SlideShare a Scribd company logo
What Goes Up, 
                                        Must Come Down
                                                 f ' (c) = 0




            a                                                  b
                                             Rolle's Theorem
http://www.youtube.com/watch?v=MSmKnUD59pA




                                                                   1
f(x) is a continuous function on the closed interval [a, b].

   f(a) = f(b)

  f(x) is a differentiable function on the open interval (a, b).

there exists at least one x­value, c such that f'(c) = 0




                                                                   2
Since:
                1) f(x) is a polynomial function so it is continuous
                    on the closed interval [1, 2]
                2) f(1) = f(2) = 0
              3) f(x) is differentiable for all x­values on the
                 open interval (1, 2)
Therefore by Rolle's Theorem there exists at least one
x­value c such that f'(c) = 0. (This occurs at the vertex, x = 1.5.)




                                                                       3

More Related Content

PPT
5.7 rolle's thrm & mv theorem
PDF
Rolle's theorem, mean value theorem
PPT
Roll's theorem
PDF
PDF
Lesson 19: The Mean Value Theorem (slides)
PPT
Mean value theorem
5.7 rolle's thrm & mv theorem
Rolle's theorem, mean value theorem
Roll's theorem
Lesson 19: The Mean Value Theorem (slides)
Mean value theorem

What's hot (19)

PPT
Calc 3.2b
PPTX
Mean Value Theorem | Mathematics
PPT
3.1 extrema on an interval
PPTX
Chapter 4 review
PPTX
Application of Derivatives
PPTX
Maximums and minimum
DOC
Mth3101 Advanced Calculus Chapter 1
PDF
Lesson 19: The Mean Value Theorem
PPT
2010 calculusmvt3.2
PDF
PPT
Maxima and minima
PPTX
Ap calculus extrema v2
PDF
Lesson 19: Maximum and Minimum Values
PPT
Application of derivatives
PDF
Calc224FinalExamReview
PDF
Rolle's theorem
PPTX
Application of partial derivatives with two variables
PPTX
Extreme values of a function & applications of derivative
PPT
3.1 Extreme Values of Functions
Calc 3.2b
Mean Value Theorem | Mathematics
3.1 extrema on an interval
Chapter 4 review
Application of Derivatives
Maximums and minimum
Mth3101 Advanced Calculus Chapter 1
Lesson 19: The Mean Value Theorem
2010 calculusmvt3.2
Maxima and minima
Ap calculus extrema v2
Lesson 19: Maximum and Minimum Values
Application of derivatives
Calc224FinalExamReview
Rolle's theorem
Application of partial derivatives with two variables
Extreme values of a function & applications of derivative
3.1 Extreme Values of Functions
Ad

Similar to Rolle's Theorem (20)

PPTX
Understanding Mean Value Theorem and Rolle’s Theorem: Key Concepts, Applicati...
PDF
Lesson 19: The Mean Value Theorem (slides)
PPTX
math ppt Rolle's Theorem.pptx
PDF
Lesson 18: Maximum and Minimum Values (slides)
PDF
Lesson 18: Maximum and Minimum Values (slides)
PPT
5.7 rolle's thrm & mv theorem
PPTX
Rolle's Theorem
PDF
Analysis Solutions CV
PDF
Derivatives Lesson Oct 19
PPTX
Mean-Value-Theorem-pptx-Math.pptx
PDF
Lesson 3: Continuity
PDF
Applying the derivative
PPTX
Three conditions of Continuity on an interval.pptx
PDF
Lesson 20: The Mean Value Theorem
PDF
Lesson 21: Derivatives and the Shapes of Curves
PDF
Lesson 21: Derivatives and the Shapes of Curves
PPT
Chap4_Sec2.ppt
PDF
Lesson05 Continuity Slides+Notes
PDF
Lesson05 Continuity Slides+Notes
PDF
Lesson 5: Continuity
Understanding Mean Value Theorem and Rolle’s Theorem: Key Concepts, Applicati...
Lesson 19: The Mean Value Theorem (slides)
math ppt Rolle's Theorem.pptx
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
5.7 rolle's thrm & mv theorem
Rolle's Theorem
Analysis Solutions CV
Derivatives Lesson Oct 19
Mean-Value-Theorem-pptx-Math.pptx
Lesson 3: Continuity
Applying the derivative
Three conditions of Continuity on an interval.pptx
Lesson 20: The Mean Value Theorem
Lesson 21: Derivatives and the Shapes of Curves
Lesson 21: Derivatives and the Shapes of Curves
Chap4_Sec2.ppt
Lesson05 Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
Lesson 5: Continuity
Ad

More from Fountain Valley School of Colorado (20)

PPT
My Capstone Presentation, June 29, 2010
PPT
CRMS Calculus May 31, 2010
PDF
CRMS Calculus 2010 May 21, 2010
PDF
CRMS Calculus 2010 May 17, 2010
PDF
CRMS Calculus 2010 May 14, 2010
PDF
CRMS Calculus 2010 May 12, 2010
PDF
CRMS Calculus 2010 May 5, 2010
PDF
CRMS Calculus 2010 May 3, 2010
PDF
CRMS Calculus 2010 April 21, 2010
PDF
CRMS Calculus 2010 April 19,2010
PDF
CRMS Calculus 2010 April 13, 2010
PDF
CRMS Calculus 2010, April 12, 2010
PDF
CRMS Calculus 2010 April 5, 2010
PDF
CRMS Calculus 2010 March 31, 2010
PDF
CRMS Calculus 2010 March 30, 2010
PDF
CRMS Calculus 2010 February 19, 2010
PDF
CRMS Calculus 2010 February 17, 2010
PDF
CRMS Calculus 2010 February 8, 2010_B
PDF
CRMS Calculus 2010 February 8, 2010_A
PDF
CRMS Calculus 2010 January 27, 2010
My Capstone Presentation, June 29, 2010
CRMS Calculus May 31, 2010
CRMS Calculus 2010 May 21, 2010
CRMS Calculus 2010 May 17, 2010
CRMS Calculus 2010 May 14, 2010
CRMS Calculus 2010 May 12, 2010
CRMS Calculus 2010 May 5, 2010
CRMS Calculus 2010 May 3, 2010
CRMS Calculus 2010 April 21, 2010
CRMS Calculus 2010 April 19,2010
CRMS Calculus 2010 April 13, 2010
CRMS Calculus 2010, April 12, 2010
CRMS Calculus 2010 April 5, 2010
CRMS Calculus 2010 March 31, 2010
CRMS Calculus 2010 March 30, 2010
CRMS Calculus 2010 February 19, 2010
CRMS Calculus 2010 February 17, 2010
CRMS Calculus 2010 February 8, 2010_B
CRMS Calculus 2010 February 8, 2010_A
CRMS Calculus 2010 January 27, 2010

Recently uploaded (20)

PPTX
GDM (1) (1).pptx small presentation for students
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Lesson notes of climatology university.
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
Pre independence Education in Inndia.pdf
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
Computing-Curriculum for Schools in Ghana
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
GDM (1) (1).pptx small presentation for students
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Final Presentation General Medicine 03-08-2024.pptx
Lesson notes of climatology university.
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Pre independence Education in Inndia.pdf
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
human mycosis Human fungal infections are called human mycosis..pptx
TR - Agricultural Crops Production NC III.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Complications of Minimal Access Surgery at WLH
2.FourierTransform-ShortQuestionswithAnswers.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Microbial diseases, their pathogenesis and prophylaxis
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
01-Introduction-to-Information-Management.pdf
Cell Structure & Organelles in detailed.
Computing-Curriculum for Schools in Ghana
Abdominal Access Techniques with Prof. Dr. R K Mishra
STATICS OF THE RIGID BODIES Hibbelers.pdf

Rolle's Theorem

  • 1. What Goes Up,  Must Come Down f ' (c) = 0 a b Rolle's Theorem http://www.youtube.com/watch?v=MSmKnUD59pA 1
  • 2. f(x) is a continuous function on the closed interval [a, b]. f(a) = f(b) f(x) is a differentiable function on the open interval (a, b). there exists at least one x­value, c such that f'(c) = 0 2
  • 3. Since: 1) f(x) is a polynomial function so it is continuous     on the closed interval [1, 2] 2) f(1) = f(2) = 0 3) f(x) is differentiable for all x­values on the    open interval (1, 2) Therefore by Rolle's Theorem there exists at least one x­value c such that f'(c) = 0. (This occurs at the vertex, x = 1.5.) 3