SlideShare a Scribd company logo
1
Root Locus Plot of Dynamic Systems
imtiaz.hussain@faculty.muet.edu.pk
We will cover........
Root Locus of LTI models
Root locus of a Transfer Function (TF) model
Root Locus of 1st order system
Root Locus of 2nd order system
Root Locus of higher order systems
Root locus of a Zero-pole-gain model (ZPK)
Root locus of a State-Space model (SS)
Gain Adjustment
Root Locus of 1st Order System
Consider the following unity feedback system
Matlab Code
num=1;
den=[1 0];
G=tf(num,den);
rlocus(G)
sgrid
S
K
SG )(
)(SR )(SC


Consider the following unity feedback system
num=[1 0];
den=[1 1];
G=tf(num,den);
rlocus(G)
sgrid
Continued…..
1S
KS)(SR )(SC


Root Locus of 1st Order System
Plot the root locus of following first order systems.
1S
KS)(SR )(SC


1
)2(


S
SK)(SR )(SC


Exercise#1
Root Locus 2nd order systems
Consider the following unity feedback system
num=1;
den1=[1 0];
den2=[1 3];
den=conv(den1,den2);
G=tf(num,den);
rlocus(G)
sgrid
)3( SS
K)(SR )(SC


Determine the location of closed
loop poles that will modify the
damping ratio to 0.8 and natural
undapmed frequency to 1.7
r/sec. Also determine the gain K
at that point.
Exercise#2
)1(
)3(


SS
SK)(SR )(SC


)(SR )(SC


)1(
)3)(2(


SS
SSK
Plot the root locus of following 2nd order systems.
(1)
(2)
Root Locus of Higher Order Systems
Consider the following unity feedback system
)(SR )(SC


)2)(1(  SSS
K
Determine the closed loop gain
that would make the system
marginally stable.
num=1;
den1=[1 0];
den2=[1 1];
den3=[1 2];
den12=conv(den1,den2);
den=conv(den12,den3);
G=tf(num,den);
rlocus(G)
sgrid
Exercise#3
)(SR )(SC


)2)(1(
)3(


SSS
SK
)(SR )(SC


)2)(1(
)5)(3(


SSS
SSK
Plot the root locus of following systems.
(1)
(2)
Root Locus of a Zero-Pole-Gain Model
k=2;
z=-5;
p=[0 -1 -2];
G=zpk(z,p,k);
rlocus(G)
sgrid
)(SR )(SC


)2)(1(
)5(3


SSS
S
Root Locus of a State-Space Model
A=[-5 -1;3 -1];
B=[1;0];
C=[1 0];
D=0;
sys=ss(A,B,C,D);
rlocus(sys)
sgrid
  0where,01)(
)(
0
1
13
15
2
1
2
1
2
1

































DD
x
x
ty
tu
x
x
x
x


Exercise#4: Plot the Root Locus for following LTI Models
)2()(
)4)(3(
1
)( SSHand
SSS
S
SG 



1)(
)30)(1(
)10(3
)( 


 SHand
SSS
S
SG
  0where,100)(
)(
1
0
0
243
100
010
3
2
1
3
2
1
3
2
1























































DD
x
x
x
ty
tu
x
x
x
x
x
x



(1)
(2)
(3)
Choosing Desired Gain
143
32
)( 2



SS
S
SG
num=[2 3];
den=[3 4 1];
G=tf(num,den);
[kd,poles]=rlocfind(G)
sgrid
Exercise#5
))()((
)(
)(
641
34



SSS
S
SG
Plot the root Loci for the above ZPK model and find out the
location of closed loop poles for =0.505 and n=8.04 r/sec.
b=0.505;
wn=8.04;
sgrid(b, wn)
axis equal
(1)
Exercise#5: (contd…)
))((
)(
41 

SS
K
SG
i) Plot the root Loci for the above transfer function
ii) Find the gain when both the roots are equal
iii) Also find the roots at that point
iv) Determine the settling of the system when two roots are
equal.
Consider the following unity feedback system(2)
Exercise#5: (contd…)
i) Plot the root Loci for the above system
ii) Determine the gain K at which the the system produces
sustained oscillations with frequency 8 rad/sec.
Consider the following velocity feedback system
)(SR )(SC


))()(( 753  SSSS
K
S53 
(3)
End of tutorial
You can download this tutorial from:
http://imtiazhussainkalwar.weebly.com/

More Related Content

PPTX
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
PDF
Example problems and_solutions_ogata_root_locus
PPTX
k10790 nilesh prajapati control me 6th sem
PPTX
Root locus method
PPTX
Chapter 5 root locus analysis
PDF
Lecture 15 ME 176 7 Root Locus Technique
PPT
Control chap10
PDF
CRL 1.8 Functions
ROOT-LOCUS METHOD, Determine the root loci on the real axis /the asymptotes o...
Example problems and_solutions_ogata_root_locus
k10790 nilesh prajapati control me 6th sem
Root locus method
Chapter 5 root locus analysis
Lecture 15 ME 176 7 Root Locus Technique
Control chap10
CRL 1.8 Functions

What's hot (20)

PPTX
Control system
PDF
CRL 1.8 functions MrG 2011.0920 - sage
PPTX
Rl imp rules
PPTX
Root locus
PDF
Root Locus
PDF
JMM2016PosterFinal
PDF
Introduction to MATLAB
PPT
Sample document
PPT
Geo distance search with my sql presentation
PPTX
Alg2 lesson 6-1
PDF
Laplace table
DOCX
PDF
Mathematical Modelling of Electrical/Mechanical modellinng in MATLAB
PDF
Root locus techniques
PDF
Listing for CircleFunctions
PDF
Analysis of Electro-Mechanical System
PPT
Areas between curves
PDF
Aspherical Formations Near The Libration Points In The Sun-Earth/Moon Ephemer...
PDF
AB-RNA-Mfold&SCFGs-2011
PDF
Identidades trigonometricas fundamentales
Control system
CRL 1.8 functions MrG 2011.0920 - sage
Rl imp rules
Root locus
Root Locus
JMM2016PosterFinal
Introduction to MATLAB
Sample document
Geo distance search with my sql presentation
Alg2 lesson 6-1
Laplace table
Mathematical Modelling of Electrical/Mechanical modellinng in MATLAB
Root locus techniques
Listing for CircleFunctions
Analysis of Electro-Mechanical System
Areas between curves
Aspherical Formations Near The Libration Points In The Sun-Earth/Moon Ephemer...
AB-RNA-Mfold&SCFGs-2011
Identidades trigonometricas fundamentales
Ad

Similar to Root locus of_dynamic_systems (20)

PPTX
Me314 week09-root locusanalysis
PDF
Ch6 root locus method
PPT
Chapter No. 8 Root Locus of control System
PPT
Root locus
PPTX
Root Locus Technique.pptx
PPT
6-2.Root-Locus+Analysis pada sistem kendali
PDF
Analysis and Design of Control System using Root Locus
PPT
Chapter 8 Root Locus Techniques
PDF
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
PDF
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
PDF
Control Systems (K-Wiki_Root Locus.).pdf
PDF
Root locus description in lucid way by ME IITB
PPT
8dassajdlkasjdaslkdjaslkdjaslkdjasldkajsdlkasjdlk
PDF
Section 5 Root Locus Analysis lecture 55
PDF
Ece4510 notes06
PDF
ME451_L17_Root locus - examples.pdf
PPTX
Sketch root locus
PDF
Root Locus Plot
PPTX
Stability of control systems in time-domain
PPTX
Tempat kedudukan akar (root locus) untuk menganalisis kestabilan
Me314 week09-root locusanalysis
Ch6 root locus method
Chapter No. 8 Root Locus of control System
Root locus
Root Locus Technique.pptx
6-2.Root-Locus+Analysis pada sistem kendali
Analysis and Design of Control System using Root Locus
Chapter 8 Root Locus Techniques
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Control Systems (K-Wiki_Root Locus.).pdf
Root locus description in lucid way by ME IITB
8dassajdlkasjdaslkdjaslkdjaslkdjasldkajsdlkasjdlk
Section 5 Root Locus Analysis lecture 55
Ece4510 notes06
ME451_L17_Root locus - examples.pdf
Sketch root locus
Root Locus Plot
Stability of control systems in time-domain
Tempat kedudukan akar (root locus) untuk menganalisis kestabilan
Ad

Recently uploaded (20)

PDF
737-MAX_SRG.pdf student reference guides
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PPTX
Artificial Intelligence
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPT
Project quality management in manufacturing
PPTX
Construction Project Organization Group 2.pptx
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
UNIT 4 Total Quality Management .pptx
PDF
composite construction of structures.pdf
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
737-MAX_SRG.pdf student reference guides
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
III.4.1.2_The_Space_Environment.p pdffdf
Artificial Intelligence
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Project quality management in manufacturing
Construction Project Organization Group 2.pptx
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
UNIT 4 Total Quality Management .pptx
composite construction of structures.pdf
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
R24 SURVEYING LAB MANUAL for civil enggi
Internet of Things (IOT) - A guide to understanding
CYBER-CRIMES AND SECURITY A guide to understanding
Embodied AI: Ushering in the Next Era of Intelligent Systems

Root locus of_dynamic_systems

  • 1. 1 Root Locus Plot of Dynamic Systems imtiaz.hussain@faculty.muet.edu.pk
  • 2. We will cover........ Root Locus of LTI models Root locus of a Transfer Function (TF) model Root Locus of 1st order system Root Locus of 2nd order system Root Locus of higher order systems Root locus of a Zero-pole-gain model (ZPK) Root locus of a State-Space model (SS) Gain Adjustment
  • 3. Root Locus of 1st Order System Consider the following unity feedback system Matlab Code num=1; den=[1 0]; G=tf(num,den); rlocus(G) sgrid S K SG )( )(SR )(SC  
  • 4. Consider the following unity feedback system num=[1 0]; den=[1 1]; G=tf(num,den); rlocus(G) sgrid Continued….. 1S KS)(SR )(SC   Root Locus of 1st Order System
  • 5. Plot the root locus of following first order systems. 1S KS)(SR )(SC   1 )2(   S SK)(SR )(SC   Exercise#1
  • 6. Root Locus 2nd order systems Consider the following unity feedback system num=1; den1=[1 0]; den2=[1 3]; den=conv(den1,den2); G=tf(num,den); rlocus(G) sgrid )3( SS K)(SR )(SC   Determine the location of closed loop poles that will modify the damping ratio to 0.8 and natural undapmed frequency to 1.7 r/sec. Also determine the gain K at that point.
  • 8. Root Locus of Higher Order Systems Consider the following unity feedback system )(SR )(SC   )2)(1(  SSS K Determine the closed loop gain that would make the system marginally stable. num=1; den1=[1 0]; den2=[1 1]; den3=[1 2]; den12=conv(den1,den2); den=conv(den12,den3); G=tf(num,den); rlocus(G) sgrid
  • 10. Root Locus of a Zero-Pole-Gain Model k=2; z=-5; p=[0 -1 -2]; G=zpk(z,p,k); rlocus(G) sgrid )(SR )(SC   )2)(1( )5(3   SSS S
  • 11. Root Locus of a State-Space Model A=[-5 -1;3 -1]; B=[1;0]; C=[1 0]; D=0; sys=ss(A,B,C,D); rlocus(sys) sgrid   0where,01)( )( 0 1 13 15 2 1 2 1 2 1                                  DD x x ty tu x x x x  
  • 12. Exercise#4: Plot the Root Locus for following LTI Models )2()( )4)(3( 1 )( SSHand SSS S SG     1)( )30)(1( )10(3 )(     SHand SSS S SG   0where,100)( )( 1 0 0 243 100 010 3 2 1 3 2 1 3 2 1                                                        DD x x x ty tu x x x x x x    (1) (2) (3)
  • 13. Choosing Desired Gain 143 32 )( 2    SS S SG num=[2 3]; den=[3 4 1]; G=tf(num,den); [kd,poles]=rlocfind(G) sgrid
  • 14. Exercise#5 ))()(( )( )( 641 34    SSS S SG Plot the root Loci for the above ZPK model and find out the location of closed loop poles for =0.505 and n=8.04 r/sec. b=0.505; wn=8.04; sgrid(b, wn) axis equal (1)
  • 15. Exercise#5: (contd…) ))(( )( 41   SS K SG i) Plot the root Loci for the above transfer function ii) Find the gain when both the roots are equal iii) Also find the roots at that point iv) Determine the settling of the system when two roots are equal. Consider the following unity feedback system(2)
  • 16. Exercise#5: (contd…) i) Plot the root Loci for the above system ii) Determine the gain K at which the the system produces sustained oscillations with frequency 8 rad/sec. Consider the following velocity feedback system )(SR )(SC   ))()(( 753  SSSS K S53  (3)
  • 17. End of tutorial You can download this tutorial from: http://imtiazhussainkalwar.weebly.com/