SlideShare a Scribd company logo
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
Software and model selection challenges in
meta-analysis
MetaEasy, model assumptions and homogeneity
Evan Kontopantelis David Reeves
Health Sciences Primary Care Research Centre
University of Manchester
RSS Primary Care Study Group
Errol Street, 2 July 2012
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
Outline
1 Meta-analysis overview
The heterogeneity issue
More challenges
2 A practical guide
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2 = 0
3 Summary
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
The heterogeneity issue
More challenges
Heterogeneity
The big bad wolf
When the effect of the intervention varies significantly from
one study to another.
It can be attributed to clinical and/or methodological
diversity.
Clinical: variability that arises from different populations,
interventions, outcomes and follow-up times.
Methodological: relates to differences in trial design and
quality.
Detecting quantifying and dealing with heterogeneity can
be very hard.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
The heterogeneity issue
More challenges
Absence of heterogeneity
Assumes that the
true effects of the
studies are all
equal and
deviations occur
because of
imprecision of
results.
Analysed with the
fixed-effects
method.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
The heterogeneity issue
More challenges
Presence of heterogeneity
Assumes that
there is variation in
the size of the true
effect among
studies (in addition
to the imprecision
of results).
Analysed with
random-effects
methods.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
The heterogeneity issue
More challenges
Challenges with meta-analysis
Heterogeneity is common and the fixed-effect model is
under fire.
Methods are asymptotic: accuracy improves as studies
increase. But what if we only have a handful, as is usually
the case?
Almost all random-effects models (except Profile
Likelihood) do not take into account the uncertainty in ˆτ2.
Is this, practically, a problem?
DerSimonian-Laird is the most common method of
analysis, since it is easy to implement and widely available,
but is it the best?
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
The heterogeneity issue
More challenges
Challenges with meta-analysis
...continued
Can be difficult to organise since...
outcomes likely to have been disseminated using a variety
of statistical parameters
appropriate transformations to a common format required
tedious task, requiring at least some statistical adeptness
Parametric random-effects models assume that both the
effects and errors are normally distributed. Are methods
robust?
Sometimes heterogeneity is estimated to be zero,
especially when the number of studies is small. Good
news?
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Based on our original work...
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Organising
Data initially collected using data extraction forms.
A spreadsheet is the next logical step to summarise the
reported study outcomes and identify missing data.
Since in most cases MS Excel will be used we developed
an add-in that can help with most processes involved in
meta-analysis.
More useful when the need to combine differently reported
outcomes arises.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
What it can do
Help with the data collection using pre-formatted
worksheets.
Its unique feature, which can be supplementary to other
meta-analysis software, is implementation of methods for
calculating effect sizes (& SEs) from different input types.
For each outcome of each study...
it identifies which methods can be used
calculates an effect size and its standard error
selects the most precise method for each outcome
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
What it can do
...continued
Creates a forest plot that summarises all the outcomes,
organised by study.
Uses a variety of standard and advanced meta-analysis
methods to calculate an overall effect.
a variety of options is available for selecting which
outcome(s) are to be meta-analysed from each study
Plots the results in a second forest plot.
Reports a variety of heterogeneity measures, including
Cochran’s Q, I2, HM
2
and ˆτ2 (and its estimated confidence
interval under the Profile Likelihood method).
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Advantages
Free (provided Microsoft Excel is available).
Easy to use and time saving.
Extracted data from each study are easily accessible, can
be quickly edited or corrected and analysis repeated.
Choice of many meta-analysis models, including some
advanced methods not currently available in other software
packages (e.g. Permutations, Profile Likelihood, REML).
Unique forest plot that allows multiple outcomes per study.
Effect sizes and standard errors can be exported for use in
other meta-analysis software packages.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Installing
Latest version available from www.statanalysis.co.uk
Compatible with Excel 2003, 2007 and 2010.
Manual provided but also described in:
Kontopantelis E and Reeves D.
MetaEasy: A Meta-Analysis Add-In for Microsoft Excel.
Journal of Statistical Software, 30(7):1-25, 2009.
Play video clip
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Stata implementation
MetaEasy methods implemented in Stata under:
metaeff, which uses the different study input to provide
effect sizes and SEs
metaan, which meta-analyses the study effects with a
fixed-effect or one of five available random-effects models
To install, type in Stata:
ssc install <command name>
help <command name>
Described in:
Kontopantelis E and Reeves D.
metaan: Random-effects meta-analysis.
The Stata Journal, 10(3):395-407, 2010.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Many random-effects methods
which to use?
DerSimonian-Laird (DL): Moment-based estimator of both
within and between-study variance.
Maximum Likelihood (ML): Improves the variance estimate
using iteration.
Restricted Maximum Likelihood (REML): an ML variation
that uses a likelihood function calculated from a
transformed set of data.
Profile Likelihood (PL): A more advanced version of ML
that uses nested iterations for converging.
Permutations method (PE): Simulates the distribution of
the overall effect using the observed data.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Performance evaluation
our approach
Simulated various distributions for the true
effects:
Normal.
Skew-Normal.
Uniform.
Bimodal.
Created datasets of 10,000
meta-analyses for various numbers of
studies and different degrees of
heterogeneity, for each distribution.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Performance evaluation
our approach
Compared all methods in terms of:
Coverage, the rate of true negatives when the overall true
effect is zero.
Power, the rate of true positives when the true overall effect
is non-zero.
Confidence Interval performance, a measure of how wide
the (estimated around the effect) CI is, compared to its true
width.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Homogeneity
Zero between study variance
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
zero between study variance
Coverage
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
zero between study variance
Power (25th centile)
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
zero between study variance
Overall estimation performance
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Coverage performance
Small and large heterogeneity under various distributional assumptions
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=0, ku=3
H²=1.18 − I²=15% (normal distribution)
Coverage
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=2, ku=9
H²=1.18 − I²=15% (skew−normal distribution)
Coverage
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1
H=1.18 − I=15% (bimodal distribution)
Coverage
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
H=1.18 − I=15% (uniform distribution)
Coverage
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=0, ku=3
H²=2.78 − I²=64% (normal distribution)
Coverage
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=2, ku=9
H²=2.78 − I²=64% (skew−normal distribution)
Coverage
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1
H=2.78 − I=64% (bimodal distribution)
Coverage
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
H=2.78 − I=64% (uniform distribution)
Coverage
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Power performance
Small and large heterogeneity under various distributional assumptions
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=0, ku=3
H²=1.18 − I²=15% (normal distribution)
Power (25th centile)
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=2, ku=9
H²=1.18 − I²=15% (skew−normal distribution)
Power (25th centile)
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1
H=1.18 − I=15% (bimodal distribution)
Power (25th centile)
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
H=1.18 − I=15% (uniform distribution)
Power (25th centile)
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=0, ku=3
H²=2.78 − I²=64% (normal distribution)
Power (25th centile)
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=2, ku=9
H²=2.78 − I²=64% (skew−normal distribution)
Power (25th centile)
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1
H=2.78 − I=64% (bimodal distribution)
Power (25th centile)
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
H=2.78 − I=64% (uniform distribution)
Power (25th centile)
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
CI performance
Small and large heterogeneity under various distributional assumptions
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=0, ku=3
H²=1.18 − I²=15% (normal distribution)
Confidence Interval performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=2, ku=9
H²=1.18 − I²=15% (skew−normal distribution)
Confidence Interval performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1
H=1.18 − I=15% (bimodal distribution)
Overall estimation performance (medians)
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
H=1.18 − I=15% (uniform distribution)
Overall estimation performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=0, ku=3
H²=2.78 − I²=64% (normal distribution)
Confidence Interval performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk=2, ku=9
H²=2.78 − I²=64% (skew−normal distribution)
Confidence Interval performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1
H=2.78 − I=64% (bimodal distribution)
Overall estimation performance (medians)
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
FE DL ML
REML PL PE
H=2.78 − I=64% (uniform distribution)
Overall estimation performance
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Coverage by method
Large heterogeneity across various between-study variance distributions
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
FE − Coverage
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
DL − Coverage
0.70
0.75
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
ML − Coverage
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
REML − Coverage
0.80
0.85
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
PL − Coverage
0.90
0.95
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
PE − Coverage
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Power by method
Large heterogeneity across various between-study variance distributions
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
FE − Power (25th centile)
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
DL − Power (25th centile)
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
ML − Power (25th centile)
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
REML − Power (25th centile)
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
PL − Power (25th centile)
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
%
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
PE − Power (25th centile)
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
CI performance by method
Large heterogeneity across various between-study variance distributions
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
FE − Overall estimation performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
DL − Overall estimation performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
ML − Overall estimation performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
REML − Overall estimation performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
PL − Overall estimation performance
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2 5 8 11 14 17 20 23 26 29 32 35
number of studies
Zero variance Normal Skew−normal
Bimodal Uniform
H=2.78 − I=64%
PE − Overall estimation performance
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Which method then?
Within any given method, the results were consistent
across all types of distribution shape.
Therefore methods are highly robust against even severe
violations of the assumption of normality.
Choose PE if the priority is an accurate Type I error rate
(false positive).
But low power makes it a poor choice when control of the
Type II error rate (false negative) is also important and it
cannot be used with less than 6 studies.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Which method then?
For very small study numbers (≤5) only PL gives coverage
>90% and an acccurate CI.
PL has a ‘reasonable’ coverage in most situations,
especially for moderate and large heterogeneiry, giving it
an edge over other methods.
REML and DL perform similarly and better than PL only
when heterogeneity is low (I2 < 15%)
The computational complexity of REML is not justified.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
Bring on the champagne?
Does not necessarily mean homogeneity.
Most methods use biased estimators and not uncommon
to get a negative ˆτ2 which is set to 0 by the model.
We identified a large percentage of cases where the
estimators failed to identify existing heterogeneity.
In our simulations, for 5 studies and I2 ≈ 29%:
30% of the meta-analyses were erroneously estimated to
be homogeneous under the DL method.
32% for REML and 48% for ML-PL.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
the MetaEasy add-in
metaeff & metaan
Methods and performance
ˆτ2
= 0
What does it mean?
In these cases coverage was substandard and was over
10% lower than in cases where ˆτ2 > 0, on average.
The problem becomes less profound as the number of
studies and the level of heterogeneity increase.
Better estimators are needed.
There might be a large number of meta-analyses of
‘homogeneous’ studies which have reached a wrong
conclusion.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Meta-analysis overview
A practical guide
Summary
What to take home
MetaEasy can help you organise your meta-analysis and
can be especially useful if you need to combine continuous
and binary outcomes.
Methods implemented in Stata under metaeff and metaan.
A zero ˆτ2 is a reason to worry. Heterogeneity might be
there but we cannot measure or account for in the model.
If ˆτ2 > 0, even if very small, use a random-effects model.
The DL method works reasonably well, under all
distributions, especially for low levels of heterogeneity.
Profile likelihood, which takes into account the uncertaintly
in ˆτ2, works better when I2 ≥ 15%.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Appendix
Thank you!
Key references
Comments, suggestions:
e.kontopantelis@manchester.ac.uk
Kontopantelis, Reeves Software and model selection challenges in meta-analysis
[Poster title]
[Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4
1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor]
Appendix
Thank you!
Key references
References
Kontopantelis E, Reeves D.
MetaEasy: A Meta-Analysis Add-In for Microsoft Excel.
Journal of Statistical Software, 30(7):1-25, 2009.
Kontopantelis E, Reeves D.
metaan: Random-effects meta-analysis.
The Stata Journal, 10(3):395-407, 2010.
Kontopantelis E, Reeves D.
Performance of statistical methods for meta-analysis when
true study effects are non-normally distributed: A simulation
study.
Stat Methods Med Res, published online Dec 9 2010.
Kontopantelis, Reeves Software and model selection challenges in meta-analysis

More Related Content

PDF
Attikon 2014 - Software and model selection challenges in meta-analysis
PDF
Internal 2012 - Software and model selection challenges in meta-analysis
PDF
Internal 2012 - individual patient data meta-analysis
PPTX
A multi criteria evaluation of environmental databases using hasse
PDF
Writing an effective research proposal
PPTX
Urban Neighbourhood Analysis (UNA) using Mixed Method Research Design
PPTX
Chapter 1
DOCX
GETTING TO GRIPS WITH LARGER PATTERNS
Attikon 2014 - Software and model selection challenges in meta-analysis
Internal 2012 - Software and model selection challenges in meta-analysis
Internal 2012 - individual patient data meta-analysis
A multi criteria evaluation of environmental databases using hasse
Writing an effective research proposal
Urban Neighbourhood Analysis (UNA) using Mixed Method Research Design
Chapter 1
GETTING TO GRIPS WITH LARGER PATTERNS

What's hot (18)

PDF
Independent Study Guide
PDF
Relevance feature discovery for text mining
PDF
Advantages of Query Biased Summaries in Information Retrieval
PPTX
Mixed Method Research Design
PDF
Quantitative data analysis - Attitudes Towards Research
PDF
Mixed Methods Research
PPT
Mixed methods-research -design-and-procedures
PPT
Elementary Statistics Picturing the World ch01.1
PPTX
Mixed research
PPTX
Context Based Citation Recommendation
PPTX
Mixed methods research
PPTX
Mixed method research
PPTX
The comparative study of information retrieval models used in search engines
PPTX
Mixed methods designs
PDF
Crisis situation, communication strategy and media coverage
PPT
Multimethod research
PPTX
Classification of Researcher's Collaboration Patterns Towards Research Perfor...
DOCX
Sarah Hammock Resume Fall 2015
Independent Study Guide
Relevance feature discovery for text mining
Advantages of Query Biased Summaries in Information Retrieval
Mixed Method Research Design
Quantitative data analysis - Attitudes Towards Research
Mixed Methods Research
Mixed methods-research -design-and-procedures
Elementary Statistics Picturing the World ch01.1
Mixed research
Context Based Citation Recommendation
Mixed methods research
Mixed method research
The comparative study of information retrieval models used in search engines
Mixed methods designs
Crisis situation, communication strategy and media coverage
Multimethod research
Classification of Researcher's Collaboration Patterns Towards Research Perfor...
Sarah Hammock Resume Fall 2015
Ad

Viewers also liked (15)

PPTX
The organized professional seminar company in HA NOI city.
PPTX
Dịch vụ trang trí tiệc cưới trọn gói chuyên nghiệp tại TP.HCM
PPTX
Công ty tổ chứac khai trương ngân hàng chuyên nghiệp nhất tại bình dương
PPTX
Tổ chức lễ kỷ niệm thành lập công ty chuyên nghiệp nhất tại tp.hcm
PDF
Infra [ initiatives ]
PPTX
Cho thuê âm thanh ánh sáng chuyên nghiệp tại HCM
PDF
AWS上でのDDoS攻撃緩和戦略
PDF
Cho thuê Ban nhạc Chuyên nghiệp giá rẻ tại Tp.HCM
PPTX
The Professional Event Company in Ho chi minh City & Ha Noi, Vietnam
PPTX
Công ty tổ chức sự kiện ra mắt, giới thiệu sản phẩm mới chuyên nghiệp tại tp.hcm
PPSX
Lh firma genel tanıtım sf
PDF
Chuck von Beck Fall
PDF
Text
PPTX
ฟอร์มนำเสนอ Present
PDF
Presentación tics
The organized professional seminar company in HA NOI city.
Dịch vụ trang trí tiệc cưới trọn gói chuyên nghiệp tại TP.HCM
Công ty tổ chứac khai trương ngân hàng chuyên nghiệp nhất tại bình dương
Tổ chức lễ kỷ niệm thành lập công ty chuyên nghiệp nhất tại tp.hcm
Infra [ initiatives ]
Cho thuê âm thanh ánh sáng chuyên nghiệp tại HCM
AWS上でのDDoS攻撃緩和戦略
Cho thuê Ban nhạc Chuyên nghiệp giá rẻ tại Tp.HCM
The Professional Event Company in Ho chi minh City & Ha Noi, Vietnam
Công ty tổ chức sự kiện ra mắt, giới thiệu sản phẩm mới chuyên nghiệp tại tp.hcm
Lh firma genel tanıtım sf
Chuck von Beck Fall
Text
ฟอร์มนำเสนอ Present
Presentación tics
Ad

Similar to RSS local 2012 - Software challenges in meta-analysis (20)

PDF
RSS 2012 - ipdforest
PPTX
Meta analysis
PDF
演講-Meta analysis in medical research-張偉豪
PDF
Amsterdam 2012 - one stage meta-analysis
PPT
How to conduct meta analysis
PPTX
Meta analysis.pptx
PPTX
Meta-Analysis -- Introduction.pptx
PPTX
Seminar in Meta-analysis
PPTX
Understanding Meta-Analysis: A Comprehensive Guide
PPTX
Meta analysis techniques in epidemiology
PPTX
Cochrane Collaboration
PDF
2010 smg training_cardiff_day1_session4_harbord
PPT
Quantitative Synthesis II
PDF
Evidence Synthesis for Sparse Evidence Base, Heterogeneous Studies, and Disco...
PPTX
Sample size &amp; meta analysis
PDF
A gentle introduction to meta-analysis
PPTX
Metaanalysis copy
PPTX
Systematic review & meta analysis
PDF
Meta-Analysis and Research Synthesis
PPT
Box-2-presentation meta analysis. Last.ppt
RSS 2012 - ipdforest
Meta analysis
演講-Meta analysis in medical research-張偉豪
Amsterdam 2012 - one stage meta-analysis
How to conduct meta analysis
Meta analysis.pptx
Meta-Analysis -- Introduction.pptx
Seminar in Meta-analysis
Understanding Meta-Analysis: A Comprehensive Guide
Meta analysis techniques in epidemiology
Cochrane Collaboration
2010 smg training_cardiff_day1_session4_harbord
Quantitative Synthesis II
Evidence Synthesis for Sparse Evidence Base, Heterogeneous Studies, and Disco...
Sample size &amp; meta analysis
A gentle introduction to meta-analysis
Metaanalysis copy
Systematic review & meta analysis
Meta-Analysis and Research Synthesis
Box-2-presentation meta analysis. Last.ppt

More from Evangelos Kontopantelis (20)

PDF
Primary Care data signposting
PDF
Investigating the relationship between quality of primary care and premature ...
PDF
Re-analysis of the Cochrane Library data and heterogeneity challenges
PDF
Internal 2014 - data signposting
PDF
Internal 2014 - Cochrane data
PDF
RSS 2013 - A re-analysis of the Cochrane Library data]
PDF
Faculty showcase 2013 - Opening up clinical performance
PDF
SAPC 2013 - general practice clinical systems
PDF
Internal 2013 - General practice clinical systems
PDF
SAPC 2012 - exception reporting
PDF
NIHR School for primary care showcase 2012 - financial incentives
PDF
SAPC north 2010 - provider incentives for influenza immunisation
PDF
HSRN 2010: incentivisation and non-incentivised aspects of care
PDF
Internal 2010 - Patient Satisfaction with Primary Care
PDF
NAPCRG 2009 - Impact of the QOF on quality of English primary care
PDF
RSS 2009 - Investigating the impact of the QOF on quality of primary care
PDF
SAPC 2009 - Patient satisfaction with Primary Care
PDF
ISQua 2008 - QOF and diabetes
PPTX
RSS 2008 - meta-analyis when assumptions are violated
Primary Care data signposting
Investigating the relationship between quality of primary care and premature ...
Re-analysis of the Cochrane Library data and heterogeneity challenges
Internal 2014 - data signposting
Internal 2014 - Cochrane data
RSS 2013 - A re-analysis of the Cochrane Library data]
Faculty showcase 2013 - Opening up clinical performance
SAPC 2013 - general practice clinical systems
Internal 2013 - General practice clinical systems
SAPC 2012 - exception reporting
NIHR School for primary care showcase 2012 - financial incentives
SAPC north 2010 - provider incentives for influenza immunisation
HSRN 2010: incentivisation and non-incentivised aspects of care
Internal 2010 - Patient Satisfaction with Primary Care
NAPCRG 2009 - Impact of the QOF on quality of English primary care
RSS 2009 - Investigating the impact of the QOF on quality of primary care
SAPC 2009 - Patient satisfaction with Primary Care
ISQua 2008 - QOF and diabetes
RSS 2008 - meta-analyis when assumptions are violated

Recently uploaded (20)

PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
PDF
Sciences of Europe No 170 (2025)
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
Pharmacology of Autonomic nervous system
PDF
. Radiology Case Scenariosssssssssssssss
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
Overview of calcium in human muscles.pptx
PPTX
Application of enzymes in medicine (2).pptx
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
Placing the Near-Earth Object Impact Probability in Context
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Assessment of environmental effects of quarrying in Kitengela subcountyof Kaj...
Sciences of Europe No 170 (2025)
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
Looking into the jet cone of the neutrino-associated very high-energy blazar ...
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
Pharmacology of Autonomic nervous system
. Radiology Case Scenariosssssssssssssss
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
7. General Toxicologyfor clinical phrmacy.pptx
Introduction to Cardiovascular system_structure and functions-1
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
Phytochemical Investigation of Miliusa longipes.pdf
neck nodes and dissection types and lymph nodes levels
Overview of calcium in human muscles.pptx
Application of enzymes in medicine (2).pptx
Biophysics 2.pdffffffffffffffffffffffffff
Placing the Near-Earth Object Impact Probability in Context

RSS local 2012 - Software challenges in meta-analysis

  • 1. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary Software and model selection challenges in meta-analysis MetaEasy, model assumptions and homogeneity Evan Kontopantelis David Reeves Health Sciences Primary Care Research Centre University of Manchester RSS Primary Care Study Group Errol Street, 2 July 2012 Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 2. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary Outline 1 Meta-analysis overview The heterogeneity issue More challenges 2 A practical guide the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 3 Summary Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 3. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary The heterogeneity issue More challenges Heterogeneity The big bad wolf When the effect of the intervention varies significantly from one study to another. It can be attributed to clinical and/or methodological diversity. Clinical: variability that arises from different populations, interventions, outcomes and follow-up times. Methodological: relates to differences in trial design and quality. Detecting quantifying and dealing with heterogeneity can be very hard. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 4. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary The heterogeneity issue More challenges Absence of heterogeneity Assumes that the true effects of the studies are all equal and deviations occur because of imprecision of results. Analysed with the fixed-effects method. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 5. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary The heterogeneity issue More challenges Presence of heterogeneity Assumes that there is variation in the size of the true effect among studies (in addition to the imprecision of results). Analysed with random-effects methods. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 6. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary The heterogeneity issue More challenges Challenges with meta-analysis Heterogeneity is common and the fixed-effect model is under fire. Methods are asymptotic: accuracy improves as studies increase. But what if we only have a handful, as is usually the case? Almost all random-effects models (except Profile Likelihood) do not take into account the uncertainty in ˆτ2. Is this, practically, a problem? DerSimonian-Laird is the most common method of analysis, since it is easy to implement and widely available, but is it the best? Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 7. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary The heterogeneity issue More challenges Challenges with meta-analysis ...continued Can be difficult to organise since... outcomes likely to have been disseminated using a variety of statistical parameters appropriate transformations to a common format required tedious task, requiring at least some statistical adeptness Parametric random-effects models assume that both the effects and errors are normally distributed. Are methods robust? Sometimes heterogeneity is estimated to be zero, especially when the number of studies is small. Good news? Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 8. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Based on our original work... Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 9. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Organising Data initially collected using data extraction forms. A spreadsheet is the next logical step to summarise the reported study outcomes and identify missing data. Since in most cases MS Excel will be used we developed an add-in that can help with most processes involved in meta-analysis. More useful when the need to combine differently reported outcomes arises. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 10. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 What it can do Help with the data collection using pre-formatted worksheets. Its unique feature, which can be supplementary to other meta-analysis software, is implementation of methods for calculating effect sizes (& SEs) from different input types. For each outcome of each study... it identifies which methods can be used calculates an effect size and its standard error selects the most precise method for each outcome Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 11. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 What it can do ...continued Creates a forest plot that summarises all the outcomes, organised by study. Uses a variety of standard and advanced meta-analysis methods to calculate an overall effect. a variety of options is available for selecting which outcome(s) are to be meta-analysed from each study Plots the results in a second forest plot. Reports a variety of heterogeneity measures, including Cochran’s Q, I2, HM 2 and ˆτ2 (and its estimated confidence interval under the Profile Likelihood method). Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 12. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Advantages Free (provided Microsoft Excel is available). Easy to use and time saving. Extracted data from each study are easily accessible, can be quickly edited or corrected and analysis repeated. Choice of many meta-analysis models, including some advanced methods not currently available in other software packages (e.g. Permutations, Profile Likelihood, REML). Unique forest plot that allows multiple outcomes per study. Effect sizes and standard errors can be exported for use in other meta-analysis software packages. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 13. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Installing Latest version available from www.statanalysis.co.uk Compatible with Excel 2003, 2007 and 2010. Manual provided but also described in: Kontopantelis E and Reeves D. MetaEasy: A Meta-Analysis Add-In for Microsoft Excel. Journal of Statistical Software, 30(7):1-25, 2009. Play video clip Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 14. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Stata implementation MetaEasy methods implemented in Stata under: metaeff, which uses the different study input to provide effect sizes and SEs metaan, which meta-analyses the study effects with a fixed-effect or one of five available random-effects models To install, type in Stata: ssc install <command name> help <command name> Described in: Kontopantelis E and Reeves D. metaan: Random-effects meta-analysis. The Stata Journal, 10(3):395-407, 2010. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 15. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Many random-effects methods which to use? DerSimonian-Laird (DL): Moment-based estimator of both within and between-study variance. Maximum Likelihood (ML): Improves the variance estimate using iteration. Restricted Maximum Likelihood (REML): an ML variation that uses a likelihood function calculated from a transformed set of data. Profile Likelihood (PL): A more advanced version of ML that uses nested iterations for converging. Permutations method (PE): Simulates the distribution of the overall effect using the observed data. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 16. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Performance evaluation our approach Simulated various distributions for the true effects: Normal. Skew-Normal. Uniform. Bimodal. Created datasets of 10,000 meta-analyses for various numbers of studies and different degrees of heterogeneity, for each distribution. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 17. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Performance evaluation our approach Compared all methods in terms of: Coverage, the rate of true negatives when the overall true effect is zero. Power, the rate of true positives when the true overall effect is non-zero. Confidence Interval performance, a measure of how wide the (estimated around the effect) CI is, compared to its true width. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 18. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Homogeneity Zero between study variance 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE zero between study variance Coverage 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE zero between study variance Power (25th centile) 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE zero between study variance Overall estimation performance Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 19. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Coverage performance Small and large heterogeneity under various distributional assumptions 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=0, ku=3 H²=1.18 − I²=15% (normal distribution) Coverage 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=2, ku=9 H²=1.18 − I²=15% (skew−normal distribution) Coverage 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1 H=1.18 − I=15% (bimodal distribution) Coverage 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE H=1.18 − I=15% (uniform distribution) Coverage 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=0, ku=3 H²=2.78 − I²=64% (normal distribution) Coverage 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=2, ku=9 H²=2.78 − I²=64% (skew−normal distribution) Coverage 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1 H=2.78 − I=64% (bimodal distribution) Coverage 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE H=2.78 − I=64% (uniform distribution) Coverage Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 20. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Power performance Small and large heterogeneity under various distributional assumptions 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=0, ku=3 H²=1.18 − I²=15% (normal distribution) Power (25th centile) 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=2, ku=9 H²=1.18 − I²=15% (skew−normal distribution) Power (25th centile) 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1 H=1.18 − I=15% (bimodal distribution) Power (25th centile) 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE H=1.18 − I=15% (uniform distribution) Power (25th centile) 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=0, ku=3 H²=2.78 − I²=64% (normal distribution) Power (25th centile) 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=2, ku=9 H²=2.78 − I²=64% (skew−normal distribution) Power (25th centile) 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1 H=2.78 − I=64% (bimodal distribution) Power (25th centile) 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE H=2.78 − I=64% (uniform distribution) Power (25th centile) Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 21. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 CI performance Small and large heterogeneity under various distributional assumptions 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=0, ku=3 H²=1.18 − I²=15% (normal distribution) Confidence Interval performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=2, ku=9 H²=1.18 − I²=15% (skew−normal distribution) Confidence Interval performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1 H=1.18 − I=15% (bimodal distribution) Overall estimation performance (medians) 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE H=1.18 − I=15% (uniform distribution) Overall estimation performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=0, ku=3 H²=2.78 − I²=64% (normal distribution) Confidence Interval performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk=2, ku=9 H²=2.78 − I²=64% (skew−normal distribution) Confidence Interval performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE sk1=0, ku1=3, var1=.1, sk2=0, ku2=3, var2=.1 H=2.78 − I=64% (bimodal distribution) Overall estimation performance (medians) 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies FE DL ML REML PL PE H=2.78 − I=64% (uniform distribution) Overall estimation performance Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 22. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Coverage by method Large heterogeneity across various between-study variance distributions 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% FE − Coverage 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% DL − Coverage 0.70 0.75 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% ML − Coverage 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% REML − Coverage 0.80 0.85 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% PL − Coverage 0.90 0.95 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% PE − Coverage Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 23. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Power by method Large heterogeneity across various between-study variance distributions 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% FE − Power (25th centile) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% DL − Power (25th centile) 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% ML − Power (25th centile) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% REML − Power (25th centile) 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% PL − Power (25th centile) 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 % 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% PE − Power (25th centile) Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 24. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 CI performance by method Large heterogeneity across various between-study variance distributions 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% FE − Overall estimation performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% DL − Overall estimation performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% ML − Overall estimation performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% REML − Overall estimation performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% PL − Overall estimation performance 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2 5 8 11 14 17 20 23 26 29 32 35 number of studies Zero variance Normal Skew−normal Bimodal Uniform H=2.78 − I=64% PE − Overall estimation performance Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 25. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Which method then? Within any given method, the results were consistent across all types of distribution shape. Therefore methods are highly robust against even severe violations of the assumption of normality. Choose PE if the priority is an accurate Type I error rate (false positive). But low power makes it a poor choice when control of the Type II error rate (false negative) is also important and it cannot be used with less than 6 studies. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 26. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Which method then? For very small study numbers (≤5) only PL gives coverage >90% and an acccurate CI. PL has a ‘reasonable’ coverage in most situations, especially for moderate and large heterogeneiry, giving it an edge over other methods. REML and DL perform similarly and better than PL only when heterogeneity is low (I2 < 15%) The computational complexity of REML is not justified. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 27. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 Bring on the champagne? Does not necessarily mean homogeneity. Most methods use biased estimators and not uncommon to get a negative ˆτ2 which is set to 0 by the model. We identified a large percentage of cases where the estimators failed to identify existing heterogeneity. In our simulations, for 5 studies and I2 ≈ 29%: 30% of the meta-analyses were erroneously estimated to be homogeneous under the DL method. 32% for REML and 48% for ML-PL. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 28. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary the MetaEasy add-in metaeff & metaan Methods and performance ˆτ2 = 0 What does it mean? In these cases coverage was substandard and was over 10% lower than in cases where ˆτ2 > 0, on average. The problem becomes less profound as the number of studies and the level of heterogeneity increase. Better estimators are needed. There might be a large number of meta-analyses of ‘homogeneous’ studies which have reached a wrong conclusion. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 29. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Meta-analysis overview A practical guide Summary What to take home MetaEasy can help you organise your meta-analysis and can be especially useful if you need to combine continuous and binary outcomes. Methods implemented in Stata under metaeff and metaan. A zero ˆτ2 is a reason to worry. Heterogeneity might be there but we cannot measure or account for in the model. If ˆτ2 > 0, even if very small, use a random-effects model. The DL method works reasonably well, under all distributions, especially for low levels of heterogeneity. Profile likelihood, which takes into account the uncertaintly in ˆτ2, works better when I2 ≥ 15%. Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 30. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Appendix Thank you! Key references Comments, suggestions: e.kontopantelis@manchester.ac.uk Kontopantelis, Reeves Software and model selection challenges in meta-analysis
  • 31. [Poster title] [Replace the following names and titles with those of the actual contributors: Helge Hoeing, PhD1; Carol Philips, PhD2; Jonathan Haas, RN, BSN, MHA3, and Kimberly B. Zimmerman, MD4 1[Add affiliation for first contributor], 2[Add affiliation for second contributor], 3[Add affiliation for third contributor], 4[Add affiliation for fourth contributor] Appendix Thank you! Key references References Kontopantelis E, Reeves D. MetaEasy: A Meta-Analysis Add-In for Microsoft Excel. Journal of Statistical Software, 30(7):1-25, 2009. Kontopantelis E, Reeves D. metaan: Random-effects meta-analysis. The Stata Journal, 10(3):395-407, 2010. Kontopantelis E, Reeves D. Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: A simulation study. Stat Methods Med Res, published online Dec 9 2010. Kontopantelis, Reeves Software and model selection challenges in meta-analysis