SlideShare a Scribd company logo
SafeML: An Approach for Safety
Monitoring of Machine Learning
Classifiers through Statistical
Difference Measure
Email: k.aslansefat-2018@hull.ac.uk
Koorosh Aslansefat, Ioannis Sorokos, Declan Whiting, Ramin Tavakoli Kolagari, and Yiannis Papadopoulos
Table of Content
What I am going to discuss
Introduction
Brief Introduction on AI Safety
Statistical Distance Measures
ECDF-based Statistical Distance Measures
SafeML Idea
SafeML: An Approach for Safety Assurance of Machine Learning Classifiers through Statistical
Difference Measure
2
Numerical Results and Conclusion
Case studies, Numerical Results and Conclusion
3https://www.statista.com
Uber self-driving car kills a pedestrian
4
2018 in Review: 10 AI Failures, https://medium.com/syncedreview/2018-in-review-10-ai-failures-
c18faadf5983
SafeML Problem Statement
5
K. Pei, et al. K., Cao, Y., Yang, J., & Jana, S. (2017). Deepxplore: Automated whitebox testing of deep learning
systems. In proceedings of the 26th Symposium on Operating Systems Principles (pp. 1-18).
SafeML Problem Statement
6
https://openai.com/blog/adversarial-example-research/
SafeML Problem Statement
7
https://www.reddit.com/r/ProgrammerHumor/c
omments/cl2rve/so_a_friend_of_mine_was_wor
king_on_an_opencvml/
AI Safety Issues
8
AI Safety
Safe
exploration
Robustness to
distributional
shift
Avoiding
negative side
effects
Avoiding
“reward
hacking” and
“wire
heading”
Scalable
oversight
Amodei et al. (2016). Concrete
Problems in AI Safety.
SafeML Project Goal
9
Estimating the ML Classifier Accuracy through Statistical Differences
Accuracy Estimation
Safety Monitoring through a proposed human-in-loop procedure
Safety Monitoring
XAI: Explainable Artificial Intelligence
Providing Explainable Artificial Intelligence using Statistical Differences
An Example
𝐶𝑙𝑎𝑠𝑠 1: 𝑥 𝑡 ~𝑁 3,1 𝑡0 < 20ℎ
𝐶𝑙𝑎𝑠𝑠 2: 𝑥 𝑡 ~𝑁 5,1 𝑡0 > 40ℎ
𝐹𝐷𝑅 𝑇𝑑 = 𝑞1 𝑇𝑑 =
𝑇 𝑑
+∞
𝑞 𝑥 dx
𝑀𝐷𝑅 𝑇𝑑 = 𝑝2 𝑇𝑑 =
−∞
𝑇 𝑑
𝑝 𝑥 dx
Class 1
Class 2
Mean Distance
𝟔𝝈 𝟔𝝈
Variance Distance
Cause Error
Probability Density Functions
Consider a hypothetical one dimensional data with nine classes
Class 9
Probability Density Functions and Cumulative Functions
12
Difference in
Cumulative Distribution
Functions
𝑓 𝑥 𝑑𝑥
Cumulative Distribution Function (CDF) Distance Measures
Wasserstein
Kolmogorov-Smirnov
Kuiper
Anderson-Darling
Cramer-Von Mises
Wasserstein + Cramer-Von Mises (DTS)
SafeML
Procedure
15
Proposed Procedure
Numerical
Examples
Cross-Validation and ML Classifiers
17
ML
Classifiers
Linear
discriminant
analysis
(LDA)
Classification
and
Regression
Tree (CART)
Random
Forest (RF)
K-Nearest
Neighbours
(KNN)
Support
Vector
Machine
(SVM)
Cross Validation
70% Train
15% Test
15% Validation
K-Fold
K = 10
Example 1: 1D Normal Distributed Data in Two Classes
18
𝐶𝑙𝑎𝑠𝑠 1: 𝑥 𝑡 ~𝑁 3,1 𝑡0 < 1000ℎ
𝐶𝑙𝑎𝑠𝑠 2: 𝑥 𝑡 ~𝑁 5,1 𝑡0 > 1000ℎ
Difference with True Accuracy (Min)
Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS
LDA 0.025000 0.100000 0.051014 0.061021 0.022033
CART 0.036073 0.034495 0.11469 0.005142 0.087099
KNN 0.030343 0.039344 0.111804 0.002158 0.085843
SVM 0.030343 0.039344 0.111804 0.002158 0.085843
RF 0.029495 0.033797 0.145110 0.030151 0.111105
Max Difference 0.036073 0.100000 0.145110 0.061021 0.111105
`
Kolmogorov-
Smirnov
Kuiper Anderson-Darling Wasserstein DTS
True Accuracy
(Mean)
True Accuracy
(Min)
LDA 0.9125000 0.8375000 0.9885137 0.8764794 0.9595329 0.9691176 0.9375000
CART 0.9110729 0.8405049 0.9896898 0.8801418 0.9620993 0.9569853 0.8750000
KNN 0.9053426 0.8356562 0.9868039 0.8771581 0.9608425 0.9691176 0.8750000
SVM 0.9053426 0.8356562 0.9868039 0.8771581 0.9608425 0.9569853 0.8750000
RF 0.8530239 0.7897328 0.9686393 0.7933787 0.9346339 0.9386029 0.8235294
Example 2: 2D XOR Dataset
19
Example 2: 2D XOR Dataset
20
Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS True Accuracy (Mean) True Accuracy (Min)
LDA 0.7722165 0.7706001 0.9028175 0.7550639 0.9856662 0.5912107 0.5083333
CART 0.9281788 0.9219821 0.9877216 0.9254581 0.9952106 0.9941579 0.9874477
KNN 0.9305751 0.9130628 0.9931512 0.9587683 0.9970757 0.9866649 0.9748954
SVM 0.9310446 0.9175864 0.9934891 0.9581909 0.997064 0.9879166 0.9791667
RF 0.9296264 0.9107489 0.9927418 0.9578211 0.9970175 0.9983333 0.9958333
Difference with True Accuracy (Min)
Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS
LDA 0.263883 0.262267 0.394484 0.246731 0.477333
CART 0.059269 0.065466 0.000274 0.06199 0.007763
KNN 0.04432 0.061833 0.018256 0.016127 0.02218
SVM 0.048122 0.06158 0.014322 0.020976 0.017897
RF 0.066207 0.085084 0.003092 0.038012 0.001184
Max Difference 0.263883 0.262266 0.394484 0.246730 0.477333
Example 2: 2D Spiral Dataset
21
Example 2: 2D Spiral Dataset
22
Difference with True Accuracy (Min)
Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS
LDA 0.496590 0.460854 0.544319 0.527156 0.544277
CART 0.127042 0.113750 0.160944 0.142098 0.160855
KNN 0.049153 0.062775 0.001429 0.029407 0.001969
SVM 0.048397 0.061893 0.001523 0.028798 0.002002
RF 0.032346 0.044748 0.017896 0.014065 0.018562
Max Difference 0.0994468 0.0882515 0.2699748 0.2483959 0.528852
Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS True Accuracy (Mean) True Accuracy (Min)
LDA 0.950757 0.915021 0.998485 0.981323 0.998443 0.506250 0.454167
CART 0.964542 0.951250 0.998444 0.979598 0.998355 0.890833 0.837500
KNN 0.946680 0.933058 0.997262 0.966426 0.997802 0.999167 0.995833
SVM 0.947437 0.933940 0.997356 0.967035 0.997835 0.999167 0.995833
RF 0.946821 0.934418 0.997062 0.965102 0.997728 0.990833 0.979167
Application of SafeML in Security
23
Example 4: Security Dataset
Intrusion Detection Evaluation Dataset (CIC-IDS2017)
24
Example 4: Security Dataset
25
Example 4: Security Dataset
26
Applications of
SafeML
Applications of SafeML
28
Applications of SafeML
29
Applications of SafeML
30
SafeML Toward
XAI
SafeML Toward eXplainable AI (XAI)
32
SafeML Reproducibility
33
https://github.com/ISorokos/SafeML
MATLAB Implementation
Python Implementation
R Implementation
656
Conclusion
34
 Through modifying the existing statistical distance and error bound measures, the
proposed method enables to estimate the accuracy bound of the trained ML algorithm in
the field with no label on the incoming data.
 A novel proposed human-in-loop procedure is made to certify the ML algorithm in a real-
time manner. The procedure has three levels of operation: I) runtime estimated accuracy,
II) Lack of enough data and need for buffering more samples (it may cause a delay in
decision-making), and III) No low runtime estimated accuracy and a human agent is
needed.
 The proposed approach is easy to implement, and it can support a variety of distribution
(Exponential and normal distribution families).
Future Works
35
 Extending the SafeML Idea for Machine Learning Regression and Prediction Algorithms
 Considering Recurrent Methods and Dealing with Time Series.
 Improving the method for adaptive and online-learning algorithms.
 Integrating the feature importance to the exiting algorithm.
 Implementing the SafeML XAI for Image classification.
Selected References
36
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete Problems in AI Safety.
http://arxiv.org/abs/1606.06565
Burton, S., Habli, I., Lawton, T., McDermid, J., Morgan, P., & Porter, Z. (2020). Mind the gaps: Assuring the safety of
autonomous systems from an engineering, ethical, and legal perspective. Artificial Intelligence, 279, 103201.
https://doi.org/10.1016/j.artint.2019.103201
Davenport, T. H., Brynjolfsson, E., McAfee, A., James, H., & Wilson, R. (2019). Artificial Intelligence: The Insights You Need
from Harvard Business Review. Harvard Business Review.
Fukunaga, K. (1992). Introduction to Statistical Pattern Recognition (Second Edition). Academic Press.
Nielsen, F. (2018). The Chord Gap Divergence and a Generalization of the Bhattacharyya Distance. ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2018-April, 2276–2280.
https://doi.org/10.1109/ICASSP.2018.8462244
Quiñonero-Candela, J., & Schwaighofer, A. (2009). Dataset Shift in Machine Learning. MIT Press.
Schulam, P., & Saria, S. (2019). Can You Trust This Prediction? Auditing Pointwise Reliability After Learning.
http://arxiv.org/abs/1901.00403
Zahm, O., Cui, T., Law, K., Spantini, A., & Marzouk, Y. (2018). Certified dimension reduction in nonlinear Bayesian inverse
problems. http://arxiv.org/abs/1807.03712
Thank You
If you have any question, please feel free to ask

More Related Content

PPTX
Reliability Evaluation of Reconfigurable NMR Architecture Supported with Hot ...
PPSX
A Conceptual Framework to Incorporate Complex Basic Events in HiP-HOPS
PDF
Presentation esa udrescu
PPT
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
PDF
ADAPTIVE BLIND MULTIUSER DETECTION UNDER IMPULSIVE NOISE USING PRINCIPAL COMP...
PDF
Adaptive blind multiuser detection under impulsive noise using principal comp...
PDF
ADAPTIVE BLIND MULTIUSER DETECTION UNDER IMPULSIVE NOISE USING PRINCIPAL COMP...
PDF
Real time active noise cancellation using adaptive filters following RLS and ...
Reliability Evaluation of Reconfigurable NMR Architecture Supported with Hot ...
A Conceptual Framework to Incorporate Complex Basic Events in HiP-HOPS
Presentation esa udrescu
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS
ADAPTIVE BLIND MULTIUSER DETECTION UNDER IMPULSIVE NOISE USING PRINCIPAL COMP...
Adaptive blind multiuser detection under impulsive noise using principal comp...
ADAPTIVE BLIND MULTIUSER DETECTION UNDER IMPULSIVE NOISE USING PRINCIPAL COMP...
Real time active noise cancellation using adaptive filters following RLS and ...

Similar to SafeML: Safety Monitoring of Machine Learning Classifiers through Statistical Difference Measure (20)

PDF
Complex models in ecology: challenges and solutions
PPTX
rbs - presentation about applications of machine learning.
PDF
2014-mo444-final-project
PDF
Palmprint Identification Using FRIT
PPT
Quantitive Time Series Analysis of Malware and Vulnerability Trends
PDF
CoopLoc Technical Presentation
PPT
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS

PDF
ICIF19_Garg_job_talk_portfolio_modification.pdf
PDF
OPTIMIZATION OF SCALE FACTORS IN SHRINKAGE COMPENSATIONS IN SLS USING PATTERN...
PPT
"An adaptive modular approach to the mining of sensor network ...
PPTX
Automatic Skin Lesion Segmentation and Melanoma Detection: Transfer Learning ...
PDF
Performance Variation of LMS And Its Different Variants
PPTX
Synthesis of an intrusion detection algorithm based on deep learning and reas...
PDF
Big Data Analytics for Obesity Prediction
PPSX
Simulation and hardware implementation of Adaptive algorithms on tms320 c6713...
PPTX
Automated seismic-to-well ties?
PPT
tracking.ppt
PDF
System Identification Based on Hammerstein Models Using Cubic Splines
PPTX
PhD Qualifying Exam Slides
PDF
IRJET- Texture Analysis and Fracture Identification of Bones X-Ray Images...
Complex models in ecology: challenges and solutions
rbs - presentation about applications of machine learning.
2014-mo444-final-project
Palmprint Identification Using FRIT
Quantitive Time Series Analysis of Malware and Vulnerability Trends
CoopLoc Technical Presentation
FUNCTION OF RIVAL SIMILARITY IN A COGNITIVE DATA ANALYSIS

ICIF19_Garg_job_talk_portfolio_modification.pdf
OPTIMIZATION OF SCALE FACTORS IN SHRINKAGE COMPENSATIONS IN SLS USING PATTERN...
"An adaptive modular approach to the mining of sensor network ...
Automatic Skin Lesion Segmentation and Melanoma Detection: Transfer Learning ...
Performance Variation of LMS And Its Different Variants
Synthesis of an intrusion detection algorithm based on deep learning and reas...
Big Data Analytics for Obesity Prediction
Simulation and hardware implementation of Adaptive algorithms on tms320 c6713...
Automated seismic-to-well ties?
tracking.ppt
System Identification Based on Hammerstein Models Using Cubic Splines
PhD Qualifying Exam Slides
IRJET- Texture Analysis and Fracture Identification of Bones X-Ray Images...
Ad

Recently uploaded (20)

PPTX
Database Infoormation System (DBIS).pptx
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
IB Computer Science - Internal Assessment.pptx
PPT
Reliability_Chapter_ presentation 1221.5784
PPT
ISS -ESG Data flows What is ESG and HowHow
PDF
.pdf is not working space design for the following data for the following dat...
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PDF
[EN] Industrial Machine Downtime Prediction
PPTX
Introduction to machine learning and Linear Models
PDF
Introduction to the R Programming Language
PPTX
IBA_Chapter_11_Slides_Final_Accessible.pptx
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PPTX
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
PPTX
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
PPTX
Supervised vs unsupervised machine learning algorithms
PPTX
Introduction to Knowledge Engineering Part 1
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PPTX
Qualitative Qantitative and Mixed Methods.pptx
Database Infoormation System (DBIS).pptx
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
IB Computer Science - Internal Assessment.pptx
Reliability_Chapter_ presentation 1221.5784
ISS -ESG Data flows What is ESG and HowHow
.pdf is not working space design for the following data for the following dat...
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
[EN] Industrial Machine Downtime Prediction
Introduction to machine learning and Linear Models
Introduction to the R Programming Language
IBA_Chapter_11_Slides_Final_Accessible.pptx
STERILIZATION AND DISINFECTION-1.ppthhhbx
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
The THESIS FINAL-DEFENSE-PRESENTATION.pptx
Supervised vs unsupervised machine learning algorithms
Introduction to Knowledge Engineering Part 1
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
Microsoft-Fabric-Unifying-Analytics-for-the-Modern-Enterprise Solution.pptx
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
Qualitative Qantitative and Mixed Methods.pptx
Ad

SafeML: Safety Monitoring of Machine Learning Classifiers through Statistical Difference Measure

  • 1. SafeML: An Approach for Safety Monitoring of Machine Learning Classifiers through Statistical Difference Measure Email: k.aslansefat-2018@hull.ac.uk Koorosh Aslansefat, Ioannis Sorokos, Declan Whiting, Ramin Tavakoli Kolagari, and Yiannis Papadopoulos
  • 2. Table of Content What I am going to discuss Introduction Brief Introduction on AI Safety Statistical Distance Measures ECDF-based Statistical Distance Measures SafeML Idea SafeML: An Approach for Safety Assurance of Machine Learning Classifiers through Statistical Difference Measure 2 Numerical Results and Conclusion Case studies, Numerical Results and Conclusion
  • 4. Uber self-driving car kills a pedestrian 4 2018 in Review: 10 AI Failures, https://medium.com/syncedreview/2018-in-review-10-ai-failures- c18faadf5983
  • 5. SafeML Problem Statement 5 K. Pei, et al. K., Cao, Y., Yang, J., & Jana, S. (2017). Deepxplore: Automated whitebox testing of deep learning systems. In proceedings of the 26th Symposium on Operating Systems Principles (pp. 1-18).
  • 8. AI Safety Issues 8 AI Safety Safe exploration Robustness to distributional shift Avoiding negative side effects Avoiding “reward hacking” and “wire heading” Scalable oversight Amodei et al. (2016). Concrete Problems in AI Safety.
  • 9. SafeML Project Goal 9 Estimating the ML Classifier Accuracy through Statistical Differences Accuracy Estimation Safety Monitoring through a proposed human-in-loop procedure Safety Monitoring XAI: Explainable Artificial Intelligence Providing Explainable Artificial Intelligence using Statistical Differences
  • 10. An Example 𝐶𝑙𝑎𝑠𝑠 1: 𝑥 𝑡 ~𝑁 3,1 𝑡0 < 20ℎ 𝐶𝑙𝑎𝑠𝑠 2: 𝑥 𝑡 ~𝑁 5,1 𝑡0 > 40ℎ 𝐹𝐷𝑅 𝑇𝑑 = 𝑞1 𝑇𝑑 = 𝑇 𝑑 +∞ 𝑞 𝑥 dx 𝑀𝐷𝑅 𝑇𝑑 = 𝑝2 𝑇𝑑 = −∞ 𝑇 𝑑 𝑝 𝑥 dx
  • 11. Class 1 Class 2 Mean Distance 𝟔𝝈 𝟔𝝈 Variance Distance Cause Error Probability Density Functions Consider a hypothetical one dimensional data with nine classes Class 9
  • 12. Probability Density Functions and Cumulative Functions 12 Difference in Cumulative Distribution Functions 𝑓 𝑥 𝑑𝑥
  • 13. Cumulative Distribution Function (CDF) Distance Measures Wasserstein Kolmogorov-Smirnov Kuiper Anderson-Darling Cramer-Von Mises Wasserstein + Cramer-Von Mises (DTS)
  • 17. Cross-Validation and ML Classifiers 17 ML Classifiers Linear discriminant analysis (LDA) Classification and Regression Tree (CART) Random Forest (RF) K-Nearest Neighbours (KNN) Support Vector Machine (SVM) Cross Validation 70% Train 15% Test 15% Validation K-Fold K = 10
  • 18. Example 1: 1D Normal Distributed Data in Two Classes 18 𝐶𝑙𝑎𝑠𝑠 1: 𝑥 𝑡 ~𝑁 3,1 𝑡0 < 1000ℎ 𝐶𝑙𝑎𝑠𝑠 2: 𝑥 𝑡 ~𝑁 5,1 𝑡0 > 1000ℎ Difference with True Accuracy (Min) Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS LDA 0.025000 0.100000 0.051014 0.061021 0.022033 CART 0.036073 0.034495 0.11469 0.005142 0.087099 KNN 0.030343 0.039344 0.111804 0.002158 0.085843 SVM 0.030343 0.039344 0.111804 0.002158 0.085843 RF 0.029495 0.033797 0.145110 0.030151 0.111105 Max Difference 0.036073 0.100000 0.145110 0.061021 0.111105 ` Kolmogorov- Smirnov Kuiper Anderson-Darling Wasserstein DTS True Accuracy (Mean) True Accuracy (Min) LDA 0.9125000 0.8375000 0.9885137 0.8764794 0.9595329 0.9691176 0.9375000 CART 0.9110729 0.8405049 0.9896898 0.8801418 0.9620993 0.9569853 0.8750000 KNN 0.9053426 0.8356562 0.9868039 0.8771581 0.9608425 0.9691176 0.8750000 SVM 0.9053426 0.8356562 0.9868039 0.8771581 0.9608425 0.9569853 0.8750000 RF 0.8530239 0.7897328 0.9686393 0.7933787 0.9346339 0.9386029 0.8235294
  • 19. Example 2: 2D XOR Dataset 19
  • 20. Example 2: 2D XOR Dataset 20 Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS True Accuracy (Mean) True Accuracy (Min) LDA 0.7722165 0.7706001 0.9028175 0.7550639 0.9856662 0.5912107 0.5083333 CART 0.9281788 0.9219821 0.9877216 0.9254581 0.9952106 0.9941579 0.9874477 KNN 0.9305751 0.9130628 0.9931512 0.9587683 0.9970757 0.9866649 0.9748954 SVM 0.9310446 0.9175864 0.9934891 0.9581909 0.997064 0.9879166 0.9791667 RF 0.9296264 0.9107489 0.9927418 0.9578211 0.9970175 0.9983333 0.9958333 Difference with True Accuracy (Min) Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS LDA 0.263883 0.262267 0.394484 0.246731 0.477333 CART 0.059269 0.065466 0.000274 0.06199 0.007763 KNN 0.04432 0.061833 0.018256 0.016127 0.02218 SVM 0.048122 0.06158 0.014322 0.020976 0.017897 RF 0.066207 0.085084 0.003092 0.038012 0.001184 Max Difference 0.263883 0.262266 0.394484 0.246730 0.477333
  • 21. Example 2: 2D Spiral Dataset 21
  • 22. Example 2: 2D Spiral Dataset 22 Difference with True Accuracy (Min) Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS LDA 0.496590 0.460854 0.544319 0.527156 0.544277 CART 0.127042 0.113750 0.160944 0.142098 0.160855 KNN 0.049153 0.062775 0.001429 0.029407 0.001969 SVM 0.048397 0.061893 0.001523 0.028798 0.002002 RF 0.032346 0.044748 0.017896 0.014065 0.018562 Max Difference 0.0994468 0.0882515 0.2699748 0.2483959 0.528852 Kolmogorov-Smirnov Kuiper Anderson-Darling Wasserstein DTS True Accuracy (Mean) True Accuracy (Min) LDA 0.950757 0.915021 0.998485 0.981323 0.998443 0.506250 0.454167 CART 0.964542 0.951250 0.998444 0.979598 0.998355 0.890833 0.837500 KNN 0.946680 0.933058 0.997262 0.966426 0.997802 0.999167 0.995833 SVM 0.947437 0.933940 0.997356 0.967035 0.997835 0.999167 0.995833 RF 0.946821 0.934418 0.997062 0.965102 0.997728 0.990833 0.979167
  • 23. Application of SafeML in Security 23
  • 24. Example 4: Security Dataset Intrusion Detection Evaluation Dataset (CIC-IDS2017) 24
  • 25. Example 4: Security Dataset 25
  • 26. Example 4: Security Dataset 26
  • 34. Conclusion 34  Through modifying the existing statistical distance and error bound measures, the proposed method enables to estimate the accuracy bound of the trained ML algorithm in the field with no label on the incoming data.  A novel proposed human-in-loop procedure is made to certify the ML algorithm in a real- time manner. The procedure has three levels of operation: I) runtime estimated accuracy, II) Lack of enough data and need for buffering more samples (it may cause a delay in decision-making), and III) No low runtime estimated accuracy and a human agent is needed.  The proposed approach is easy to implement, and it can support a variety of distribution (Exponential and normal distribution families).
  • 35. Future Works 35  Extending the SafeML Idea for Machine Learning Regression and Prediction Algorithms  Considering Recurrent Methods and Dealing with Time Series.  Improving the method for adaptive and online-learning algorithms.  Integrating the feature importance to the exiting algorithm.  Implementing the SafeML XAI for Image classification.
  • 36. Selected References 36 Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mané, D. (2016). Concrete Problems in AI Safety. http://arxiv.org/abs/1606.06565 Burton, S., Habli, I., Lawton, T., McDermid, J., Morgan, P., & Porter, Z. (2020). Mind the gaps: Assuring the safety of autonomous systems from an engineering, ethical, and legal perspective. Artificial Intelligence, 279, 103201. https://doi.org/10.1016/j.artint.2019.103201 Davenport, T. H., Brynjolfsson, E., McAfee, A., James, H., & Wilson, R. (2019). Artificial Intelligence: The Insights You Need from Harvard Business Review. Harvard Business Review. Fukunaga, K. (1992). Introduction to Statistical Pattern Recognition (Second Edition). Academic Press. Nielsen, F. (2018). The Chord Gap Divergence and a Generalization of the Bhattacharyya Distance. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2018-April, 2276–2280. https://doi.org/10.1109/ICASSP.2018.8462244 Quiñonero-Candela, J., & Schwaighofer, A. (2009). Dataset Shift in Machine Learning. MIT Press. Schulam, P., & Saria, S. (2019). Can You Trust This Prediction? Auditing Pointwise Reliability After Learning. http://arxiv.org/abs/1901.00403 Zahm, O., Cui, T., Law, K., Spantini, A., & Marzouk, Y. (2018). Certified dimension reduction in nonlinear Bayesian inverse problems. http://arxiv.org/abs/1807.03712
  • 37. Thank You If you have any question, please feel free to ask