SlideShare a Scribd company logo
Robust	
  Empty	
  Reposi.oning	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
in	
  Large-­‐Scale	
  Freight	
  Consolida.on	
  
                  Networks	
  	
  
               Alan	
  Erera1,	
  Antonio	
  Carbajal1,	
  
                       Mar.n	
  Savelsbergh2	
  
       1	
  School	
  of	
  Industrial	
  and	
  Systems	
  Engineering,	
  Georgia	
  Tech	
  	
  

       2	
  University	
  of	
  Newcastle,	
  Australia	
  




                                  Odysseus	
  2012	
  
What	
  to	
  remember	
  
1.  Robust	
  models	
  for	
  empty	
  mobile	
  resource	
  
    management	
  pragma.c	
  and	
  effec.ve	
  
2.  Empty	
  resource	
  hubs	
  useful	
  for	
  very	
  large-­‐
    scale	
  reposi.oning	
  networks	
  
3.  Rolling-­‐horizon	
  deployments	
  of	
  two-­‐stage	
  
    robust	
  op.miza.on	
  models	
  should	
  u.lize:	
  
       –  short	
  robust	
  horizons	
  
       –  rolling	
  robust	
  constraints	
  


	
  
Consolida.on	
  networks	
  
                                 Customer
                                 Satellite terminal
                                 Hub terminal
origin




                                           destination
Consolida.on	
  networks	
  
Net weekly surplus                           -3                   Satellite terminal
of empty trailers                                                 Hub terminal
                           +5
                                                  -5
                                        -1
                                                                       +2


                 +4                                          +1
                            +1               -1        +1
     +1
                                +3                                      +4
            +3
                                                  -4
-3
                                    0
                      +3                                +2
 +1                                                                     -3
                                0            -6                   +1
                 -2                                         -1
Dynamic	
  trailer	
  reposi.oning	
  
•  Large-­‐scale	
  terminal	
  network	
  
    –  250+	
  satellites	
  and	
  hubs	
  
•  Dynamics	
  
    –  Several	
  decision	
  epochs	
  daily	
  
    –  Today’s	
  projected	
  demand	
  for	
  trailers	
  accurate	
  
    –  Tomorrow’s	
  (and	
  beyond)	
  significantly	
  uncertain	
  
•  Goal	
  
    –  Best	
  empty	
  reposi.oning	
  plan	
  each	
  epoch	
  
Modeling	
  approaches	
  
•  Determinis.c	
  rolling-­‐horizon	
  network	
  flow	
  LP	
  
   –  Assume	
  that	
  trailer	
  demands	
  tomorrow	
  (and	
  
      beyond)	
  behave	
  as	
  expected	
  	
  
•  Stochas.c	
  models	
  
   –  Minimize	
  expected	
  costs	
  given	
  probabilis.c	
  model	
  
      of	
  demand	
  
   –  Powell	
  (87),	
  Frantzeskakis	
  and	
  Powell	
  (90),	
  
      Cheung	
  and	
  Powell	
  (96),	
  Godfrey	
  and	
  Powell	
  (02a,	
  
      02b)	
  	
  	
  	
  
   –  Crainic	
  (93),	
  Di	
  Francesco,	
  et	
  al.	
  (09)	
  
Modeling	
  approaches	
  
•  Robust	
  op.miza.on	
  models	
  
   –  Bertsimas	
  and	
  Sim	
  (03),	
  Atamturk	
  and	
  Zhang	
  (07)	
  
   –  Morales	
  (06),	
  Erera	
  et.	
  al.	
  (09)	
  
       •  Two-­‐stage	
  model	
  
       •  Explicit	
  focus	
  on	
  future	
  feasibility	
  
       •  Minimize	
  cost	
  of	
  planned	
  movements	
  such	
  that	
  a	
  
          feasible	
  set	
  of	
  recovery	
  movements	
  exists	
  for	
  each	
  non-­‐
          extreme	
  scenario	
  
Two-­‐stage	
  robust	
  reposi.oning	
  
      First stage decisions

      t=0        t=1          t=2   t=3   t=4   t=5
  A


  B


  C


  D


  E
Two-­‐stage	
  robust	
  reposi.oning	
  
      First stage net supply         bi
      t=0           t=1            t=2       t=3        t=4       t=5
  A

        Initial trailers
  B
                      +2
                                Known and expected future loaded moves
  C
        +6                 -2                      -1

  D


  E
                                     +2                   +1
Two-­‐stage	
  robust	
  reposi.oning	
  
      Second stage “recovery” decisions

      t=0       t=1       t=2      t=3    t=4   t=5
  A


  B


  C


  D


  E
Two-­‐stage	
  robust	
  reposi.oning	
  
      Second stage uncertain demand

      t=0       t=1      t=2        t=3        t=4         t=5
  A


  B

                      Intervals on future loaded moves   [a , a ]
  C

                                          [0, 2]
  D


  E
Two-­‐stage	
  robust	
  reposi.oning	
  
•  First	
  stage	
  network	
  flow	
  
           
   min            c a xa
           a
                              
                     xa −               x a = bi   ∀i∈N
         a∈δ + (i)          a∈δ − (i)

                     xa ≥ 0       and integer ∀ a ∈ A
•  Second	
  stage	
  “recovery	
  flow”	
  for	
  each	
  scenario	
  
                            
               wa (ω) −                wa (ω) = bi (ω) − bi   ∀i∈N
   a∈δ + (i)               a∈δ − (i)

                     xa + wa (ω) ≥ 0                          ∀a∈A
Two-­‐stage	
  robust	
  reposi.oning	
  
•  Key	
  result:	
  Existence	
  of	
  Recovery	
  Flow	
  
      
                  xa ≥ ν(U )   ∀ U is inbound-closed
   a∈δ + (U )∩I


            t=0       t=1      t=2       t=3        t=4        t=5
        A


        B


        C
Two-­‐stage	
  robust	
  reposi.oning	
  
•  Inbound	
  closed	
  set	
  
   –  node	
  set	
  with	
  no	
  incoming	
  recovery	
  transporta.on	
  
      arcs	
  

           t=0       t=1          t=2      t=3       t=4        t=5
       A


       B


       C
Two-­‐stage	
  robust	
  reposi.oning	
  
•  Inbound	
  closed	
  set	
  
   –  this	
  example	
  not	
  inbound-­‐closed	
  


           t=0       t=1          t=2      t=3         t=4   t=5
       A


       B


       C
Two-­‐stage	
  robust	
  reposi.oning	
  
•  Worst-­‐case	
  vulnerability	
  of	
  inbound-­‐closed	
  set	
  
    
                    xa ≥ ν(U )  ∀ U is inbound-closed
   a∈δ + (U )∩I                                         
                         ν(U ) =         a −        a +   bi
   	
                            a∈δ + (U )         a∈δ − (U )    i∈U

              t=0       t=1      t=2          t=3        t=4     t=5
          A
                                                    [0, 2]

          B
                                  [1, 5]
          C
Challenges	
  
(1) Smart	
  recovery	
  network	
  
       –  Low-­‐cost	
  moves	
  (since	
  costs	
  not	
  modeled)	
  
       –  Opera.onally	
  simple	
  
(2) Appropriate	
  use	
  of	
  two-­‐stage	
  model	
  
       –  Controlling	
  conserva.sm	
  pragma.cally	
  
       –  Special	
  considera.ons	
  for	
  rolling	
  horizon	
  
          implementa.on	
  
       –  Solvable	
  (but	
  very	
  large	
  scale)	
  MIPs	
  
	
  
Smart	
  recovery	
  network	
  
Empty hubs

                        Region 1




                        Region 2




                        Region 3
Controlling	
  conserva.sm	
  

•  Exclude	
  extreme	
  scenarios	
  
   –  Narrow	
  the	
  width	
  of	
  intervals	
   [a , a ]
   –  Limit	
  to	
  k	
  the	
  number	
  of	
  uncertain	
  quan..es	
  that	
  
      may	
  simultaneously	
  take	
  on	
  an	
  extreme	
  quan.ty	
  
•  Challenges	
  for	
  large	
  .me-­‐expanded	
  networks	
  
   –  Very	
  large	
  numbers	
  of	
  inbound-­‐closed	
  sets	
  and	
  
      associated	
  robust	
  constraints:	
       O(τ nS )
   –  Difficult	
  to	
  judge	
  in	
  advance	
  which	
  robust	
  
      constraints	
  will	
  be	
  ac.ve	
  
Two-­‐stage	
  robust	
  reposi.oning	
  
•  Bounded	
  vulnerability	
  of	
  inbound-­‐closed	
  set	
  
                                                                                         
                                                                                      
max                           (a − a )za +                (a − a )za |       za = k
  z                                                                                      
                 a∈δ + (U )                    a∈δ − (U )
      	
  
                   t=0            t=1      t=2              t=3        t=4       t=5
             A
                                                                  [0, 2]

             B
                                               [1, 5]
             C
Appropriate	
  use	
  of	
  two-­‐stage	
  model	
  
        Terminal limit
           known                future
    A


    B


    C


    D


 –  inbound-­‐closed	
  sets	
  with	
  L+1	
  terminals	
  or	
  fewer	
  
Appropriate	
  use	
  of	
  two-­‐stage	
  model	
  
        Robust horizon
           known                future
    A


    B


    C


    D
                                         robust horizon

 –  inbound-­‐closed	
  sets	
  include	
  no	
  nodes	
  aher	
  RH	
  
Appropriate	
  use	
  of	
  two-­‐stage	
  model	
  
         Rolling-horizon robust constraints
              known                       future
     A


     B


     C


     D
                                                     robust horizon
 –  add	
  constraints	
  now	
  for	
  future	
  horizon	
  rolls	
  
      •  assume	
  that	
  demand	
  intervals	
  do	
  not	
  change	
  
Appropriate	
  use	
  of	
  two-­‐stage	
  model	
  
         Rolling-horizon robust constraints
              known                                      future
     A


     B


     C


     D
                                                                            robust horizon
 –  add	
  constraints	
  now	
  for	
  future	
  horizon	
  rolls	
  
      •  assume	
  that	
  demand	
  intervals	
  do	
  not	
  change	
  
Tes.ng	
  the	
  ideas	
  
•  Givens	
  
   –  Historical	
  data	
  from	
  a	
  na.onal	
  consolida.on	
  
      trucking	
  carrier	
  	
  
   –  Loaded	
  moves	
  involve	
  264	
  terminals	
  
   –  Reposi.oning	
  moves	
  (truck	
  and	
  rail)	
  
   –  10	
  empty	
  hubs	
  
   –  At	
  most	
  4	
  daily	
  dispatch	
  .mes	
  per	
  terminal	
  
   –  Wide	
  forecast	
  intervals	
  on	
  loaded	
  demands	
  (+/-­‐	
  
      50%	
  of	
  actual)	
  
Tes.ng	
  the	
  ideas	
  
•  Horizons	
  
    –  14	
  weeks	
  of	
  data	
  
    –  Planning	
  horizon	
  of	
  7	
  days	
  for	
  each	
  model	
  
•  Network	
  size	
  for	
  7-­‐day	
  planning	
  horizon	
  
    –  5,000	
  .me-­‐space	
  nodes	
  
    –  300,000	
  arcs	
  
        •  Primarily	
  reposi.oning	
  arcs	
  
        •  Limited	
  connec.ons	
  
Tes.ng	
  the	
  ideas	
  
•  Simulate	
  
   –  Assume	
  today’s	
  loaded	
  demands	
  known	
  
   –  Solve	
  model,	
  implement	
  today’s	
  decisions	
  
       •  Assume	
  trailer	
  deficits	
  covered	
  by	
  an	
  outsourced	
  trailer	
  
   –  Draw	
  realiza.on	
  of	
  tomorrow’s	
  demands	
  
   –  Repeat	
  
Figure 18: Unmet demands on a given day - Scenario 2

                 Results	
  




 Figure 19: Cumulative unmet demands - Scenario 2
Figure 20: Execution costs on a given day - Scenario 2

                  Results	
  




 Figure 21: Cumulative execution costs - Scenario 2
Short	
  planning	
  horizons	
  




Figure 22: Cumulative unmet demands with different planning horizons - Scenario 1
Next	
  steps	
  
•  Refinements	
  
    –  More	
  reasonable	
  model	
  of	
  true	
  uncertainty	
  in	
  
       demand	
  
    –  Understand	
  sources	
  of	
  cost	
  escala.on,	
  including	
  if	
  
       and	
  where	
  excessive	
  conserva.sm	
  introduced	
  
•  Empty	
  hub	
  selec.on	
  
•  Fleet	
  size	
  versus	
  reposi.oning	
  cost	
  for	
  robust	
  
   plans	
  
What	
  to	
  remember	
  
1.  Robust	
  models	
  for	
  empty	
  mobile	
  resource	
  
    management	
  pragma.c	
  and	
  effec.ve	
  
2.  Empty	
  resource	
  hubs	
  useful	
  for	
  very	
  large-­‐
    scale	
  reposi.oning	
  networks	
  
3.  Rolling-­‐horizon	
  deployments	
  of	
  two-­‐stage	
  
    robust	
  op.miza.on	
  models	
  should	
  u.lize:	
  
       –  short	
  robust	
  horizons	
  
       –  rolling	
  robust	
  constraints	
  


	
  

More Related Content

PDF
Dynamic Dispatch Waves for Same-day Delivery
PPTX
Dynamic and Stochastic Berth and Quay Crane Allocation, TSL Workshop, 2013
PDF
Web Service Composition as a Planning Task: Experiments using Knowledge-Based...
PPT
0006.scheduling not-ilp-not-force
PDF
Ultrasound Modular Architecture
PPTX
BIRTE-13-Kawashima
PPT
Mpage Scicomp14 Bynd Tsk Geom
DOC
Ch5 answers
Dynamic Dispatch Waves for Same-day Delivery
Dynamic and Stochastic Berth and Quay Crane Allocation, TSL Workshop, 2013
Web Service Composition as a Planning Task: Experiments using Knowledge-Based...
0006.scheduling not-ilp-not-force
Ultrasound Modular Architecture
BIRTE-13-Kawashima
Mpage Scicomp14 Bynd Tsk Geom
Ch5 answers

What's hot (9)

PPTX
Cmu Lecture on Hadoop Performance
PPTX
Oxford 05-oct-2012
PDF
Improvement of Scheduling Granularity for Deadline Scheduler
PDF
A TRAINING METHOD USING
 DNN-GUIDED LAYERWISE PRETRAINING
 FOR DEEP GAUSSIAN ...
PDF
The International Journal of Engineering and Science (The IJES)
PDF
Process Algebras and Petri Nets are Discrete Dynamical Systems
ODP
Mobicents Media Server theory, practice, cloud considerations, design discuss...
PDF
PDF
First Place Memocode'14 Design Contest Entry
Cmu Lecture on Hadoop Performance
Oxford 05-oct-2012
Improvement of Scheduling Granularity for Deadline Scheduler
A TRAINING METHOD USING
 DNN-GUIDED LAYERWISE PRETRAINING
 FOR DEEP GAUSSIAN ...
The International Journal of Engineering and Science (The IJES)
Process Algebras and Petri Nets are Discrete Dynamical Systems
Mobicents Media Server theory, practice, cloud considerations, design discuss...
First Place Memocode'14 Design Contest Entry
Ad

Viewers also liked (20)

PPTX
Presentation
PPTX
Regnes
PPTX
Yooooooooooooooooooooooooooooooooooo
PPTX
Mobile devices
PPTX
What's New for Blackbaud Canada
PPSX
04 2013 alumnesp3p4p5_sils
PPT
I linguaggi delle nostre professioni: l'ingegneria
ODP
Untitled 1
PDF
OBOC Press Release
PDF
An2292 01
PPTX
Dalelands initiative
PDF
Predicting baseline d13C signatures of a lake food
PPT
Sps Algemeen En 16x9
PDF
Beasiswa s2 bagi guru smp 2014
PDF
Social Issues
PDF
Freello | Mobile Marketing 4 MEDIA
PPTX
Aprendiendo sobre el cuerpo humano
PPTX
מצגת פודקסטים בהוראה
Presentation
Regnes
Yooooooooooooooooooooooooooooooooooo
Mobile devices
What's New for Blackbaud Canada
04 2013 alumnesp3p4p5_sils
I linguaggi delle nostre professioni: l'ingegneria
Untitled 1
OBOC Press Release
An2292 01
Dalelands initiative
Predicting baseline d13C signatures of a lake food
Sps Algemeen En 16x9
Beasiswa s2 bagi guru smp 2014
Social Issues
Freello | Mobile Marketing 4 MEDIA
Aprendiendo sobre el cuerpo humano
מצגת פודקסטים בהוראה
Ad

Similar to Robust Repositioning in Large-scale Networks (20)

PPTX
Teknik Simulasi
PDF
Lecture8 multi class_svm
PDF
Coherent feedback formulation of a continuous quantum error correction protocol
PDF
Dsoop (co 221) 1
PPT
04030038 proposal presentation
PDF
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
PDF
ACM ICPC 2015 NEERC (Northeastern European Regional Contest) Problems Review
PDF
Alex1 group2
PPT
Time series Forecasting using svm
PPTX
Aaex4 group2(中英夾雜)
PPT
lecture3.pptlecture3 data structures pptt
PPT
Chapter 5
PDF
PPTX
Aaex3 group2
PPTX
VHDL and Cordic Algorithim
PPT
Tpr star tree
PDF
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
PDF
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
PPTX
Financial Networks III. Centrality and Systemic Importance
PDF
power system operation and control unit commitment .pdf
Teknik Simulasi
Lecture8 multi class_svm
Coherent feedback formulation of a continuous quantum error correction protocol
Dsoop (co 221) 1
04030038 proposal presentation
Possible applications of low-rank tensors in statistics and UQ (my talk in Bo...
ACM ICPC 2015 NEERC (Northeastern European Regional Contest) Problems Review
Alex1 group2
Time series Forecasting using svm
Aaex4 group2(中英夾雜)
lecture3.pptlecture3 data structures pptt
Chapter 5
Aaex3 group2
VHDL and Cordic Algorithim
Tpr star tree
Kernel based models for geo- and environmental sciences- Alexei Pozdnoukhov –...
Biosight: Quantitative Methods for Policy Analysis: Stochastic Dynamic Progra...
Financial Networks III. Centrality and Systemic Importance
power system operation and control unit commitment .pdf

Recently uploaded (20)

PDF
Elevate Cleaning Efficiency Using Tallfly Hair Remover Roller Factory Expertise
PDF
Power and position in leadershipDOC-20250808-WA0011..pdf
PDF
Digital Marketing & E-commerce Certificate Glossary.pdf.................
PPTX
svnfcksanfskjcsnvvjknsnvsdscnsncxasxa saccacxsax
PDF
Outsourced Audit & Assurance in USA Why Globus Finanza is Your Trusted Choice
PDF
How to Get Business Funding for Small Business Fast
PPTX
Amazon (Business Studies) management studies
PPTX
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
PPT
Lecture 3344;;,,(,(((((((((((((((((((((((
PDF
Ôn tập tiếng anh trong kinh doanh nâng cao
PDF
Daniels 2024 Inclusive, Sustainable Development
PPTX
Principles of Marketing, Industrial, Consumers,
PDF
How to Get Funding for Your Trucking Business
PPTX
ICG2025_ICG 6th steering committee 30-8-24.pptx
PPT
340036916-American-Literature-Literary-Period-Overview.ppt
PPTX
3. HISTORICAL PERSPECTIVE UNIIT 3^..pptx
PDF
Roadmap Map-digital Banking feature MB,IB,AB
PDF
Reconciliation AND MEMORANDUM RECONCILATION
PDF
NewBase 12 August 2025 Energy News issue - 1812 by Khaled Al Awadi_compresse...
PDF
kom-180-proposal-for-a-directive-amending-directive-2014-45-eu-and-directive-...
Elevate Cleaning Efficiency Using Tallfly Hair Remover Roller Factory Expertise
Power and position in leadershipDOC-20250808-WA0011..pdf
Digital Marketing & E-commerce Certificate Glossary.pdf.................
svnfcksanfskjcsnvvjknsnvsdscnsncxasxa saccacxsax
Outsourced Audit & Assurance in USA Why Globus Finanza is Your Trusted Choice
How to Get Business Funding for Small Business Fast
Amazon (Business Studies) management studies
CkgxkgxydkydyldylydlydyldlyddolydyoyyU2.pptx
Lecture 3344;;,,(,(((((((((((((((((((((((
Ôn tập tiếng anh trong kinh doanh nâng cao
Daniels 2024 Inclusive, Sustainable Development
Principles of Marketing, Industrial, Consumers,
How to Get Funding for Your Trucking Business
ICG2025_ICG 6th steering committee 30-8-24.pptx
340036916-American-Literature-Literary-Period-Overview.ppt
3. HISTORICAL PERSPECTIVE UNIIT 3^..pptx
Roadmap Map-digital Banking feature MB,IB,AB
Reconciliation AND MEMORANDUM RECONCILATION
NewBase 12 August 2025 Energy News issue - 1812 by Khaled Al Awadi_compresse...
kom-180-proposal-for-a-directive-amending-directive-2014-45-eu-and-directive-...

Robust Repositioning in Large-scale Networks

  • 1. Robust  Empty  Reposi.oning                       in  Large-­‐Scale  Freight  Consolida.on   Networks     Alan  Erera1,  Antonio  Carbajal1,   Mar.n  Savelsbergh2   1  School  of  Industrial  and  Systems  Engineering,  Georgia  Tech     2  University  of  Newcastle,  Australia   Odysseus  2012  
  • 2. What  to  remember   1.  Robust  models  for  empty  mobile  resource   management  pragma.c  and  effec.ve   2.  Empty  resource  hubs  useful  for  very  large-­‐ scale  reposi.oning  networks   3.  Rolling-­‐horizon  deployments  of  two-­‐stage   robust  op.miza.on  models  should  u.lize:   –  short  robust  horizons   –  rolling  robust  constraints    
  • 3. Consolida.on  networks   Customer Satellite terminal Hub terminal origin destination
  • 4. Consolida.on  networks   Net weekly surplus -3 Satellite terminal of empty trailers Hub terminal +5 -5 -1 +2 +4 +1 +1 -1 +1 +1 +3 +4 +3 -4 -3 0 +3 +2 +1 -3 0 -6 +1 -2 -1
  • 5. Dynamic  trailer  reposi.oning   •  Large-­‐scale  terminal  network   –  250+  satellites  and  hubs   •  Dynamics   –  Several  decision  epochs  daily   –  Today’s  projected  demand  for  trailers  accurate   –  Tomorrow’s  (and  beyond)  significantly  uncertain   •  Goal   –  Best  empty  reposi.oning  plan  each  epoch  
  • 6. Modeling  approaches   •  Determinis.c  rolling-­‐horizon  network  flow  LP   –  Assume  that  trailer  demands  tomorrow  (and   beyond)  behave  as  expected     •  Stochas.c  models   –  Minimize  expected  costs  given  probabilis.c  model   of  demand   –  Powell  (87),  Frantzeskakis  and  Powell  (90),   Cheung  and  Powell  (96),  Godfrey  and  Powell  (02a,   02b)         –  Crainic  (93),  Di  Francesco,  et  al.  (09)  
  • 7. Modeling  approaches   •  Robust  op.miza.on  models   –  Bertsimas  and  Sim  (03),  Atamturk  and  Zhang  (07)   –  Morales  (06),  Erera  et.  al.  (09)   •  Two-­‐stage  model   •  Explicit  focus  on  future  feasibility   •  Minimize  cost  of  planned  movements  such  that  a   feasible  set  of  recovery  movements  exists  for  each  non-­‐ extreme  scenario  
  • 8. Two-­‐stage  robust  reposi.oning   First stage decisions t=0 t=1 t=2 t=3 t=4 t=5 A B C D E
  • 9. Two-­‐stage  robust  reposi.oning   First stage net supply bi t=0 t=1 t=2 t=3 t=4 t=5 A Initial trailers B +2 Known and expected future loaded moves C +6 -2 -1 D E +2 +1
  • 10. Two-­‐stage  robust  reposi.oning   Second stage “recovery” decisions t=0 t=1 t=2 t=3 t=4 t=5 A B C D E
  • 11. Two-­‐stage  robust  reposi.oning   Second stage uncertain demand t=0 t=1 t=2 t=3 t=4 t=5 A B Intervals on future loaded moves [a , a ] C [0, 2] D E
  • 12. Two-­‐stage  robust  reposi.oning   •  First  stage  network  flow   min c a xa a xa − x a = bi ∀i∈N a∈δ + (i) a∈δ − (i) xa ≥ 0 and integer ∀ a ∈ A •  Second  stage  “recovery  flow”  for  each  scenario   wa (ω) − wa (ω) = bi (ω) − bi ∀i∈N a∈δ + (i) a∈δ − (i) xa + wa (ω) ≥ 0 ∀a∈A
  • 13. Two-­‐stage  robust  reposi.oning   •  Key  result:  Existence  of  Recovery  Flow   xa ≥ ν(U ) ∀ U is inbound-closed a∈δ + (U )∩I t=0 t=1 t=2 t=3 t=4 t=5 A B C
  • 14. Two-­‐stage  robust  reposi.oning   •  Inbound  closed  set   –  node  set  with  no  incoming  recovery  transporta.on   arcs   t=0 t=1 t=2 t=3 t=4 t=5 A B C
  • 15. Two-­‐stage  robust  reposi.oning   •  Inbound  closed  set   –  this  example  not  inbound-­‐closed   t=0 t=1 t=2 t=3 t=4 t=5 A B C
  • 16. Two-­‐stage  robust  reposi.oning   •  Worst-­‐case  vulnerability  of  inbound-­‐closed  set   xa ≥ ν(U ) ∀ U is inbound-closed a∈δ + (U )∩I ν(U ) = a − a + bi   a∈δ + (U ) a∈δ − (U ) i∈U t=0 t=1 t=2 t=3 t=4 t=5 A [0, 2] B [1, 5] C
  • 17. Challenges   (1) Smart  recovery  network   –  Low-­‐cost  moves  (since  costs  not  modeled)   –  Opera.onally  simple   (2) Appropriate  use  of  two-­‐stage  model   –  Controlling  conserva.sm  pragma.cally   –  Special  considera.ons  for  rolling  horizon   implementa.on   –  Solvable  (but  very  large  scale)  MIPs    
  • 18. Smart  recovery  network   Empty hubs Region 1 Region 2 Region 3
  • 19. Controlling  conserva.sm   •  Exclude  extreme  scenarios   –  Narrow  the  width  of  intervals   [a , a ] –  Limit  to  k  the  number  of  uncertain  quan..es  that   may  simultaneously  take  on  an  extreme  quan.ty   •  Challenges  for  large  .me-­‐expanded  networks   –  Very  large  numbers  of  inbound-­‐closed  sets  and   associated  robust  constraints:   O(τ nS ) –  Difficult  to  judge  in  advance  which  robust   constraints  will  be  ac.ve  
  • 20. Two-­‐stage  robust  reposi.oning   •  Bounded  vulnerability  of  inbound-­‐closed  set       max (a − a )za + (a − a )za | za = k z   a∈δ + (U ) a∈δ − (U )   t=0 t=1 t=2 t=3 t=4 t=5 A [0, 2] B [1, 5] C
  • 21. Appropriate  use  of  two-­‐stage  model   Terminal limit known future A B C D –  inbound-­‐closed  sets  with  L+1  terminals  or  fewer  
  • 22. Appropriate  use  of  two-­‐stage  model   Robust horizon known future A B C D robust horizon –  inbound-­‐closed  sets  include  no  nodes  aher  RH  
  • 23. Appropriate  use  of  two-­‐stage  model   Rolling-horizon robust constraints known future A B C D robust horizon –  add  constraints  now  for  future  horizon  rolls   •  assume  that  demand  intervals  do  not  change  
  • 24. Appropriate  use  of  two-­‐stage  model   Rolling-horizon robust constraints known future A B C D robust horizon –  add  constraints  now  for  future  horizon  rolls   •  assume  that  demand  intervals  do  not  change  
  • 25. Tes.ng  the  ideas   •  Givens   –  Historical  data  from  a  na.onal  consolida.on   trucking  carrier     –  Loaded  moves  involve  264  terminals   –  Reposi.oning  moves  (truck  and  rail)   –  10  empty  hubs   –  At  most  4  daily  dispatch  .mes  per  terminal   –  Wide  forecast  intervals  on  loaded  demands  (+/-­‐   50%  of  actual)  
  • 26. Tes.ng  the  ideas   •  Horizons   –  14  weeks  of  data   –  Planning  horizon  of  7  days  for  each  model   •  Network  size  for  7-­‐day  planning  horizon   –  5,000  .me-­‐space  nodes   –  300,000  arcs   •  Primarily  reposi.oning  arcs   •  Limited  connec.ons  
  • 27. Tes.ng  the  ideas   •  Simulate   –  Assume  today’s  loaded  demands  known   –  Solve  model,  implement  today’s  decisions   •  Assume  trailer  deficits  covered  by  an  outsourced  trailer   –  Draw  realiza.on  of  tomorrow’s  demands   –  Repeat  
  • 28. Figure 18: Unmet demands on a given day - Scenario 2 Results   Figure 19: Cumulative unmet demands - Scenario 2
  • 29. Figure 20: Execution costs on a given day - Scenario 2 Results   Figure 21: Cumulative execution costs - Scenario 2
  • 30. Short  planning  horizons   Figure 22: Cumulative unmet demands with different planning horizons - Scenario 1
  • 31. Next  steps   •  Refinements   –  More  reasonable  model  of  true  uncertainty  in   demand   –  Understand  sources  of  cost  escala.on,  including  if   and  where  excessive  conserva.sm  introduced   •  Empty  hub  selec.on   •  Fleet  size  versus  reposi.oning  cost  for  robust   plans  
  • 32. What  to  remember   1.  Robust  models  for  empty  mobile  resource   management  pragma.c  and  effec.ve   2.  Empty  resource  hubs  useful  for  very  large-­‐ scale  reposi.oning  networks   3.  Rolling-­‐horizon  deployments  of  two-­‐stage   robust  op.miza.on  models  should  u.lize:   –  short  robust  horizons   –  rolling  robust  constraints