE ID=A1 FRQ=16.9 GHz PWR=-85.59 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise SPwr: -85.59 dBm fc: 16.9 GHz TP ID=TP5 TONE ID=A4 FRQ=16.5 GHz PWR=0 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise SPwr: 0 dBm fc: 16.5 GHz TP ID=TP4 TP ID=TP6
  • 39. GAIN
  • 41. OIP3
  • 44. COMPONENTS Company Analog Devices Frequency Range 12 – 17 GHz Gain 27 dB Noise Figure 2 dB P1dB 26 dBm IP3 35 dBm Supply Voltage +5V Current 250mA LOW NOISE AMPLIFIER BANDPASS FILTER Company NIC Center frequency 18 GHz Frequency Range 16.75-19.25 GHz Insertion loss 1 dB NIC 0BA69
  • 45. MR1407 MIXER Company Spectrum Microwave IF Frequency Range DC-800MHz RF/LO Frequency Range 3-18GHz Conversion Loss 1.90dB Input 1 dB Compression 7dB OIP3 18dB Operating Temperature Range -54 C to +94 C BANDPASS FILTER Company Surface Mount Center frequency 355MHz Frequency Range 310-400MHz Insertion loss 1.90 dB
  • 46. Company Analog Devices Frequency Range 0.02 – 0.5 GHz Gain 20.9 dB Noise Figure 2.5 dB P1dB 20.4 dBm IP3 40 dBm Supply Voltage +5 V Current 98 mA IF AMPLIFIER QOM-SL-0.9-20-S-SG-R ANTENNA Company Steatite Frequency Range 0.9 – 20 GHz Gain 6.3 dBi Antenna Type Ultra Wide Band Omnidirectional Antenna Azimuth Beam Width 360º
  • 47. HAND CALCULATION Free Space Path Loss: =10Log(4πR/λ)2 R=3000m λ= 0.017m FSPL= 126.91 dB
  • 48. AMP_B ID=A5 GAIN=29 dB P1DB=23 dBm IP3=30 dBm IP2= MEASREF= OPSAT= NF=7 dB NOISE=Auto RFIFRQ= fc: 16.9 GHz SPwr: 14.6869 dBm AMP_B ID=A6 GAIN=15 dB P1DB=28 dBm IP3=36 dBm IP2= MEASREF= OPSAT= NF=4 dB NOISE=Auto RFIFRQ= fc: 16.9 GHz SPwr: 28.6846 dBm BPFB ID=F1 LOSS=3 dB N=3 FP1=16.75 GHz FP2=19.25 GHz AP=3.0103 dB NOISE=Auto fc: 16.9 GHz SPwr: -14.0616 dBm BPFB ID=F2 LOSS=1.9 dB N=3 FP1=0.31 GHz FP2=0.4 GHz AP=1 dB NOISE=Auto fc: 0.4 GHz SPwr: -3.90743 dBm AMP_B ID=A4 GAIN=20.9 dB P1DB=20.4 dBm IP3=40 dBm IP2= MEASREF= OPSAT= NF=2.5 dB NOISE=Auto RFIFRQ= fc: 0.4 GHz SPwr: -50.8192 dBm TP ID=TP7 TP ID=TP10 TP ID=TP12 TP ID=TP13 TP ID=TP5 AMP_B ID=A7 GAIN=27 dB P1DB=26 dBm IP3=35 dBm IP2= MEASREF= OPSAT= NF=2 dB NOISE=Auto RFIFRQ= fc: 16.9 GHz SPwr: -58.7154 dBm TONE ID=A1 FRQ=0.4 GHz PWR=-1 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 0.4 GHz SPwr: -1 dBm 12 ANTENNA ID=S1 ANTGAIN=6.3 dB NOISE=Auto fc: 16.9 GHz SPwr: 34.9846 dBm TP ID=TP2 TP ID=TP3 TP ID=TP6 TONE ID=A10 FRQ=16.5 GHz PWR=0 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 16.5 GHz SPwr: 0 dBm TP ID=TP4 BPFB ID=F4 LOSS=3 dB N=3 FP1=16.75 GHz FP2=19.25 GHz AP=3.0103 dB NOISE=Auto fc: 16.9 GHz SPwr: -63.3117 dBm TONE ID=A2 FRQ=16.5 GHz PWR=0 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 16.5 GHz SPwr: 0 dBm IN OUT LO MIXER_B ID=A3 MODE=SUM LOMULT=1 FCOUT= RFIFRQ= GCONV=-5.5 dB P1DB=7 dBm IP3=18 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=10 dB NOISE=Auto fc: 16.9 GHz SPwr: -9.46526 dBm TP ID=TP1 IN OUT LO MIXER_B ID=A8 MODE=DIFF LOMULT=1 FCOUT= RFIFRQ= GCONV=-5.5 dB P1DB=8 dBm IP3=18 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=10 dB NOISE=Auto fc: 0.4 GHz SPwr: -68.8117 dBm 1 2 ANTENNA ID=S2 ANTGAIN=6.3 dB NOISE=Auto fc: 16.9 GHz SPwr: -85.7154 dBm TP ID=TP8 TP ID=TP9 TP ID=TP11 BPFB ID=F3 LOSS=1.9 dB N=3 FP1=0.31 GHz FP2=0.4 GHz AP=1 dB NOISE=Auto fc: 0.4 GHz SPwr: -71.7192 dBm TRANSCEIVER
  • 50. Compliance Matrix – Communication Link1 Parameter Top-level Spec Min/ Max Simulated Performance Compliant (Y/N) Frequency Band (GHz) 16.8-17.2 Min 16.9 Y Transmit Output Power (dBm) 22.5 Min 28.64 Y Transmit Channel Gain (dB) 22 Min 29.64 Y Transmit Channel PAE (%) 30 Min 39.31 Y Receive Noise Figure (dB) 4 Max 2.6 Y Receive Channel Gain (dB) 30 Min 34.9 Y Receive Channel OIP3 (dBm) 23 Min 29.97 Y TX Antenna Az Beamwidth (degrees) 360 Max 360 Y RX Antenna Az Beamwidth (degrees) 360 Max 360 Y Range (m) 4970 Max 3000 Y Total DC Power Consumption (W) 5.0 Max 1.9W Y
  • 51. Signal Source BPF BPF PA PA BPFBPF Local Oscillator LNA TX Antenna RX Antenna IF Amp Transmitter Receiver RF communication Link-2 Block Diagram(Vehicle to Command center)
  • 52. TRANSMITTER: TONE ID=A1 FRQ=0.4 GHz PWR=0 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 0.4 GHz SPwr: 0 dBm TP ID=TP2 IN OUT LO MIXER_B ID=A2 MODE=SUM LOMULT=1 FCOUT= RFIFRQ= GCONV=-8.5 dB P1DB=11.5 dBm IP3=21 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=10 dB NOISE=Auto fc: 13.573 GHz SPwr: -13.0432 dBm TONE ID=A3 FRQ=13.173 GHz PWR=10 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 13.173 GHz SPwr: 10 dBm BPFB ID=F2 LOSS=1.8 dB N=3 FP1=13.345 GHz FP2=14.095 GHz AP=3.0103 dB NOISE=Auto fc: 13.573 GHz SPwr: -14.8909 dBm TP ID=TP4 AMP_B ID=A4 GAIN=14.5 dB P1DB=28 dBm IP3=39 dBm IP2= MEASREF= OPSAT= NF=3.5 dB NOISE=Auto RFIFRQ= fc: 13.573 GHz SPwr: 27.5613 dBm BPFB ID=F1 LOSS=1.5 dB N=3 FP1=0.31 GHz FP2=0.4 GHz AP=3.0103 dB NOISE=Auto fc: 0.4 GHz SPwr: -4.5188 dBm TP ID=TP6 TP ID=TP3 TP ID=TP5 TP ID=TP1 AMP_B ID=A5 GAIN=29 dB P1DB=23 dBm IP3=30 dBm IP2= MEASREF= OPSAT= NF=7 dB NOISE=Auto RFIFRQ= fc: 13.573 GHz SPwr: 13.899 dBm
  • 53. GAIN
  • 56. HAND CALCULATION Pt=28.7195dBm (744.64mW) Gt=Gr=13dBi F = 13.57GHz MDS=10-8 mW 1. R_max = [(Pt*Gt*Gr*λ2) / (MDS*(4*π)2]1/2 R_max = 9.53Km Operating distance(R) = 5000m 2. Pt=28.7195dBm (744.64mW) Pr= Pt*Gt*Gr* λ 2/(4*π*R)2= -74.39 dBm 3. EIRP= Pt(dBm) + Gt(dBi) = 28.71+13 = 41.71dBm 4. PAE OF THE SYSTEM Input power : 1mW Output Power : 744.642 mW DC Power, PDC : 900 mW + 1000 mW = 1900 mW ηPAE=(Pout-Pin)/Pdc = 29.95%
  • 57. COMPONENTS MIXER HMC558A Company Spectrum Microwave IF Frequency Range DC-6GHz RF/LO Frequency Range 5.5-14GHz Conversion Loss -8.5dB Input 1 dB Compression 11.5dBm OIP3 21dBm BANDPASS FILTER Company Microwave Circuits Model Number B25400M3 Insertion Loss 1.5 dB Frequency Range 350 – 450 MHz
  • 58. Manufacturer Microwave Circuits Model Number B0513G71 Insertion Loss 1.8 dB Frequency Range 13.345 GHz – 14.095 GHz BANDPASS FILTER GaAs pHEMT MMIC DRIVER AMPLIFIER Company Analog Devices Frequency Range 5 – 17 GHz Gain 29 dB Noise Figure 7 dB P1dB 23 dBm IP3 30 dBm Supply Voltage +5V Current 180mA
  • 59. Company Analog Devices Frequency Range 18 – 26 GHz Gain 15 dB Noise Figure 3 dB P1dB 28 dBm IP3 39 dBm Supply Voltage +5V Current 200mA POWER AMPLIFIER GaAs pHEMT MMIC ANTENNA Company Steatite Frequency Range 2 – 18 GHz Gain 13 dBi Antenna Type Ultra Wide Band Omnidirectional Antenna Azimuth Beam Width 360º
  • 60. RECEIVER TP ID=TP5 IN OUT LO MIXER_B ID=A3 MODE=DIFF LOMULT=1 FCOUT= RFIFRQ= GCONV=-8.5 dB P1DB=11.5 dBm IP3=21 dBm LO2OUT=-25 dB IN2OUT=-20 dB LO2IN=-25 dB OUT2IN=-25 dB PLO= PLOUSE=Spur reference only PIN= PINUSE=IN2OUTH Only NF=10 dB NOISE=Auto fc: 0.402 GHz SPwr: -70.0477 dBm TP ID=TP6 TP ID=TP3 BPFB ID=F1 LOSS=1.8 dB N=3 FP1=13.345 GHz FP2=14.095 GHz AP=3.0103 dB NOISE=Auto fc: 13.573 GHz SPwr: -61.5477 dBm TP ID=TP4 TP ID=TP2 TONE ID=A4 FRQ=13.171 GHz PWR=10 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 13.171 GHz SPwr: 10 dBm AMP_B ID=A5 GAIN=20.9 dB P1DB=20.4 dBm IP3=40 dBm IP2= MEASREF= OPSAT= NF=2.5 dB NOISE=Auto RFIFRQ= fc: 0.402 GHz SPwr: -50.6547 dBm BPFB ID=F2 LOSS=1.5 dB N=3 FP1=0.35 GHz FP2=0.45 GHz AP=3.0103 dB NOISE=Auto fc: 0.402 GHz SPwr: -71.5547 dBm TONE ID=A1 FRQ=13.573 GHz PWR=-86.7 dBm PHS=0 Deg CTRFRQ= SMPFRQ= ZS=_Z0 Ohm TN=_TAMB DegK NOISE=Auto PNMASK= PNOISE=No phase noise fc: 13.573 GHz SPwr: -86.7 dBm TP ID=TP1 AMP_B ID=A2 GAIN=27 dB P1DB=13 dBm IP3=24 dBm IP2= MEASREF= OPSAT= NF=1.4 dB NOISE=Auto RFIFRQ= fc: 13.573 GHz SPwr: -59.7 dBm
  • 61. GAIN
  • 63. OIP3
  • 66. COMPONENTS Company Qorvo Frequency Range 5– 15 GHz Gain 27 dB Noise Figure 1.4 dB P1 dB 13 dBm IP3 24 dBm Supply Voltage +5V Current 160mA LOW NOISE AMPLIFIER BANDPASS FILTER TGA2512 Manufacturer Microwave Circuits Model Number B0513G71 Insertion Loss 1.8 dB Frequency Range 13.345 GHz – 14.095 GHz
  • 67. HMC558A MIXER Company Spectrum Microwave IF Frequency Range DC-6GHz RF/LO Frequency Range 5.5-14GHz Conversion Loss -8.5dB Input 1 dB Compression 11.5dBm OIP3 21dBm BANDPASS FILTER Manufacturer Microwave Circuits Model Number B25400M3 Insertion Loss 1.5 dB Frequency Range 0.35-0.45GHz
  • 68. ANTENNA Company Steatite Frequency Range 2 – 18 GHz Gain 13 dBi Antenna Type Ultra Wide Band Omnidirectional Antenna Azimuth Beam Width 360º Company Analog Devices Frequency Range 0.02 – 0.5 GHz Gain 20.9 dB Noise Figure 2.5 dB P1dB 20.4 dBm IP3 40 dBm Supply Voltage +5 V Current 98 mA IF AMPLIFIER
  • 69. Hand Calculation Free Space Path Loss: =10Log(4πR/λ)2 R=5000m λ= 0.017m FSPL= 129.1 dB
  • 70. Parameter Top-level Spec Min/ Max Simulated Performance Compliant (Y/N) Frequency Band (GHz) 13.4-13.75 Min 13.573 Y Transmit Output Power (dBm) 21.97 Min 29.28 Y Transmit Channel Gain (dB) 25 Min 27.54 Y Transmit Channel PAE (%) 20 Min 29.95 Y Receive Noise Figure (dB) 2.0 Max 1.602 Y Receive Channel Gain (dB) 30 Min 36.05 Y Receive Channel OIP3 (dBm) 23 Min 29.06 Y TX Antenna Az Beamwidth (degrees) 360 Max 360 Y RX Antenna Az Beamwidth (degrees) 360 Max 360 Y Range (m) 9530 Max 5000 Y Total DC Power Consumption (W) 5.0 Max 1.9 Y Compliance Matrix – Communication Link1
  • 71. Compliance to IEEE Power Density Limits for Human Exposure (Fig 1.5) • All the communication and radar links in the system operate in frequencies close to 15 GHz, where . • Lower frequencies penetrate with a higher