SlideShare a Scribd company logo
Arithmetical properties of tree generation codes and algorithm to
generate all tree codes for a given number of edges
K. Balasubramaniana
, N. Chandramowliswaranb
, N. Ramachandranb
,
S. Arunc
, Pawan Kumarc
a
Department of Statistics , Indian Statistical Institute, New Delhi, India.
b
Department of Mathematics, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya,
Kanchipuram-631 561, India.
c
Department of Computer Science & Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha
Vidyalaya, Kanchipuram, Kanchipuram-631 561, India.
Abstract:
Graceful Code is a way to represent graceful graph in terms of sequence of
non-negative integers. Given a graceful graph G on “q” edges, we can generate its
graceful code in the form of (a1, a2, a3, …, aq-1, aq) to represent the graph. Similarly, we
can easily draw the graph from the given graceful code.
In this paper, we present an algorithm to generate all possible tree codes on a
given number of edges (say q=30). Moreover, we also present the arithmetic properties of
tree generating codes and an algorithm to check whether the code of a given graceful
graph represents a tree or not. This algorithm uses prüfer code techniques on graceful
codes to perform tree checking. The prüfer technique of removing the lowest labeled leaf
easily determines the code to be a tree or not.
Keywords: Graceful graphs, Graceful codes, α-valuable codes.
Introduction:
Definition 1:
A Graceful labeling of a simple graph G with “q” edges is an injection “f ” from the
vertices of G to the set {0,1, 2, 3, …, q} such that the induced function g: E→{1, 2, …,q}
g (e) = | f(u) - f(v) | for every edge e ={u, v}, is a bijective function
A graph, which has a graceful labeling, is called a Graceful graph.
This labeling was originally introduced in 1967 by Rosa who has also showed that the
existence of a graceful labeling of a given graph G with “q” edges is a sufficient
condition for the existence of a cyclic decomposition of a complete graph of order
“2q+1” into sub-graphs isomorphic to G. [See Ref]. The famous Graceful Tree
Conjecture says that all trees have a graceful labeling.
Code of a Graceful Graph:
Let G be any graceful graph on “q” edges then (a1, a2, a3, … , aq-1, aq) is called a graceful
code of G, if 0 ≤ ai ≤ q-i, 1 ≤ i ≤ q. Here ai is the lower end vertex of the edge label “i”.
It is important to note that aq is always zero.
Example:
Code= (4, 3, 1, 2, 1, 0)
Figure 1 shows a graceful graph on 6 edges.
The code of this graceful graph is = (4, 3, 1, 2, 1, 0), where
a1= 4= lower end vertex of the edge label “1”.
a2= 3= lower end vertex of the edge label “2”.
a3= 1= lower end vertex of the edge label “3”.
a4= 2= lower end vertex of the edge label “4”.
a5= 1= lower end vertex of the edge label “5”.
a6= 0= lower end vertex of the edge label “6”.
For every graceful graph G we can write its corresponding graceful code. Conversely, for
every given graceful code we can draw the corresponding graceful graph as follows.
Join edges: {(a1, 1+a1), (a2, 2+a2), …, (aq-1, q-1+aq-1), (aq, q+aq)}
Definition 2:
α-valuable Code:
Let G be a graceful graph on “q” edges. Then the code (a1, a2, a3,…, aq) is called
α-valuable code of G if
a1 ≥ ai ; for all i
Max {ai | 0 ≤ i ≤ q} < Min {i + ai | 0 ≤ i ≤ q}
Here a1 is called the separator or critical value of the α-valuable code.
Proposition 1
(a1, a2, a3, …, aq) represents an α-valuable code if and only if
0 ≤ (a1 – aq - i + 1 / q – i) ≤ 1
for all i, 1 ≤ i ≤ q-1
Equivalently, (a1, a2, a3, ..., aq-1, aq) represents an α-valuable code if and only if
(a1 – aq, a1 – aq-1, …, a1 – a3, a1 – a2, 0) represents a code of a graceful graph.
Proposition 2
Define G(q)= { ( a1, a2, …, aq) |0 ≤ ai ≤ q-i }
Let X, Y є G(q), such that,
X= (a1, a2, a3, …, aq-1, aq)
Y= (b1, b2, b3, …, bq-1, bq)
Define X+Y= ( a1+b1 (mod q), a2+b2 (mod q-1), …, aq-1+ bq-1(mod 2), 0 )
Then < G (q), + > = zq + zq-1 + … + z2 + <0>
This sum is a direct sum of cyclic groups of orders q, q-1, …, 2, 1 respectively.
Arithmetic properties of Tree Generation codes
Theorem 1:
Let X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges.
Let p ≤ q - a1. Then,
(σ( a1+1), σ(a1+2), …, σ(a1+p), X) always represent a tree code on “q+p” edges for any
σ Є Sp= Symmetric group on “p” symbols.
Corollary 1:
Consider the following caterpillar,
N+1
(N
α
1
, (N-1)
α
2, …, 1
α
N, 0
α
N+1). Let “p” be any +ve integer ≤ (∑αi) – N.
i=1
Then (σ (N+1), σ (N+2), …, σ (N+p), N
α
1
, (N-1)
α
2, …, 1
α
N, 0
α
N+1) always represent a
N+1
tree code on “ (∑αi) + p ” edges for any σ Є Sp= Symmetric group on “p” symbols.
i=1
Corollary 2:
(σ (1), σ (2), …, σ (q), 0
q
) always represent a tree code on “2q” edges for
any σ Є Sp= Symmetric group on “p” symbols.
Corollary 3
For any positive integer "q",
(2q, 2q-1, …, q+1, q + σ( q), q-1 + σ(q-1), …, 2 + σ(2), 1 + σ(1), σ(1), σ(2), …, σ(q), 0q
)
always represent a α-valuable tree code on “4q” edges
Theorem 2:
Let X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges, such
that q - a1= odd integer. Then for any m ≥ 2,
((a1+1, a1+2, …, q)m
, X) always represent a tree code on “m(q-a1)+ q” edges.
Corollary 1:
For any odd +ve integer q and m ≥ 2, ((q+1, q+2, …, 2q)m
, qq+1
, q-1,q-2, …,2,1, 0q
)
represent a tree code on “(m+3)q” edges.
Theorem 3:
Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges.
Assume q-a1= even integer. Then for any +ve integer m ≥ 2,
((a1+1, a1+2, …, q, a1)m-1
, a1+1, a1+2, …, q-1, q, X) represent a tree code on
“(m+1)q- a1m + m-1” edges.
Theorem 4:
Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges
such that
i. q is odd.
ii. a1 is even.
Then,
(1+a1, σ (a1+3), 1+a1, σ (a1+5), 1+a1, …, 1+a1, σ (q), 1+a1, X) represent a tree code on
“2q - a1” edges.
Here σ is any permutation on “(q-a1-1)/ 2” symbols= {a1+3, a1+5, …, q}.
Here 1+a1 is repeated “(q-a1+1)/2” times.
Theorem 5:
Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges.
Assume,
1) 3│q and 3│a1.
2) a1 ≤ 2.q/ 3.
3) q ≥ 6. Then,
(a1+q-2, a1+q-5, …, 4+a1, 1+a1, a1+q-3, a1+q-4 a1+q-6, a1+q-7,…, a1+3, a1+2, X)
always represent a tree code on “2q-2” edges.
Theorem 6:
Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges,
such that,
1) q= even.
2) a1= even.
3) a1 ≤ q/ 2 and q ≥ 4. Then,
(a1+q-1, a1+q-3, …, 3+a1, 1+a1, a1+q-2, a1+q-4, …, a1+4, a1+2, X) always represent a
tree code on “2q-1” edges.
Theorem 7:
(1
n
, n+2, …, n+r+1, 1
n
, 0
2n+r
) represent a tree code on “4n+2r” edges
for any +ve integer n, r.
Theorem 8:
(1, 3, 4, …, n+2, 1, 0
n+2
) always represent a tree code on “2n+4” edges.
(1, σ (3), σ (4), …, σ (n+2), 1, 0
n+2
) always represent a tree code on “2n+4” edges for
any σ Є Sn= Symmetric group on n symbols.
Theorem 9:
9.1. (1, 2, …, 2n, 2n+1, 1, 2, …, 2n, 0
4n+1
) represent a tree code on “8n+2”
edges for any n ≥ 1.
9.2. (1, 3, 1, 5, 1, 7, 1, …, 1, 2q+1, 1, 0
2q+1
) represent a tree code on “4q+2”
edges.
9.3. (1, σ (3), 1, …, 1, σ (2q+1), 1, 0
2q+1
) represent a tree code on “4q+2” edges
for any σ Є Sq = group of permutations on q= {3, 5, …, 2q+1} symbols.
Theorem
N+1
10:
Suppose (∑αi) – N = odd +ve integer, then for any +ve integer
i=1
m
N+1 N+1
≥ 2,
((N+1, N+2, …, (∑αi) – 1, ∑αi )
m
, N
α
1
, (N-1)
α
2, …, 1
α
N, 0
α
N+1) always
i=1 i=1
N+1 N+1
represent a tree code on “m[(∑αi) – N ] + ∑αi ” edges.
i=1 i=1
Theorem 11: N+1
Suppose (∑αi) – N = even +ve integer, then for any +ve integer
i=1
m ≥ 2,
N+1 N+1 N+1 N+1
((N+1, N+2, …, (∑αi) – 1, ∑αi , N)m-1
,N+1, N+2, …, (∑αi) – 1, ∑αi,
i=1 i=1 i=1 i=1
N
α
1
, (N-1)
α
2, …, 1
α
N, 0
α
N+1)
N+1
represent a tree code on “(m+1) (∑αi) – Nm+m-1” edges.
i=1
Theorem - 12
Suppose (a1, a2, …, aq-1, aq) represent a code of a graceful tree on “q” edges. Then
X = (aq+q, aq-1+q-1, …, 2+a2, 1+a1, x, a1, a2, a3……, aq-1, aq), [0≤x≤q] represent a
α–valuable tree code on “2q + 1” edges.
Define U(X)
= ( q + 1 + (aq , aq -1 , …, a2, a1) , x + q + 1 , q + 1 + (a1 + 1 , a2 + 2, …, aq + q ) )
U(X)R
q= ( q + 1 + (aq + q, aq-1 + q – 1, …, a2 + 2 , a1 + 1) , x + q+ 1,
q + 1 + (a1, a2, …, aq-1, aq ) ) )
Then
(U(X)R
+ (k – 2)q , q U(X)R
+ (k – 3)q , …, U(X)R
+ q , U(X)R
, X ) always
represent a α–valuable tree code on “2kq + k” edges (k ≥ 3) +== +
==========---ppp0000000iiiii ===[[[[
Theorem - 13
Let X1 = (q, a2
(1)
, a3
(1)
, …, a2q
(1)
, a2q+1
(1)
)
X2 = (q, a2
(2)
, a3
(2)
, …, a2q
(2)
, a2q+1
(2)
)
… = …………………………………...
Xi = (q, a2
(i)
, a3
(i)
, …, a2q
(i)
, a2q+1
(i)
)
… = …………………………………..
Xk = (q, a2
(k)
, a3
(k)
, …, a2q
(k)
, a2q+1
(k)
)
Represent “k” α–valuable tree codes on “2q+1” edges of trees T1 , T2, …, Ti, …, Tk
respectively ( k ≥ 3)
Define U(Xi) = ( q + 1, 2 + a2
(i)
, 3 + a3
(i)
, …, 2q + a2q
(i)
, 2q + 1 + a2q+1
(i)
)
U(Xi)R
= ( 2q + 1 + a2q+1
(i)
, 2q + a2q
(i)
, …, 3 + a3
(i)
, 2 + a2
(i)
, q + 1 )
For 1 ≤ i ≤ k
Then
( U(X1)R
+ (k – 2 )q , U(X2)R
+ (k – 3)q , …, U(Xk-2)R
+ q , U(Xk-1)R
, Xk )
represent α–valuable tree code of a tree “T” on “2kq + k” edges such that
E(T) = E(T1) U E(T2) U … U E(Tk)
Also
( U(X1)R
+ (k – 2 )q , U(X2)R
+ (k – 3)q , …, U(Xk-2)R
+ q , U(Xk-1)R
, 0, Xk )
represent a α–valuable tree code of a tree “S” on “2kq + k+ 1” edges.
Theorem - 14
Suppose (a1, a2, …, aq-1, aq) represent a α-valuable tree code of a graceful tree on
“q” edges. Then X = (aq+q, aq-1+q-1,…,2+a2, 1+a1, a1, a2, a3……, aq-1, aq),
represent a α–valuable tree code on “2q” edges.
Define Y = ( 2q – 1 , 2q – 2 , …, q + 1 , q, q – 1 , q – 2, …, 1, 0 ) – X
= ( q – 1 , q – 1 – aq-1 , …, q – 1 – a2, q – 1 – a1 , q – 1 – a1 , q – 2 – a2 ,
…, 1 – aq-1, 0 )
U(Y) = ( q, q + 1 - aq-1, …, 2q – 2 – a2, 2q – 1 – a1 , 2q – a1, 2q – a2, …,
2q – aq-1, 2q )
U(Y)R
= ( 2q, 2q – aq-1 , …, 2q – a2, 2q – a1, 2q – 1 – a1 , 2q – 2 – a2 , …,
q + 1 – aq-1 , q )
Then (U(Y)R
+ (k – 2)q , q U(Y)R
+ (k – 3)q , …, U(Y)R
+ q , U(Y)R
, Y ) always
represent a α–valuable tree code on “2kq ” edges (k ≥ 3) .+=
=
Algorithm (Tree Check):
1. q← no. of edges in the graph.
2. q1← q
3. for i← 0 to q-1
4. // Get the code of graph
// Store it in a[0…. q-1]
5. for i← 0 to q-1
6. if (a[i] < 0 or a[i]> q-i-1)
7. // not a graceful code
8. exit
9. for i←1 to q
10. do b[i-1] = i+a [i-1]
11. // upper code stored in array b[]
12. for key←0 to q1
13. element ← 0
14. j← 0
15. while (j<q)
16. if (key= a[j] or key= b[j])
17. element← element +1
18. j← j+1
19. else
20. j← j+1
21. if (element=0)
22. code does not represent tree
23. exit
24. key← 0
26. while (key <=q1)
27. element← 0
28. j← 0
29. while (j<q)
30. if (key=a[j] or key=b[j])
31. element← element +1
32. j← j+1
33. else
34. j← j+1
35. key← key+1
36. if (element=1)
37. SEARCH (key-1)
38. if (z<2*q1)
39. code does not represent tree
SEARCH (temp):
1. for n←0 to q-1
2. if (a[n]= temp or b[n]= temp)
3. TREEVERT (n)
4. VERDELETE (n, q)
5. key← 0
TREEVERT (d)
1. tree [z]←a[d]
2. z← z+1
3. tree [z]←b[d]
4. z← z+1
5. if (z=2*q1)
6. // code represents a tree
VERDELETE (n, k)
1. for x← n to k-2
2. a[x]← a[x+1]
3. b[x]← b[x+1]
4. k← k-1
5. q← k
Reference:
1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, 2001.
2. Pawan Kumar, Graceful Graph: Code Operator, Software Project Thesis, Dept.
of Computer Science& Engineering, SCSVMV, Kanchipuram, India,2005.
3. A. Rosa, “On certain valuations of the vertices of a graph”,Theory of Graphs,
Proc. Sympos. Rome, 1996, Dunod, Paris, 1967, pp.349-355.
4. A. Rosa, Labeling snakes, Ars Combinatoria 3 (1977), 67-74.
5. C. Huang, A. Kotzig, and A. Rosa “Further results on Tree Labelings”, Utilitas
Mathematica, Vol. 21C (1982), pp 31-48.

More Related Content

PDF
PPTX
Nbvtalkatbzaonencryptionpuzzles
PDF
IRJET- Classification of Dynkin diagrams & imaginary roots of Quasi hyperboli...
PDF
2016--04-07-NCUR-JON (1)
PDF
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...
PPTX
DISCRETE LOGARITHM PROBLEM
PDF
Md2521102111
Nbvtalkatbzaonencryptionpuzzles
IRJET- Classification of Dynkin diagrams & imaginary roots of Quasi hyperboli...
2016--04-07-NCUR-JON (1)
Mi ordenador, de mayor, quiere ser cuántico (curso acelerado de simulación ...
DISCRETE LOGARITHM PROBLEM
Md2521102111

What's hot (20)

PDF
S. Duplij, Y. Hong, F. Li. Uq(sl(m+1))-module algebra structures on the coord...
PDF
Open GL 04 linealgos
PPTX
Different kind of distance and Statistical Distance
PDF
Rosser's theorem
PDF
ゲーム理論BASIC 第42回 -仁に関する定理の証明3-
PDF
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
DOCX
Assignment of class 12 (chapters 2 to 9)
PPTX
DOCX
capstone magic squares
PDF
The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...
PDF
ゲーム理論BASIC 第42回 -仁に関する定理の証明2-
DOC
Eigenvalues
PPTX
HERMITE SERIES
PDF
On Uq(sl2)-actions on the quantum plane
PDF
Efficient Analysis of high-dimensional data in tensor formats
PDF
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
PDF
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
PDF
Split block domination in graphs
PDF
Fuzzy join prime semi l ideals
PDF
11.fuzzy join prime semi l ideals
S. Duplij, Y. Hong, F. Li. Uq(sl(m+1))-module algebra structures on the coord...
Open GL 04 linealgos
Different kind of distance and Statistical Distance
Rosser's theorem
ゲーム理論BASIC 第42回 -仁に関する定理の証明3-
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
Assignment of class 12 (chapters 2 to 9)
capstone magic squares
The Estimation for the Eigenvalue of Quaternion Doubly Stochastic Matrices us...
ゲーム理論BASIC 第42回 -仁に関する定理の証明2-
Eigenvalues
HERMITE SERIES
On Uq(sl2)-actions on the quantum plane
Efficient Analysis of high-dimensional data in tensor formats
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
Split block domination in graphs
Fuzzy join prime semi l ideals
11.fuzzy join prime semi l ideals
Ad

Viewers also liked (15)

PPTX
Stringry
PPTX
Nelson Rolihlahla Mandela
PPTX
Presentation
PDF
The Evolution of Big Data at Spotify
PDF
How Apache Drives Music Recommendations At Spotify
PDF
PDF
PDF
Stringry
Nelson Rolihlahla Mandela
Presentation
The Evolution of Big Data at Spotify
How Apache Drives Music Recommendations At Spotify
Ad

Similar to tree-gen-algo (20)

PDF
graceful Trees through Graceful codes (1)
PDF
graceful Trees through Graceful codes (1)
PDF
Estimating structured vector autoregressive models
PDF
about pi and its properties from number theory
PPT
Ch07 6
PDF
DOCX
Class XII Mathematics long assignment
PDF
PPTX
Quadratic_functionsgraph of quadratic equation
PDF
Csr2011 june15 11_00_sima
PDF
Inmo 2010 problems and solutions
PDF
kactl.pdf
PDF
Aieee maths-quick review
PPTX
eigenvalue
PDF
Solution of Differential Equations in Power Series by Employing Frobenius Method
PDF
Maths05
PDF
Multivriada ppt ms
PDF
The Probability that a Matrix of Integers Is Diagonalizable
PDF
Lecture5
DOCX
graceful Trees through Graceful codes (1)
graceful Trees through Graceful codes (1)
Estimating structured vector autoregressive models
about pi and its properties from number theory
Ch07 6
Class XII Mathematics long assignment
Quadratic_functionsgraph of quadratic equation
Csr2011 june15 11_00_sima
Inmo 2010 problems and solutions
kactl.pdf
Aieee maths-quick review
eigenvalue
Solution of Differential Equations in Power Series by Employing Frobenius Method
Maths05
Multivriada ppt ms
The Probability that a Matrix of Integers Is Diagonalizable
Lecture5

More from Chandramowliswaran NARAYANASWAMY (17)

PDF
number theory chandramowliswaran theorem
PDF
invited-seminar-libre(1)
PDF
testimonial_iit_3_(3)
PDF
PDF
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
PDF
FDP SumCourse Schedule July 2009 (1)
PDF
PDF
PDF
testimonial-iit_1 (4)
PDF
29-SrinivasanMuralikrishnaChandramowliswaran
PDF
21642583%2E2014%2E985803
PDF
Development of Cognitive tools for advanced Mathematics learnng based on soft...
number theory chandramowliswaran theorem
invited-seminar-libre(1)
testimonial_iit_3_(3)
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
FDP SumCourse Schedule July 2009 (1)
testimonial-iit_1 (4)
29-SrinivasanMuralikrishnaChandramowliswaran
21642583%2E2014%2E985803
Development of Cognitive tools for advanced Mathematics learnng based on soft...

tree-gen-algo

  • 1. Arithmetical properties of tree generation codes and algorithm to generate all tree codes for a given number of edges K. Balasubramaniana , N. Chandramowliswaranb , N. Ramachandranb , S. Arunc , Pawan Kumarc a Department of Statistics , Indian Statistical Institute, New Delhi, India. b Department of Mathematics, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya, Kanchipuram-631 561, India. c Department of Computer Science & Engineering, Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya, Kanchipuram, Kanchipuram-631 561, India. Abstract: Graceful Code is a way to represent graceful graph in terms of sequence of non-negative integers. Given a graceful graph G on “q” edges, we can generate its graceful code in the form of (a1, a2, a3, …, aq-1, aq) to represent the graph. Similarly, we can easily draw the graph from the given graceful code. In this paper, we present an algorithm to generate all possible tree codes on a given number of edges (say q=30). Moreover, we also present the arithmetic properties of tree generating codes and an algorithm to check whether the code of a given graceful graph represents a tree or not. This algorithm uses prüfer code techniques on graceful codes to perform tree checking. The prüfer technique of removing the lowest labeled leaf easily determines the code to be a tree or not. Keywords: Graceful graphs, Graceful codes, α-valuable codes. Introduction: Definition 1: A Graceful labeling of a simple graph G with “q” edges is an injection “f ” from the vertices of G to the set {0,1, 2, 3, …, q} such that the induced function g: E→{1, 2, …,q} g (e) = | f(u) - f(v) | for every edge e ={u, v}, is a bijective function A graph, which has a graceful labeling, is called a Graceful graph. This labeling was originally introduced in 1967 by Rosa who has also showed that the existence of a graceful labeling of a given graph G with “q” edges is a sufficient condition for the existence of a cyclic decomposition of a complete graph of order “2q+1” into sub-graphs isomorphic to G. [See Ref]. The famous Graceful Tree Conjecture says that all trees have a graceful labeling.
  • 2. Code of a Graceful Graph: Let G be any graceful graph on “q” edges then (a1, a2, a3, … , aq-1, aq) is called a graceful code of G, if 0 ≤ ai ≤ q-i, 1 ≤ i ≤ q. Here ai is the lower end vertex of the edge label “i”. It is important to note that aq is always zero. Example: Code= (4, 3, 1, 2, 1, 0) Figure 1 shows a graceful graph on 6 edges. The code of this graceful graph is = (4, 3, 1, 2, 1, 0), where a1= 4= lower end vertex of the edge label “1”. a2= 3= lower end vertex of the edge label “2”. a3= 1= lower end vertex of the edge label “3”. a4= 2= lower end vertex of the edge label “4”. a5= 1= lower end vertex of the edge label “5”. a6= 0= lower end vertex of the edge label “6”. For every graceful graph G we can write its corresponding graceful code. Conversely, for every given graceful code we can draw the corresponding graceful graph as follows. Join edges: {(a1, 1+a1), (a2, 2+a2), …, (aq-1, q-1+aq-1), (aq, q+aq)} Definition 2: α-valuable Code: Let G be a graceful graph on “q” edges. Then the code (a1, a2, a3,…, aq) is called α-valuable code of G if a1 ≥ ai ; for all i Max {ai | 0 ≤ i ≤ q} < Min {i + ai | 0 ≤ i ≤ q} Here a1 is called the separator or critical value of the α-valuable code.
  • 3. Proposition 1 (a1, a2, a3, …, aq) represents an α-valuable code if and only if 0 ≤ (a1 – aq - i + 1 / q – i) ≤ 1 for all i, 1 ≤ i ≤ q-1 Equivalently, (a1, a2, a3, ..., aq-1, aq) represents an α-valuable code if and only if (a1 – aq, a1 – aq-1, …, a1 – a3, a1 – a2, 0) represents a code of a graceful graph. Proposition 2 Define G(q)= { ( a1, a2, …, aq) |0 ≤ ai ≤ q-i } Let X, Y є G(q), such that, X= (a1, a2, a3, …, aq-1, aq) Y= (b1, b2, b3, …, bq-1, bq) Define X+Y= ( a1+b1 (mod q), a2+b2 (mod q-1), …, aq-1+ bq-1(mod 2), 0 ) Then < G (q), + > = zq + zq-1 + … + z2 + <0> This sum is a direct sum of cyclic groups of orders q, q-1, …, 2, 1 respectively. Arithmetic properties of Tree Generation codes Theorem 1: Let X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges. Let p ≤ q - a1. Then, (σ( a1+1), σ(a1+2), …, σ(a1+p), X) always represent a tree code on “q+p” edges for any σ Є Sp= Symmetric group on “p” symbols. Corollary 1: Consider the following caterpillar, N+1 (N α 1 , (N-1) α 2, …, 1 α N, 0 α N+1). Let “p” be any +ve integer ≤ (∑αi) – N. i=1 Then (σ (N+1), σ (N+2), …, σ (N+p), N α 1 , (N-1) α 2, …, 1 α N, 0 α N+1) always represent a N+1 tree code on “ (∑αi) + p ” edges for any σ Є Sp= Symmetric group on “p” symbols. i=1
  • 4. Corollary 2: (σ (1), σ (2), …, σ (q), 0 q ) always represent a tree code on “2q” edges for any σ Є Sp= Symmetric group on “p” symbols. Corollary 3 For any positive integer "q", (2q, 2q-1, …, q+1, q + σ( q), q-1 + σ(q-1), …, 2 + σ(2), 1 + σ(1), σ(1), σ(2), …, σ(q), 0q ) always represent a α-valuable tree code on “4q” edges Theorem 2: Let X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges, such that q - a1= odd integer. Then for any m ≥ 2, ((a1+1, a1+2, …, q)m , X) always represent a tree code on “m(q-a1)+ q” edges. Corollary 1: For any odd +ve integer q and m ≥ 2, ((q+1, q+2, …, 2q)m , qq+1 , q-1,q-2, …,2,1, 0q ) represent a tree code on “(m+3)q” edges. Theorem 3: Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges. Assume q-a1= even integer. Then for any +ve integer m ≥ 2, ((a1+1, a1+2, …, q, a1)m-1 , a1+1, a1+2, …, q-1, q, X) represent a tree code on “(m+1)q- a1m + m-1” edges. Theorem 4: Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges such that i. q is odd. ii. a1 is even. Then, (1+a1, σ (a1+3), 1+a1, σ (a1+5), 1+a1, …, 1+a1, σ (q), 1+a1, X) represent a tree code on “2q - a1” edges. Here σ is any permutation on “(q-a1-1)/ 2” symbols= {a1+3, a1+5, …, q}. Here 1+a1 is repeated “(q-a1+1)/2” times.
  • 5. Theorem 5: Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges. Assume, 1) 3│q and 3│a1. 2) a1 ≤ 2.q/ 3. 3) q ≥ 6. Then, (a1+q-2, a1+q-5, …, 4+a1, 1+a1, a1+q-3, a1+q-4 a1+q-6, a1+q-7,…, a1+3, a1+2, X) always represent a tree code on “2q-2” edges. Theorem 6: Suppose X= (a1, a2, …, aq) be a given α-valuable tree code on “q” edges, such that, 1) q= even. 2) a1= even. 3) a1 ≤ q/ 2 and q ≥ 4. Then, (a1+q-1, a1+q-3, …, 3+a1, 1+a1, a1+q-2, a1+q-4, …, a1+4, a1+2, X) always represent a tree code on “2q-1” edges. Theorem 7: (1 n , n+2, …, n+r+1, 1 n , 0 2n+r ) represent a tree code on “4n+2r” edges for any +ve integer n, r. Theorem 8: (1, 3, 4, …, n+2, 1, 0 n+2 ) always represent a tree code on “2n+4” edges. (1, σ (3), σ (4), …, σ (n+2), 1, 0 n+2 ) always represent a tree code on “2n+4” edges for any σ Є Sn= Symmetric group on n symbols. Theorem 9: 9.1. (1, 2, …, 2n, 2n+1, 1, 2, …, 2n, 0 4n+1 ) represent a tree code on “8n+2” edges for any n ≥ 1. 9.2. (1, 3, 1, 5, 1, 7, 1, …, 1, 2q+1, 1, 0 2q+1 ) represent a tree code on “4q+2” edges. 9.3. (1, σ (3), 1, …, 1, σ (2q+1), 1, 0 2q+1 ) represent a tree code on “4q+2” edges for any σ Є Sq = group of permutations on q= {3, 5, …, 2q+1} symbols.
  • 6. Theorem N+1 10: Suppose (∑αi) – N = odd +ve integer, then for any +ve integer i=1 m N+1 N+1 ≥ 2, ((N+1, N+2, …, (∑αi) – 1, ∑αi ) m , N α 1 , (N-1) α 2, …, 1 α N, 0 α N+1) always i=1 i=1 N+1 N+1 represent a tree code on “m[(∑αi) – N ] + ∑αi ” edges. i=1 i=1 Theorem 11: N+1 Suppose (∑αi) – N = even +ve integer, then for any +ve integer i=1 m ≥ 2, N+1 N+1 N+1 N+1 ((N+1, N+2, …, (∑αi) – 1, ∑αi , N)m-1 ,N+1, N+2, …, (∑αi) – 1, ∑αi, i=1 i=1 i=1 i=1 N α 1 , (N-1) α 2, …, 1 α N, 0 α N+1) N+1 represent a tree code on “(m+1) (∑αi) – Nm+m-1” edges. i=1 Theorem - 12 Suppose (a1, a2, …, aq-1, aq) represent a code of a graceful tree on “q” edges. Then X = (aq+q, aq-1+q-1, …, 2+a2, 1+a1, x, a1, a2, a3……, aq-1, aq), [0≤x≤q] represent a α–valuable tree code on “2q + 1” edges. Define U(X) = ( q + 1 + (aq , aq -1 , …, a2, a1) , x + q + 1 , q + 1 + (a1 + 1 , a2 + 2, …, aq + q ) ) U(X)R q= ( q + 1 + (aq + q, aq-1 + q – 1, …, a2 + 2 , a1 + 1) , x + q+ 1, q + 1 + (a1, a2, …, aq-1, aq ) ) ) Then (U(X)R + (k – 2)q , q U(X)R + (k – 3)q , …, U(X)R + q , U(X)R , X ) always represent a α–valuable tree code on “2kq + k” edges (k ≥ 3) +== + ==========---ppp0000000iiiii ===[[[[
  • 7. Theorem - 13 Let X1 = (q, a2 (1) , a3 (1) , …, a2q (1) , a2q+1 (1) ) X2 = (q, a2 (2) , a3 (2) , …, a2q (2) , a2q+1 (2) ) … = …………………………………... Xi = (q, a2 (i) , a3 (i) , …, a2q (i) , a2q+1 (i) ) … = ………………………………….. Xk = (q, a2 (k) , a3 (k) , …, a2q (k) , a2q+1 (k) ) Represent “k” α–valuable tree codes on “2q+1” edges of trees T1 , T2, …, Ti, …, Tk respectively ( k ≥ 3) Define U(Xi) = ( q + 1, 2 + a2 (i) , 3 + a3 (i) , …, 2q + a2q (i) , 2q + 1 + a2q+1 (i) ) U(Xi)R = ( 2q + 1 + a2q+1 (i) , 2q + a2q (i) , …, 3 + a3 (i) , 2 + a2 (i) , q + 1 ) For 1 ≤ i ≤ k Then ( U(X1)R + (k – 2 )q , U(X2)R + (k – 3)q , …, U(Xk-2)R + q , U(Xk-1)R , Xk ) represent α–valuable tree code of a tree “T” on “2kq + k” edges such that E(T) = E(T1) U E(T2) U … U E(Tk) Also ( U(X1)R + (k – 2 )q , U(X2)R + (k – 3)q , …, U(Xk-2)R + q , U(Xk-1)R , 0, Xk ) represent a α–valuable tree code of a tree “S” on “2kq + k+ 1” edges. Theorem - 14 Suppose (a1, a2, …, aq-1, aq) represent a α-valuable tree code of a graceful tree on “q” edges. Then X = (aq+q, aq-1+q-1,…,2+a2, 1+a1, a1, a2, a3……, aq-1, aq), represent a α–valuable tree code on “2q” edges. Define Y = ( 2q – 1 , 2q – 2 , …, q + 1 , q, q – 1 , q – 2, …, 1, 0 ) – X = ( q – 1 , q – 1 – aq-1 , …, q – 1 – a2, q – 1 – a1 , q – 1 – a1 , q – 2 – a2 , …, 1 – aq-1, 0 ) U(Y) = ( q, q + 1 - aq-1, …, 2q – 2 – a2, 2q – 1 – a1 , 2q – a1, 2q – a2, …, 2q – aq-1, 2q ) U(Y)R = ( 2q, 2q – aq-1 , …, 2q – a2, 2q – a1, 2q – 1 – a1 , 2q – 2 – a2 , …, q + 1 – aq-1 , q ) Then (U(Y)R + (k – 2)q , q U(Y)R + (k – 3)q , …, U(Y)R + q , U(Y)R , Y ) always represent a α–valuable tree code on “2kq ” edges (k ≥ 3) .+= =
  • 8. Algorithm (Tree Check): 1. q← no. of edges in the graph. 2. q1← q 3. for i← 0 to q-1 4. // Get the code of graph // Store it in a[0…. q-1] 5. for i← 0 to q-1 6. if (a[i] < 0 or a[i]> q-i-1) 7. // not a graceful code 8. exit 9. for i←1 to q 10. do b[i-1] = i+a [i-1] 11. // upper code stored in array b[] 12. for key←0 to q1 13. element ← 0 14. j← 0 15. while (j<q) 16. if (key= a[j] or key= b[j]) 17. element← element +1 18. j← j+1 19. else 20. j← j+1 21. if (element=0) 22. code does not represent tree 23. exit 24. key← 0 26. while (key <=q1) 27. element← 0 28. j← 0 29. while (j<q) 30. if (key=a[j] or key=b[j]) 31. element← element +1 32. j← j+1 33. else 34. j← j+1 35. key← key+1 36. if (element=1) 37. SEARCH (key-1) 38. if (z<2*q1) 39. code does not represent tree
  • 9. SEARCH (temp): 1. for n←0 to q-1 2. if (a[n]= temp or b[n]= temp) 3. TREEVERT (n) 4. VERDELETE (n, q) 5. key← 0 TREEVERT (d) 1. tree [z]←a[d] 2. z← z+1 3. tree [z]←b[d] 4. z← z+1 5. if (z=2*q1) 6. // code represents a tree VERDELETE (n, k) 1. for x← n to k-2 2. a[x]← a[x+1] 3. b[x]← b[x+1] 4. k← k-1 5. q← k
  • 10. Reference: 1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, MIT Press, Cambridge, 2001. 2. Pawan Kumar, Graceful Graph: Code Operator, Software Project Thesis, Dept. of Computer Science& Engineering, SCSVMV, Kanchipuram, India,2005. 3. A. Rosa, “On certain valuations of the vertices of a graph”,Theory of Graphs, Proc. Sympos. Rome, 1996, Dunod, Paris, 1967, pp.349-355. 4. A. Rosa, Labeling snakes, Ars Combinatoria 3 (1977), 67-74. 5. C. Huang, A. Kotzig, and A. Rosa “Further results on Tree Labelings”, Utilitas Mathematica, Vol. 21C (1982), pp 31-48.