SlideShare a Scribd company logo
R.S.A Encryption through
pell’s equation
By:- N.C.M
STEP 1
Select a secret ODD prime integer “R”
STEP 2
 Consider the Diophantine Equation:
Y2 – R X2 = 1
Let (Y0 , X0 ) be the least “positive”
integral
Solution of . Here X0,Y0 are kept secret.
1
1
STEP 3
Select two large ODD primes p,q
DEFINE:- N: = pq 2
STEP 4
 Define α:= [Y0+ φ(n)]2 – R [Xo + e]2;
Where “e” can be chosen such that
1<e< φ(n) and G.C.D ( e, φ(n)) = 1
Since G.C.D (e, φ(n))=1, there is a unique “positive” integer “d” such
that de≡1(Mod φ(n))
ASSUME
Here φ(n) = Euler’s φ function
3
d3 ≠ 1(Modφ(n))
e3 ≠ 1(Modφ(n))
STEP 5
 From (3), we have
α = Y0
2 +[φ(n)]2 + 2Yoφ(n) −R[Xo
2+e2+2X0e]
= Y0
2 −RXo
2 +[φ(n)]2 + 2Y0 φ(n)− Re2− 2X0eR
α ≡1 − Re2 − 2X0eR (Mod φ(n))
α + Re2 + 2X0eR ≡ 1 (Mod φ(n))
Multiply by d3 on both sides, of the above congruence
We get, αd3+ Rd + 2X0d2R ≡ d3 (Mod φ(n))
STEP 6
 Define:
S = αd3 + 2x0d2R + Rd
so, S ≡ d3 (Mod φ(n))
Step 7
 Represent the given message “m” in
the interval (0, n-1)
Step 8
 ASSUME G.C.D (m,n) =1
Step 9
Encryption :E ≡ mS (mod n)
≡ m +k∙φ(n) (mod n)
≡ m ∙[mφ(n)]k (mod n)
So, E ≡ m (mod n)
Public key : = S, n
Step 10
 Decryption = E (mod n)
= (m ) (mod n)
= m (mod n)
[d3e3 ≡1(mod φ(n)]
=m (mod n)
Step 10 Contd..
d3e3 = 1 +k1∙φ(n)
m = m∙[mφ(n)]k (Mod n)
= m(Mod n)
1
R.S.A Encryption

More Related Content

PDF
Understanding Reed-Solomon code
PDF
Lect4 ellipse
PDF
Guia edo todas
PPTX
Reed Solomon encoder and decoder \ ريد سلمون
DOC
Ecuaciones Diferenciales[1]
PDF
Lista de integrais Calculo IV
PDF
Limites trigonometricos1
PDF
Ejerciciosderivadasresueltos
Understanding Reed-Solomon code
Lect4 ellipse
Guia edo todas
Reed Solomon encoder and decoder \ ريد سلمون
Ecuaciones Diferenciales[1]
Lista de integrais Calculo IV
Limites trigonometricos1
Ejerciciosderivadasresueltos

What's hot (18)

PDF
Lista de derivadas e integrais
PDF
Sheet1 simplified
PPTX
Lec05 circle ellipse
PDF
Lista de integrais2
PDF
PDF
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
PPTX
Computer Graphic - Lines, Circles and Ellipse
PDF
Engr 213 midterm 1a sol 2009
PPTX
Antiderivatives nako sa calculus official
PPT
AP Derivatives
PPT
Differentiation jan 21, 2014
PDF
Engr 213 midterm 1b sol 2009
PDF
MATHS SYMBOLS - ROOTS and THEIR PROPERTIES
DOCX
ระบบเลขฐานนี้ใช้ตัวเลข
PDF
MATHS SYMBOLS - PROPERTIES of EXPONENTS
PDF
Antiderivatives
PPT
Goal programming 2011
Lista de derivadas e integrais
Sheet1 simplified
Lec05 circle ellipse
Lista de integrais2
Lesson 17: Interminate forms and L'Hôpital's Rule (worksheet solutions)
Computer Graphic - Lines, Circles and Ellipse
Engr 213 midterm 1a sol 2009
Antiderivatives nako sa calculus official
AP Derivatives
Differentiation jan 21, 2014
Engr 213 midterm 1b sol 2009
MATHS SYMBOLS - ROOTS and THEIR PROPERTIES
ระบบเลขฐานนี้ใช้ตัวเลข
MATHS SYMBOLS - PROPERTIES of EXPONENTS
Antiderivatives
Goal programming 2011
Ad

Similar to R.S.A Encryption (20)

PPTX
Information and network security 33 rsa algorithm
PPTX
The Mathematics of RSA Encryption
DOCX
Senior Research Final Draft3
PPTX
RSA final notation change2
PDF
D0111720
PDF
Public-Key Cryptography.pdfWrite the result of the following operation with t...
PDF
10 RSA
PDF
Public Key Cryptography
PDF
Understanding the Magic: Teaching Cryptography with Just the Right Amount of ...
PDF
IRJET- Formulation of a Secure Communication Protocol and its Implementation
PPTX
The Mathematics of RSA Encryption
PDF
Cs8792 cns - Public key cryptosystem (Unit III)
DOCX
ODP
PPTX
6-PKCpartII-Encryptionandsignatures.pptx
PPTX
Number theory and cryptography
PDF
Design and Implementation of a Secure Communication Protocol
PDF
CNIT 141: 10. RSA
PDF
CNIT 141 10. RSA
PDF
Cyclic Attacks on the RSA Trapdoor Function
Information and network security 33 rsa algorithm
The Mathematics of RSA Encryption
Senior Research Final Draft3
RSA final notation change2
D0111720
Public-Key Cryptography.pdfWrite the result of the following operation with t...
10 RSA
Public Key Cryptography
Understanding the Magic: Teaching Cryptography with Just the Right Amount of ...
IRJET- Formulation of a Secure Communication Protocol and its Implementation
The Mathematics of RSA Encryption
Cs8792 cns - Public key cryptosystem (Unit III)
6-PKCpartII-Encryptionandsignatures.pptx
Number theory and cryptography
Design and Implementation of a Secure Communication Protocol
CNIT 141: 10. RSA
CNIT 141 10. RSA
Cyclic Attacks on the RSA Trapdoor Function
Ad

More from Chandramowliswaran NARAYANASWAMY (20)

PDF
number theory chandramowliswaran theorem
PDF
invited-seminar-libre(1)
PDF
testimonial_iit_3_(3)
PDF
graceful Trees through Graceful codes (1)
PDF
PDF
PDF
PDF
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
PDF
FDP SumCourse Schedule July 2009 (1)
PDF
PDF
number theory chandramowliswaran theorem
invited-seminar-libre(1)
testimonial_iit_3_(3)
graceful Trees through Graceful codes (1)
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
FDP SumCourse Schedule July 2009 (1)

R.S.A Encryption

  • 1. R.S.A Encryption through pell’s equation By:- N.C.M
  • 2. STEP 1 Select a secret ODD prime integer “R”
  • 3. STEP 2  Consider the Diophantine Equation: Y2 – R X2 = 1 Let (Y0 , X0 ) be the least “positive” integral Solution of . Here X0,Y0 are kept secret. 1 1
  • 4. STEP 3 Select two large ODD primes p,q DEFINE:- N: = pq 2
  • 5. STEP 4  Define α:= [Y0+ φ(n)]2 – R [Xo + e]2; Where “e” can be chosen such that 1<e< φ(n) and G.C.D ( e, φ(n)) = 1 Since G.C.D (e, φ(n))=1, there is a unique “positive” integer “d” such that de≡1(Mod φ(n)) ASSUME Here φ(n) = Euler’s φ function 3 d3 ≠ 1(Modφ(n)) e3 ≠ 1(Modφ(n))
  • 6. STEP 5  From (3), we have α = Y0 2 +[φ(n)]2 + 2Yoφ(n) −R[Xo 2+e2+2X0e] = Y0 2 −RXo 2 +[φ(n)]2 + 2Y0 φ(n)− Re2− 2X0eR α ≡1 − Re2 − 2X0eR (Mod φ(n)) α + Re2 + 2X0eR ≡ 1 (Mod φ(n)) Multiply by d3 on both sides, of the above congruence We get, αd3+ Rd + 2X0d2R ≡ d3 (Mod φ(n))
  • 7. STEP 6  Define: S = αd3 + 2x0d2R + Rd so, S ≡ d3 (Mod φ(n))
  • 8. Step 7  Represent the given message “m” in the interval (0, n-1)
  • 9. Step 8  ASSUME G.C.D (m,n) =1
  • 10. Step 9 Encryption :E ≡ mS (mod n) ≡ m +k∙φ(n) (mod n) ≡ m ∙[mφ(n)]k (mod n) So, E ≡ m (mod n) Public key : = S, n
  • 11. Step 10  Decryption = E (mod n) = (m ) (mod n) = m (mod n) [d3e3 ≡1(mod φ(n)] =m (mod n)
  • 12. Step 10 Contd.. d3e3 = 1 +k1∙φ(n) m = m∙[mφ(n)]k (Mod n) = m(Mod n) 1