SlideShare a Scribd company logo
IIT-JEE2005-M-1 
FIIIITJEE Solutions to IITJEE––2005 Mains Paper 
Mathematics 
Time: 2 hours 
Note: Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 
6 marks each. 
Q1. A person goes to office either by car, scooter, bus or train probability of which being 1, 3 , 2 
7 7 7 
and 1 
  
  = 
  
  
  = 
  
  
  = 
  
  
  = 
  
  
  × 
P L .P C 1 7 
  =   = =   
  × + × + × + × 
1 − 2x + 
5x 
3x 2x 1 
 π π −    
1 − 2x + 
5x 
3x 2x 1 
 −    
  
+ 
− 
+ 
− 
 π π   π π − −  ∪       
FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942 
7 
respectively. Probability that he reaches office late, if he takes car, scooter, bus or train is 2 , 1, 4 
9 9 9 
and 1 
9 
respectively. Given that he reached office in time, then what is the probability that he travelled 
by a car. 
Sol. Let C, S, B, T be the events of the person going by car, scooter, bus or train respectively. 
Given that P(C) = 1 
7 
, P(S) = 3 
7 
, P(B) = 2 
7 
, P(T) = 1 
7 
Let L be the event of the person reaching the office in time. 
⇒ P L 7 
C 9 
, P L 8 
S 9 
, P L 5 
B 9 
, P L 8 
T 9 
⇒ 
( ) 
( ) 
C C 7 9 1 P 
L P L 1 7 3 8 2 5 8 1 7 
7 9 7 9 7 9 9 7 
. 
Q2. Find the range of values of t for which 2 sin t = 
2 
2 
− − 
, t ∈ , 
2 2 
. 
Sol. Let y = 2 sin t 
so, y = 
2 
2 
− − 
⇒ (3y − 5)x2 − 2x(y − 1) − (y + 1) = 0 
since x ∈ R − 1, 1 
3 
, so D ≥ 0 
⇒ y2 − y − 1 ≥ 0 
or y ≥ 1 5 
2 
and y ≤ 1 5 
2 
or sin t ≥ 1 5 
4 
and sin t ≤ 1 5 
4 
Hence range of t is , 3 , 
2 10 10 2 
. 
Q3. Circles with radii 3, 4 and 5 touch each other externally if P is the point of intersection of tangents to 
these circles at their points of contact. Find the distance of P from the points of contact.
IIT-JEE2005-M-2 
Sol. Let A, B, C be the centre of the three circles. 
Clearly the point P is the in–centre of the ΔABC, and 
hence 
Δ s (s − a)(s − b)(s − c) − − − 
r = 
= = 
(s a)(s b)(s c) 
s s s 
Now 2s = 7 + 8 + 9 = 24 ⇒ s = 12. 
Hence r = 5. 4.3 5 
12 
= . 
A 
3 
4 
C 
B 
3 
•P 
4 
5 
5 
Q4. Find the equation of the plane containing the line 2x – y + z – 3 = 0, 3x + y + z = 5 and at a distance of 
1 
6 
from the point (2, 1, – 1). 
Sol. Let the equation of plane be (3λ + 2)x + (λ − 1)y + (λ + 1)z − 5λ – 3 = 0 
⇒ 
6 λ + 4 + λ − 1 − λ − 1 − 5 λ − 
3 = 
1 
(3 λ + 2) 2 + ( λ − 1) 2 + ( λ + 
1) 2 
6 
⇒ 6(λ – 1)2 = 11λ2 + 12λ + 6 ⇒ λ = 0, − 24 
5 
. 
⇒ The planes are 2x – y + z – 3 = 0 and 62x + 29y + 19z − 105 = 0. 
Q5. If |f(x1) – f(x2)| < (x1 – x2)2, for all x1, x2 ∈R. Find the equation of tangent to the curve y = f(x) at the 
point (1, 2). 
Sol. |f (x1) – f (x2)| < (x1 – x2)2 
⇒ 
f(x ) − 
f(x ) 
1 2 
lim < lim | x − 
x | 
→ x x → 
x x 1 2 1 2 1 − 
2 
x 1 x 2 
⇒ |f′ (x)| < δ ⇒ f′ (x) = 0. 
Hence f (x) is a constant function and P (1, 2) lies on the curve. 
⇒ f (x) = 2 is the curve. 
Hence the equation of tangent is y – 2 = 0. 
Q6. If total number of runs scored in n matches is n 1 
 +  
  4 
 
 
(2n+1 – n – 2) where n > 1, and the runs scored 
in the kth match are given by k. 2n+1–k, where 1 ≤ k ≤ n. Find n. 
Sol. Let Sn = 
n 
n 1 k 
= Σ 
k 1 
k.2 + − 
= 
n 
= Σ 
n 1 k 
2 + k.2− 
k 1 
2 .2 1 1 n 
= n 1 
 − −   n n1 
 
2 2 
+ 
+ 
(sum of the A.G.P.) 
= 2[2n+1 – 2 – n] 
n + 
⇒ 1 2 
4 
= ⇒ n = 7. 
Q7. The area of the triangle formed by the intersection of a line parallel to x-axis and passing through 
P (h, k) with the lines y = x and x + y = 2 is 4h2. Find the locus of the point P. 
Sol. Area of triangle = 1 
2 
. AB. AC = 4h2 
and AB = 2 |k – 1| = AC 
⇒ 4h2 = 1 
2 
. 2. (k – 1)2 
⇒ k – 1 = ± 2h. 
⇒ locus is y = 2x + 1, y = – 2x + 1. 
y = x 
A(1,1) 
B(k,k) C(2−k,k) y =k 
P(h,k) 
X 
x+y=2 
O 
FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
IIT-JEE2005-M-3 
π  e  1    2 sin  cos x  + 3 cos  1  cos x 
 
     ∫ sin x dx. 
Q8. Evaluate |cos x| 
0 
2 2 
π  e  1    2 sin  cos x  + 3 cos  1  cos x 
 
     ∫ sin x dx 
Sol. I = |cos x| 
0 
2 2 
= 6 
/ 2 
e sin x cos 1 cos x dx 
 
  0, if f(2a − x) = − f(x) 
 
 2a 
  =      − =      
∫ cos x 
  
  
( )   ( ) 
0 
2 
π 
∵ 
∫ a 
∫ 0 
2 f x dx, if f(2a x) f(x) 
0 
f x dx 
Let cos x = t 
1 
I = 6 
e cos t dt 
∫ 
t 
  
  
  0 
2 
         +   −  
      
= 24 ecos 1 e sin 1 1 
5 2 2 2 
. 
Q9. Incident ray is along the unit vector ˆv and the reflected ray is 
along the unit vector wˆ . The normal is along unit vector aˆ 
outwards. Express wˆ in terms of aˆ and vˆ . 
ˆv 
ˆa 
wˆ 
Sol. vˆ is unit vector along the incident ray and wˆ 
is the unit vector along the reflected ray. 
Hence ˆa is a unit vector along the external 
bisector of vˆ and wˆ . Hence 
wˆ − vˆ = λaˆ 
⇒ 1 + 1 – wˆ ⋅ vˆ = λ2 
or 2 – 2 cos 2θ = λ2 
or λ = 2 sin θ 
where 2θ is the angle between vˆ and wˆ . 
ˆa 
wˆ 
2θ 
ˆv 
(90-θ) 
mirror 
Hence wˆ − vˆ = 2sinθaˆ = 2cos(900 − θ)aˆ = −(2aˆ ⋅ vˆ )aˆ 
⇒ wˆ = vˆ − 2(aˆ ⋅ vˆ )aˆ . 
Q10. Tangents are drawn from any point on the hyperbola 
x2 y2 1 
9 4 
− = to the circle x2 + y2 = 9. Find the 
locus of mid–point of the chord of contact. 
Sol. Any point on the hyperbola 
x2 y2 1 
9 4 
− = is (3 secθ, 2 tanθ). 
Chord of contact of the circle x2 + y2 = 9 with respect to the point (3 sec θ, 2tan θ) is 
3 secθ.x + 2 tanθ.y = 9 ….(1) 
Let (x1, y1) be the mid–point of the chord of contact. 
⇒ equation of chord in mid−point form is xx1 + yy1 = x1 
2 + y1 
2 ….(2) 
Since (1) and (2) represent the same line, 
3sec 2 tan 9 
x y x y 
2 2 
θ θ 
= = 
+ 
1 1 1 1 
9x 
1 
⇒ secθ = 3 ( x 2 1 + y 
2 
) 
1 
9y 
1 
, tanθ = 2 ( x 2 1 + y 
2 
) 
1 
2 2 
1 1 
81x 81y 
− = 
Hence ( ) ( ) 
2 2 2 2 2 2 
1 1 1 1 
1 
9 x + y 4 x + 
y 
⇒ the required locus is 
x 2 y 2  2 2 x + − = y 
2  
9 4  9 
 
  
. 
FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
IIT-JEE2005-M-4 
Q11. Find the equation of the common tangent in 1st quadrant to the circle x2 + y2 = 16 and the ellipse 
x2 y2 1 
25 4 
+ = . Also find the length of the intercept of the tangent between the coordinate axes. 
Sol. Let the equations of tangents to the given circle and the ellipse respectively be 
y = mx + 4 1+ m2 
and y = mx + 25m2 + 4 
Since both of these represent the same common tangent, 
4 1+ m2 = 25m2 + 4 
⇒ 16(1 + m2) = 25m2 + 4 
⇒ m = ± 2 
3 
The tangent is at a point in the first quadrant ⇒ m < 0. 
⇒ m = 2 
− , so that the equation of the common tangent is 
3 
y = 2 x 4 7 
− + . 
3 3 
  
  
  
It meets the coordinate axes at A (2 7, 0) and B 0, 4 7 
3 
⇒ AB = 14 
3 
. 
Q12. If length of tangent at any point on the curve y = f(x) intercepted between the point and the x–axis is of 
length 1. Find the equation of the curve. 
Sol. Length of tangent = 
2 y 1 dx 
  
+   dy 
 
 
⇒ 1 = 
   2 
  +    
    
y2 1 dx 
dy 
⇒ 
2 
dy = ± 
y 
dx 1 − 
y 
⇒ 
1 y2 
∫ − 
dy = ± x + c 
. 
y 
Writing y = sin θ, dy = cos θ dθ and integrating, we get the equation of the curve as 
2 
2 1 − 1 − 
y 
1 y ln x c 
− + = ± + . 
y 
Q13. Find the area bounded by the curves x2 = y, x2 = – y and y2 = 4x – 3. 
Sol. The region bounded by the given curves 
x2 = y, x2 = −y and y2 = 4x – 3 is 
symmetrical about the x–axis. The parabolas x2 = y 
and y2 = 4x – 3 touch at the point (1, 1). 
Moreover the vertex of the curve 
y2 = 4x – 3 is at 3, 0 
  
  4 
 
 
. 
Hence the area of the region 
= 
 1 1 
 
 ∫ 2 
− ∫ 
−  
  
2 x dx 4x 3dx 
0 3/ 4 
x2 =y 
x2 =−y 
(1, 1) 
(3/4, 0) 
x 
y2 =4x−3 
y 
     − −        
= (( ) ) 3 1 3 / 2 1 
3 / 4 
2 x 1 4x 3 
3 6 
0 
= 2 1 1 1 
 −  =   
3 6 3 
. sq. units. 
FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
IIT-JEE2005-M-5 
Q14. If one of the vertices of the square circumscribing the circle |z – 1| = 2 is 2 + 3 i. Find the other 
vertices of square. 
Sol. Since centre of circle i.e. (1, 0) is also the 
mid–point of diagonals of square 
⇒ 1 2 
z z 3i 
= ⇒ = − 
0 2 
z + 
z 
2 
z 1 
− ± π 
and 3 i / 2 
z 1 
1 
e 
= 
− 
⇒ other vertices are 
z3, z4 = (1− 3) + i and (1+ 3) − i . 
z0(1,0) 
z1(2, √3) 
z4 
y 
z2 
z3 
x 
O 
Q15. If f (x – y) = f (x). g (y) – f (y). g (x) and g (x – y) = g (x). g (y) + f (x). f (y) for all x, y ∈ R. If right hand 
derivative at x = 0 exists for f (x). Find derivative of g (x) at x = 0. 
Sol. f(x – y) = f (x) g (y) – f (y) g (x) … (1) 
Put x = y in (1), we get 
f (0) = 0 
put y = 0 in (1), we get 
g (0) = 1. 
Now, f′ (0+) = 
lim f(0 h) f(0) 
→ + h 
h 0 
+ − 
= 
lim f(0)g( h) g(0)f( h) f(0) 
→ + h 
h 0 
− − − − 
= 
lim f( h) 
→ + h 
h 0 
− 
− 
(∵f (0) = 0) 
= 
lim f(0 h) f(0) 
→ + h 
h 0 
− − 
− 
= f′ (0–). 
Hence f (x) is differentiable at x = 0. 
Put y = x in g (x – y) = g (x). g (y) + f (x). f (y). 
Also f2 (x) + g2 (x) = 1 
⇒ g2 (x) = 1 – f2 (x) 
⇒ 2g′ (0) g (0) = – 2f (0) f′ (0) = 0 ⇒ g′ (0) = 0. 
Q16. If p(x) be a polynomial of degree 3 satisfying p(−1) = 10, p(1) = −6 and p(x) has maximum at x = −1 
and p′(x) has minima at x = 1. Find the distance between the local maximum and local minimum of the 
curve. 
Sol. Let the polynomial be P (x) = ax3 + bx2 + cx + d 
According to given conditions 
P (–1) = –a + b – c + d = 10 
P (1) = a + b + c + d = –6 
Also P′ (–1) = 3a – 2b + c = 0 
and P″ (1) = 6a + 2b = 0 ⇒ 3a + b = 0 
Solving for a, b, c, d we get 
P (x) = x3 – 3x2 – 9x + 5 
⇒ P′ (x) = 3x2 – 6x – 9 = 3(x + 1)(x – 3) 
⇒ x = –1 is the point of maximum and x = 3 is the point of minimum. 
Hence distance between (–1, 10) and (3, –22) is 4 65 units. 
Q17. f(x) is a differentiable function and g (x) is a double differentiable function such that |f (x)| ≤ 1 and 
f′(x) = g (x). If f2 (0) + g2 (0) = 9. Prove that there exists some c ∈ (– 3, 3) such that g (c). g″(c)< 0. 
Sol. Let us suppose that both g (x) and g″ (x) are positive for all x ∈ (−3, 3). 
Since f2 (0) + g2 (0) = 9 and −1 ≤ f (x) ≤ 1, 2 2 ≤ g (0) ≤ 3. 
From f′ (x) = g (x), we get 
x 
f (x) = 
∫ + f (−3). 
3 
g(x)dx 
− 
FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
IIT-JEE2005-M-6 
Moreover, g″ (x) is assumed to be positive 
⇒ the curve y = g (x) is open upwards. 
If g (x) is decreasing, then for some value of x 
x 
∫ > area of the rectangle (0 – (–3))2 2 
3 
g(x)dx 
− 
⇒ f (x) > 2 2 × 3 − 1 i.e. f (x) > 1 which is a contradiction. 
x 
If g (x) is increasing, for some value of x 
∫ > area of the rectangle (3 – 0))2 2 
3 
g(x)dx 
− 
⇒ f (x) > 2 2 × 3 − 1 i.e. f (x) > 1 which is a contradiction. 
x 
If g(x) is minimum at x = 0, then 
∫ > area of the rectangle (3 – 0)2 2 
3 
g(x)dx 
− 
⇒ f (x) > 2 2 × 6 − 1 i.e. f (x) > 1 which is a contradiction. 
Hence g (x) and g″ (x) cannot be both positive throughout the interval (−3, 3). 
Similarly we can prove that g(x) and g″(x) cannot be both negative throughout the interval (−3, 3). 
Hence there is atleast one value of c ∈ (−3, 3) where g (x) and g″ (x) are of opposite sign 
⇒ g (c) . g″ (c) < 0. 
Alternate: 
3 3 
∫ g(x)dx = ∫ f ′(x)dx = f (3) – f (0) 
0 0 
⇒ 
3 
∫g(x)dx < 2 ……(1) 
0 
In the same way 
0 
∫ < ……(2) 
− 
3 
g(x)dx 2 
⇒ 
3 0 
∫ g(x)dx + ∫ g(x)dx < 4 
……(3) 
− 
0 3 
From (f(0))2 + (g (0))2 = 9 
we get 
22 < g (0) < 3 ……(4) 
or –3 < g (0) < –2 2 ……(5) 
Case I: 2 2 < g (0) < 3 
Let g (x) is concave upward ∀ x (–3, 3) then 
the area 
0 3 
∫ g(x)dx + ∫ g(x)dx > 
6 2 
− 
3 0 
which is a contradiction from equation (3). 
∴ g (x) will be concave downward for some c 
∈ (–3, 3) i.e. g″ (c) < 0 ……(6) 
also at that point c 
(0, 2 2 ) 
(0, 3) 
(–3, 0) (3, 0) 
g (c) will be greater than 2 2 
⇒ g (c) > 0 ……(7) 
From equation (6) and (7) 
g (c) . g″ (c) < 0 for some c ∈ (–3, 3). 
FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
IIT-JEE2005-M-7 
Case II: –3 < g (0) < –2 2 
Let g (x) is concave downward ∀ x (–3, 3) 
then the area 
0 3 
∫ g(x)dx + ∫ g(x)dx > 
6 2 
− 
3 0 
which is a contradiction from equation (3). 
∴ g (x) will be concave upward for some 
c ∈ (–3, 3) i.e. g″ (c) > 0 ……(8) 
also at that point c 
g (c) will be less than –2 2 
(–3, 0) (3, 0) 
(0, –2 2 ) 
(0, –3) 
⇒ g (c) < 0 ……(9) 
From equation (8) and (9) 
g (c) . g″ (c) < 0 for some c ∈ (–3, 3). 
Q18. If 
2 2 
2 2 
2 2 
 4a 4a 1   f( − 1)   3a + 3a 
      4b 4b 1    f(1)   =  3b + 3b 
      4c 4c 1   f(2)     3c + 3c 
 
, f(x) is a quadratic function and its maximum value occurs at a 
point V. A is a point of intersection of y = f (x) with x-axis and point B is such that chord AB subtends a 
right angle at V. Find the area enclosed by f (x) and chord AB. 
Sol. Let we have 
4a2 f (–1) + 4a f (1) + f (2) = 3a2 + 3a … (1) 
4b2 f (–1) + 4b f (1) + f (2) = 3b2 + 3b … (2) 
4c2 f (–1) + 4c f (1) + f (2) = 3c2 + 3c … (3) 
Consider a quadratic equation 
4x2 f (–1) + 4x f (1) + f (2) = 3x2 + 3x 
or [4f (–1) – 3] x2 + [4f (1) – 3] x + f (2) = 0 … (4) 
As equation (4) has three roots i.e. x = a, b, c. It is an identity. 
⇒ f (–1) = 3 
4 
, f (1) = 3 
4 
and f (2) = 0 
⇒ f (x) = 
(4 − 
x2 ) 
4 
… (5) 
Let point A be (–2, 0) and B be (2t, – t2 + 1) 
Now as AB subtends a right angle at the vertex 
V (0, 1) 
1 t2 1 
2 2t 
− 
× =− ⇒ t = 4 
⇒ B ≡ (8, – 15) 
8 2 
∴ Area = 
 − +  
 +  
  ∫ = 125 
4 x 3x 6 dx 
4 2 − 
2 
3 
sq. units. 
A(-2,0) 
V(0,1) 
(2,0) 
X 
B(8,-15) 
3x+2y+6=0 
FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942

More Related Content

PDF
Maths04
PDF
Aieee 2012 Solved Paper by Prabhat Gaurav
DOC
Skills In Add Maths
PDF
Chapter 9 differentiation
PDF
Chapter 9- Differentiation Add Maths Form 4 SPM
PDF
Nota math-spm
PDF
MODULE 4- Quadratic Expression and Equations
PDF
Core 2 revision notes
Maths04
Aieee 2012 Solved Paper by Prabhat Gaurav
Skills In Add Maths
Chapter 9 differentiation
Chapter 9- Differentiation Add Maths Form 4 SPM
Nota math-spm
MODULE 4- Quadratic Expression and Equations
Core 2 revision notes

What's hot (20)

PDF
modul 2 add maths
DOCX
Assignment of class 12 (chapters 2 to 9)
PDF
Chapter 5 indices & logarithms
PDF
Modul bimbingan add maths
PDF
Core 1 revision notes a
PDF
35182797 additional-mathematics-form-4-and-5-notes
PDF
Form 4 add maths note
PDF
Maieee04
DOCX
Complex numbers
PDF
Core 1 revision booklet edexcel
PDF
Maths important questions for 2018
PPT
Spm add math 2009 paper 1extra222
PDF
Form 5 Additional Maths Note
PDF
Solution Manual : Chapter - 02 Limits and Continuity
PDF
Add Maths 2
PDF
Sample question paper 2 with solution
PDF
Mcq for manavsthali( 7 worksheets)
PDF
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
PDF
Cbse 12 Class Maths Sample Papers Model 4
PDF
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
modul 2 add maths
Assignment of class 12 (chapters 2 to 9)
Chapter 5 indices & logarithms
Modul bimbingan add maths
Core 1 revision notes a
35182797 additional-mathematics-form-4-and-5-notes
Form 4 add maths note
Maieee04
Complex numbers
Core 1 revision booklet edexcel
Maths important questions for 2018
Spm add math 2009 paper 1extra222
Form 5 Additional Maths Note
Solution Manual : Chapter - 02 Limits and Continuity
Add Maths 2
Sample question paper 2 with solution
Mcq for manavsthali( 7 worksheets)
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
Cbse 12 Class Maths Sample Papers Model 4
Solution Manual : Chapter - 07 Exponential, Logarithmic and Inverse Trigonome...
Ad

Viewers also liked (20)

PPTX
отчет о работе международного центра
PPTX
поцелуй тети клавы 29
DOCX
Bảng giá đại lý máy photocopy Ricoh Aficio, giá máy photocopy ricoh
PDF
Article on Russian tax system
DOC
Tt 42 02
PPT
Презентация Международного Бизнес Клуба IBC MBA 23.07.16
PPT
иностранные и офшорные компании
ODP
хэрлэн 3
PPTX
консул, өргөмжит консулын эрх ямба, дархан эрх
PDF
Презентация Р.И.Маркова "Итоги исполнения консолидированного бюджета Ленингра...
PPT
презентация на тему "Международные организации"
PPTX
Магистратура международный бизнес
PDF
Olon ulc xariltsaa
PPTX
олон улсын харилцаа хэрэглэгдэхүүн
DOCX
оросын сбер банк
PPTX
Oрчин үеийн олон улсын харилцаа
PPTX
олон улсын харилцааны систем
PDF
Olon ulsin hariltsaani tuuh lekts
PPT
Библиографическое описание: международные стандарты, правила, рекомендации
отчет о работе международного центра
поцелуй тети клавы 29
Bảng giá đại lý máy photocopy Ricoh Aficio, giá máy photocopy ricoh
Article on Russian tax system
Tt 42 02
Презентация Международного Бизнес Клуба IBC MBA 23.07.16
иностранные и офшорные компании
хэрлэн 3
консул, өргөмжит консулын эрх ямба, дархан эрх
Презентация Р.И.Маркова "Итоги исполнения консолидированного бюджета Ленингра...
презентация на тему "Международные организации"
Магистратура международный бизнес
Olon ulc xariltsaa
олон улсын харилцаа хэрэглэгдэхүүн
оросын сбер банк
Oрчин үеийн олон улсын харилцаа
олон улсын харилцааны систем
Olon ulsin hariltsaani tuuh lekts
Библиографическое описание: международные стандарты, правила, рекомендации
Ad

Similar to Maths05 (20)

DOCX
Maths 301 key_sem_1_2009_2010
PDF
Mathematics
DOC
Sbma 4603 numerical methods Assignment
PDF
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
PDF
Cbse Class 12 Maths Sample Paper 2013 Model 3
PDF
48 circle part 1 of 2
PDF
Applications of Differential Calculus in real life
PDF
Answers to Problems for Advanced Engineering Mathematics, 6th Edition – Denni...
PDF
Maths-MS_Term2 (1).pdf
PDF
Assignment For Matlab Report Subject Calculus 2
PPT
Tangent and curvature
PDF
Answers to Problems for Advanced Engineering Mathematics 6th Edition Internat...
PDF
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...
PPTX
Straight-Line-Graphs-Final -2.pptx
DOCX
Fismat chapter 4
PPTX
CIRCLES.pptx
PDF
Sect1 1
PDF
Calculo integral - Larson
PPT
2014 st josephs geelong spec maths
Maths 301 key_sem_1_2009_2010
Mathematics
Sbma 4603 numerical methods Assignment
CBSE XII MATHS SAMPLE PAPER BY KENDRIYA VIDYALAYA
Cbse Class 12 Maths Sample Paper 2013 Model 3
48 circle part 1 of 2
Applications of Differential Calculus in real life
Answers to Problems for Advanced Engineering Mathematics, 6th Edition – Denni...
Maths-MS_Term2 (1).pdf
Assignment For Matlab Report Subject Calculus 2
Tangent and curvature
Answers to Problems for Advanced Engineering Mathematics 6th Edition Internat...
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...
Straight-Line-Graphs-Final -2.pptx
Fismat chapter 4
CIRCLES.pptx
Sect1 1
Calculo integral - Larson
2014 st josephs geelong spec maths

Maths05

  • 1. IIT-JEE2005-M-1 FIIIITJEE Solutions to IITJEE––2005 Mains Paper Mathematics Time: 2 hours Note: Question number 1 to 8 carries 2 marks each, 9 to 16 carries 4 marks each and 17 to 18 carries 6 marks each. Q1. A person goes to office either by car, scooter, bus or train probability of which being 1, 3 , 2 7 7 7 and 1     =       =       =       =       × P L .P C 1 7   =   = =     × + × + × + × 1 − 2x + 5x 3x 2x 1  π π −    1 − 2x + 5x 3x 2x 1  −      + − + −  π π   π π − −  ∪       FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942 7 respectively. Probability that he reaches office late, if he takes car, scooter, bus or train is 2 , 1, 4 9 9 9 and 1 9 respectively. Given that he reached office in time, then what is the probability that he travelled by a car. Sol. Let C, S, B, T be the events of the person going by car, scooter, bus or train respectively. Given that P(C) = 1 7 , P(S) = 3 7 , P(B) = 2 7 , P(T) = 1 7 Let L be the event of the person reaching the office in time. ⇒ P L 7 C 9 , P L 8 S 9 , P L 5 B 9 , P L 8 T 9 ⇒ ( ) ( ) C C 7 9 1 P L P L 1 7 3 8 2 5 8 1 7 7 9 7 9 7 9 9 7 . Q2. Find the range of values of t for which 2 sin t = 2 2 − − , t ∈ , 2 2 . Sol. Let y = 2 sin t so, y = 2 2 − − ⇒ (3y − 5)x2 − 2x(y − 1) − (y + 1) = 0 since x ∈ R − 1, 1 3 , so D ≥ 0 ⇒ y2 − y − 1 ≥ 0 or y ≥ 1 5 2 and y ≤ 1 5 2 or sin t ≥ 1 5 4 and sin t ≤ 1 5 4 Hence range of t is , 3 , 2 10 10 2 . Q3. Circles with radii 3, 4 and 5 touch each other externally if P is the point of intersection of tangents to these circles at their points of contact. Find the distance of P from the points of contact.
  • 2. IIT-JEE2005-M-2 Sol. Let A, B, C be the centre of the three circles. Clearly the point P is the in–centre of the ΔABC, and hence Δ s (s − a)(s − b)(s − c) − − − r = = = (s a)(s b)(s c) s s s Now 2s = 7 + 8 + 9 = 24 ⇒ s = 12. Hence r = 5. 4.3 5 12 = . A 3 4 C B 3 •P 4 5 5 Q4. Find the equation of the plane containing the line 2x – y + z – 3 = 0, 3x + y + z = 5 and at a distance of 1 6 from the point (2, 1, – 1). Sol. Let the equation of plane be (3λ + 2)x + (λ − 1)y + (λ + 1)z − 5λ – 3 = 0 ⇒ 6 λ + 4 + λ − 1 − λ − 1 − 5 λ − 3 = 1 (3 λ + 2) 2 + ( λ − 1) 2 + ( λ + 1) 2 6 ⇒ 6(λ – 1)2 = 11λ2 + 12λ + 6 ⇒ λ = 0, − 24 5 . ⇒ The planes are 2x – y + z – 3 = 0 and 62x + 29y + 19z − 105 = 0. Q5. If |f(x1) – f(x2)| < (x1 – x2)2, for all x1, x2 ∈R. Find the equation of tangent to the curve y = f(x) at the point (1, 2). Sol. |f (x1) – f (x2)| < (x1 – x2)2 ⇒ f(x ) − f(x ) 1 2 lim < lim | x − x | → x x → x x 1 2 1 2 1 − 2 x 1 x 2 ⇒ |f′ (x)| < δ ⇒ f′ (x) = 0. Hence f (x) is a constant function and P (1, 2) lies on the curve. ⇒ f (x) = 2 is the curve. Hence the equation of tangent is y – 2 = 0. Q6. If total number of runs scored in n matches is n 1  +    4   (2n+1 – n – 2) where n > 1, and the runs scored in the kth match are given by k. 2n+1–k, where 1 ≤ k ≤ n. Find n. Sol. Let Sn = n n 1 k = Σ k 1 k.2 + − = n = Σ n 1 k 2 + k.2− k 1 2 .2 1 1 n = n 1  − −   n n1  2 2 + + (sum of the A.G.P.) = 2[2n+1 – 2 – n] n + ⇒ 1 2 4 = ⇒ n = 7. Q7. The area of the triangle formed by the intersection of a line parallel to x-axis and passing through P (h, k) with the lines y = x and x + y = 2 is 4h2. Find the locus of the point P. Sol. Area of triangle = 1 2 . AB. AC = 4h2 and AB = 2 |k – 1| = AC ⇒ 4h2 = 1 2 . 2. (k – 1)2 ⇒ k – 1 = ± 2h. ⇒ locus is y = 2x + 1, y = – 2x + 1. y = x A(1,1) B(k,k) C(2−k,k) y =k P(h,k) X x+y=2 O FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
  • 3. IIT-JEE2005-M-3 π  e  1    2 sin  cos x  + 3 cos  1  cos x       ∫ sin x dx. Q8. Evaluate |cos x| 0 2 2 π  e  1    2 sin  cos x  + 3 cos  1  cos x       ∫ sin x dx Sol. I = |cos x| 0 2 2 = 6 / 2 e sin x cos 1 cos x dx    0, if f(2a − x) = − f(x)   2a   =      − =      ∫ cos x     ( )   ( ) 0 2 π ∵ ∫ a ∫ 0 2 f x dx, if f(2a x) f(x) 0 f x dx Let cos x = t 1 I = 6 e cos t dt ∫ t       0 2          +   −        = 24 ecos 1 e sin 1 1 5 2 2 2 . Q9. Incident ray is along the unit vector ˆv and the reflected ray is along the unit vector wˆ . The normal is along unit vector aˆ outwards. Express wˆ in terms of aˆ and vˆ . ˆv ˆa wˆ Sol. vˆ is unit vector along the incident ray and wˆ is the unit vector along the reflected ray. Hence ˆa is a unit vector along the external bisector of vˆ and wˆ . Hence wˆ − vˆ = λaˆ ⇒ 1 + 1 – wˆ ⋅ vˆ = λ2 or 2 – 2 cos 2θ = λ2 or λ = 2 sin θ where 2θ is the angle between vˆ and wˆ . ˆa wˆ 2θ ˆv (90-θ) mirror Hence wˆ − vˆ = 2sinθaˆ = 2cos(900 − θ)aˆ = −(2aˆ ⋅ vˆ )aˆ ⇒ wˆ = vˆ − 2(aˆ ⋅ vˆ )aˆ . Q10. Tangents are drawn from any point on the hyperbola x2 y2 1 9 4 − = to the circle x2 + y2 = 9. Find the locus of mid–point of the chord of contact. Sol. Any point on the hyperbola x2 y2 1 9 4 − = is (3 secθ, 2 tanθ). Chord of contact of the circle x2 + y2 = 9 with respect to the point (3 sec θ, 2tan θ) is 3 secθ.x + 2 tanθ.y = 9 ….(1) Let (x1, y1) be the mid–point of the chord of contact. ⇒ equation of chord in mid−point form is xx1 + yy1 = x1 2 + y1 2 ….(2) Since (1) and (2) represent the same line, 3sec 2 tan 9 x y x y 2 2 θ θ = = + 1 1 1 1 9x 1 ⇒ secθ = 3 ( x 2 1 + y 2 ) 1 9y 1 , tanθ = 2 ( x 2 1 + y 2 ) 1 2 2 1 1 81x 81y − = Hence ( ) ( ) 2 2 2 2 2 2 1 1 1 1 1 9 x + y 4 x + y ⇒ the required locus is x 2 y 2  2 2 x + − = y 2  9 4  9    . FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
  • 4. IIT-JEE2005-M-4 Q11. Find the equation of the common tangent in 1st quadrant to the circle x2 + y2 = 16 and the ellipse x2 y2 1 25 4 + = . Also find the length of the intercept of the tangent between the coordinate axes. Sol. Let the equations of tangents to the given circle and the ellipse respectively be y = mx + 4 1+ m2 and y = mx + 25m2 + 4 Since both of these represent the same common tangent, 4 1+ m2 = 25m2 + 4 ⇒ 16(1 + m2) = 25m2 + 4 ⇒ m = ± 2 3 The tangent is at a point in the first quadrant ⇒ m < 0. ⇒ m = 2 − , so that the equation of the common tangent is 3 y = 2 x 4 7 − + . 3 3       It meets the coordinate axes at A (2 7, 0) and B 0, 4 7 3 ⇒ AB = 14 3 . Q12. If length of tangent at any point on the curve y = f(x) intercepted between the point and the x–axis is of length 1. Find the equation of the curve. Sol. Length of tangent = 2 y 1 dx   +   dy   ⇒ 1 =    2   +        y2 1 dx dy ⇒ 2 dy = ± y dx 1 − y ⇒ 1 y2 ∫ − dy = ± x + c . y Writing y = sin θ, dy = cos θ dθ and integrating, we get the equation of the curve as 2 2 1 − 1 − y 1 y ln x c − + = ± + . y Q13. Find the area bounded by the curves x2 = y, x2 = – y and y2 = 4x – 3. Sol. The region bounded by the given curves x2 = y, x2 = −y and y2 = 4x – 3 is symmetrical about the x–axis. The parabolas x2 = y and y2 = 4x – 3 touch at the point (1, 1). Moreover the vertex of the curve y2 = 4x – 3 is at 3, 0     4   . Hence the area of the region =  1 1   ∫ 2 − ∫ −    2 x dx 4x 3dx 0 3/ 4 x2 =y x2 =−y (1, 1) (3/4, 0) x y2 =4x−3 y      − −        = (( ) ) 3 1 3 / 2 1 3 / 4 2 x 1 4x 3 3 6 0 = 2 1 1 1  −  =   3 6 3 . sq. units. FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
  • 5. IIT-JEE2005-M-5 Q14. If one of the vertices of the square circumscribing the circle |z – 1| = 2 is 2 + 3 i. Find the other vertices of square. Sol. Since centre of circle i.e. (1, 0) is also the mid–point of diagonals of square ⇒ 1 2 z z 3i = ⇒ = − 0 2 z + z 2 z 1 − ± π and 3 i / 2 z 1 1 e = − ⇒ other vertices are z3, z4 = (1− 3) + i and (1+ 3) − i . z0(1,0) z1(2, √3) z4 y z2 z3 x O Q15. If f (x – y) = f (x). g (y) – f (y). g (x) and g (x – y) = g (x). g (y) + f (x). f (y) for all x, y ∈ R. If right hand derivative at x = 0 exists for f (x). Find derivative of g (x) at x = 0. Sol. f(x – y) = f (x) g (y) – f (y) g (x) … (1) Put x = y in (1), we get f (0) = 0 put y = 0 in (1), we get g (0) = 1. Now, f′ (0+) = lim f(0 h) f(0) → + h h 0 + − = lim f(0)g( h) g(0)f( h) f(0) → + h h 0 − − − − = lim f( h) → + h h 0 − − (∵f (0) = 0) = lim f(0 h) f(0) → + h h 0 − − − = f′ (0–). Hence f (x) is differentiable at x = 0. Put y = x in g (x – y) = g (x). g (y) + f (x). f (y). Also f2 (x) + g2 (x) = 1 ⇒ g2 (x) = 1 – f2 (x) ⇒ 2g′ (0) g (0) = – 2f (0) f′ (0) = 0 ⇒ g′ (0) = 0. Q16. If p(x) be a polynomial of degree 3 satisfying p(−1) = 10, p(1) = −6 and p(x) has maximum at x = −1 and p′(x) has minima at x = 1. Find the distance between the local maximum and local minimum of the curve. Sol. Let the polynomial be P (x) = ax3 + bx2 + cx + d According to given conditions P (–1) = –a + b – c + d = 10 P (1) = a + b + c + d = –6 Also P′ (–1) = 3a – 2b + c = 0 and P″ (1) = 6a + 2b = 0 ⇒ 3a + b = 0 Solving for a, b, c, d we get P (x) = x3 – 3x2 – 9x + 5 ⇒ P′ (x) = 3x2 – 6x – 9 = 3(x + 1)(x – 3) ⇒ x = –1 is the point of maximum and x = 3 is the point of minimum. Hence distance between (–1, 10) and (3, –22) is 4 65 units. Q17. f(x) is a differentiable function and g (x) is a double differentiable function such that |f (x)| ≤ 1 and f′(x) = g (x). If f2 (0) + g2 (0) = 9. Prove that there exists some c ∈ (– 3, 3) such that g (c). g″(c)< 0. Sol. Let us suppose that both g (x) and g″ (x) are positive for all x ∈ (−3, 3). Since f2 (0) + g2 (0) = 9 and −1 ≤ f (x) ≤ 1, 2 2 ≤ g (0) ≤ 3. From f′ (x) = g (x), we get x f (x) = ∫ + f (−3). 3 g(x)dx − FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
  • 6. IIT-JEE2005-M-6 Moreover, g″ (x) is assumed to be positive ⇒ the curve y = g (x) is open upwards. If g (x) is decreasing, then for some value of x x ∫ > area of the rectangle (0 – (–3))2 2 3 g(x)dx − ⇒ f (x) > 2 2 × 3 − 1 i.e. f (x) > 1 which is a contradiction. x If g (x) is increasing, for some value of x ∫ > area of the rectangle (3 – 0))2 2 3 g(x)dx − ⇒ f (x) > 2 2 × 3 − 1 i.e. f (x) > 1 which is a contradiction. x If g(x) is minimum at x = 0, then ∫ > area of the rectangle (3 – 0)2 2 3 g(x)dx − ⇒ f (x) > 2 2 × 6 − 1 i.e. f (x) > 1 which is a contradiction. Hence g (x) and g″ (x) cannot be both positive throughout the interval (−3, 3). Similarly we can prove that g(x) and g″(x) cannot be both negative throughout the interval (−3, 3). Hence there is atleast one value of c ∈ (−3, 3) where g (x) and g″ (x) are of opposite sign ⇒ g (c) . g″ (c) < 0. Alternate: 3 3 ∫ g(x)dx = ∫ f ′(x)dx = f (3) – f (0) 0 0 ⇒ 3 ∫g(x)dx < 2 ……(1) 0 In the same way 0 ∫ < ……(2) − 3 g(x)dx 2 ⇒ 3 0 ∫ g(x)dx + ∫ g(x)dx < 4 ……(3) − 0 3 From (f(0))2 + (g (0))2 = 9 we get 22 < g (0) < 3 ……(4) or –3 < g (0) < –2 2 ……(5) Case I: 2 2 < g (0) < 3 Let g (x) is concave upward ∀ x (–3, 3) then the area 0 3 ∫ g(x)dx + ∫ g(x)dx > 6 2 − 3 0 which is a contradiction from equation (3). ∴ g (x) will be concave downward for some c ∈ (–3, 3) i.e. g″ (c) < 0 ……(6) also at that point c (0, 2 2 ) (0, 3) (–3, 0) (3, 0) g (c) will be greater than 2 2 ⇒ g (c) > 0 ……(7) From equation (6) and (7) g (c) . g″ (c) < 0 for some c ∈ (–3, 3). FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942
  • 7. IIT-JEE2005-M-7 Case II: –3 < g (0) < –2 2 Let g (x) is concave downward ∀ x (–3, 3) then the area 0 3 ∫ g(x)dx + ∫ g(x)dx > 6 2 − 3 0 which is a contradiction from equation (3). ∴ g (x) will be concave upward for some c ∈ (–3, 3) i.e. g″ (c) > 0 ……(8) also at that point c g (c) will be less than –2 2 (–3, 0) (3, 0) (0, –2 2 ) (0, –3) ⇒ g (c) < 0 ……(9) From equation (8) and (9) g (c) . g″ (c) < 0 for some c ∈ (–3, 3). Q18. If 2 2 2 2 2 2  4a 4a 1   f( − 1)   3a + 3a       4b 4b 1    f(1)   =  3b + 3b       4c 4c 1   f(2)     3c + 3c  , f(x) is a quadratic function and its maximum value occurs at a point V. A is a point of intersection of y = f (x) with x-axis and point B is such that chord AB subtends a right angle at V. Find the area enclosed by f (x) and chord AB. Sol. Let we have 4a2 f (–1) + 4a f (1) + f (2) = 3a2 + 3a … (1) 4b2 f (–1) + 4b f (1) + f (2) = 3b2 + 3b … (2) 4c2 f (–1) + 4c f (1) + f (2) = 3c2 + 3c … (3) Consider a quadratic equation 4x2 f (–1) + 4x f (1) + f (2) = 3x2 + 3x or [4f (–1) – 3] x2 + [4f (1) – 3] x + f (2) = 0 … (4) As equation (4) has three roots i.e. x = a, b, c. It is an identity. ⇒ f (–1) = 3 4 , f (1) = 3 4 and f (2) = 0 ⇒ f (x) = (4 − x2 ) 4 … (5) Let point A be (–2, 0) and B be (2t, – t2 + 1) Now as AB subtends a right angle at the vertex V (0, 1) 1 t2 1 2 2t − × =− ⇒ t = 4 ⇒ B ≡ (8, – 15) 8 2 ∴ Area =  − +   +    ∫ = 125 4 x 3x 6 dx 4 2 − 2 3 sq. units. A(-2,0) V(0,1) (2,0) X B(8,-15) 3x+2y+6=0 FIITJEE Ltd. ICES House, Sarvapriya Vihar (Near Hauz Khas Bus Term.), New Delhi - 16, Ph : 2686 5182, 26965626, 2685 4102, 26515949 Fax : 26513942