SlideShare a Scribd company logo
Socially Assistive Robots, Educational
Tutoring, and Affective Computing
Sam Spaulding
MIT Media Lab
Social Robots
Inventing our Future while Learning about Ourselves
Robotic
Engineering
Artificial
Intelligence
Studies of Human
Behavior
Human-Robot Interaction
Educational
Companion
Aging-in-Place HelperAssembly-mate
Socially Assistive Robots
(SAR)
Socially Assistive Robots are designed to
leverage their social and affective attributes to
provide social support to people in order to
sustain engagement, motivate, coach, monitor,
educate, or facilitate communication &
teamwork for improved outcomes.
Sam Spaulding - Emotion AI Developer Day 2016
Embodiment matters!
Robots produce
higher learning
gains
Robots are more able
to form long-term
bonds
Robots produce
greater
compliance
Leyzberg et al. (2012)
Bainbridge et al. (2012)
Kidd & Breazeal (2008)
Compared to screen-based representations...
Intelligent Tutoring Systems
Use domain-general
inference and modeling
algorithms
Have been extensively
tested in real-world
environments over long
periods of time
Intelligent Tutoring SystemsRobotic Tutors
The best of both...
Social Presence
Onboard Sensing
Agent-based Interaction
Adaptive Personalization
Data-driven Student Models
Physically embodied robot tutors that:
sense and understand emotions
build models of students based on affective data
act intelligently as a result of the model info
Affect-aware Student Models
for Robot Tutors
- Child and Robot
interact through shared
“Storymaker” game
context
- Robot framed as peer,
periodically asks child to
demonstrate reading ability
(to be presented at AAMAS ’16)
Knowledge State Estimation
- A key challenge for adaptive,
computational tutors is -
“how to personalize
experience?”
- In order to provide
personalized curriculum, the
tutor must first determine
students’ initial knowledge state
Task
Difficulty
Student Ability
Boredom
Overwhelmed
Flow: Optimal
Challenge
“Flow”
Bayesian Knowledge Tracing
(BKT)
Bayesian Knowledge Tracing
(BKT)
P(Li
t)
Correctt
P(Li
t+1) P(Li
t+2)
... ...
Correct t+1 Correct t+2
Background Model Domain Evaluation Contributions
Sparse channel for knowledge,
but widely studied
Each ‘traced’ skill
modeled by an HMM
Affective Bayesian Knowledge
Tracing
Affective data drawn from 5s before question asked to
5s after question answered
Affect-aware Student Models
for Robot Tutors
- 25 children came and
played with Dragonbot
- 13 children did same
interaction with Tablet
only
- Experiment conducted in
Summer 2014, affective
analysis completed 6mo.
later
(to be presented at AAMAS ’16)
Are Children More Emotionally Expressive
When Interacting with A Robot?
... ... ... ...
} {
Avg Smile: 18
Avg BrowFurrow: 7
Avg BrowRaise: 62
Avg LipDepress: 4
AvgValence: -24
Avg Engage: 67
} {Median
Filter
} {Mean
Metric
Value
Session Footage
Raw Affdex Measurements
Median-smoothed Affdex Data
Subject Bag
Average MetricValue
over Interaction
Are Children More Emotionally Expressive
When Interacting with A Robot?
*
*
*
* p < .05
n=25 “Robot” condition
n=13 “Tablet condition
Training and Evaluating Skill Models
BKT and Aff-BKT models
trained for 4 Skills via
Expectation Maximization
Model classes evaluated via
log-likelihood comparison, with
Leave-one-out cross-validation
Does Including Affective Data in Training
Yield Better Models?
...
}Affective + Right/Wrong
Training Data
Subject Bag
Expectation
Maximization
{
P(Li
t)
CorrecttSmilet
P(Li
t+1)
...
Engagedt Correctt+1Smilet+1 Engagedt+1
...
P(Li
t)
CorrecttSmilet
P(Li
t+1)
...
Engagedt Correctt+1Smilet+1 Engagedt+1
...
}
Training Data Trained Model Trained Model
Subset
{Model
Subset
P(Li
t)
CorrecttSmilet
P(Li
t+1)
...
Engagedt Correctt+1Smilet+1 Engagedt+1
...
P(Li
t)
Correctt
P(Li
t+1)
...
Correctt+1
...
Held-out Right/Wrong
Test Data, D'
Likelihood of Model,
Given Test Data D’
}
D’
P(D’| θaff)
θaff = maxθ P(Daff|θ)
θaff, a subset of θaff, containing only
BKT model parameters
θaff
^
^
^
Daff
Does Including Affective Data in Training
Yield Better Models?
[
[
[
[
Exact-Correct
BKT Aff-BKT BKT Aff-BKT BKT Aff-BKT BKT Aff-BKT
First-Letter Length Last-Letter
Does Including Affective Data in Training
Yield Better Models?
p < 1.0 x 10-4
*
*
**
*
*
**
**p < 1.0 x 10-5
p < 1.0 x 10-6
*
***
Are children more
emotionally expressive
when interacting with
robots?
Can we leverage emotional
expression data to create
better student models?
Two main questions:
Are children more
emotionally expressive
when interacting with
robots?
Can we leverage emotional
expression data to create
better student models?
Two main questions:
Intelligent Tutoring SystemsRobotic Tutors
The best of both...
Social Presence
Onboard Sensing
Agent-based Interaction
Adaptive Personalization
Data-driven Student Models
Physically embodied robot tutors that:
sense and understand emotions
build models of students based on affective data
act intelligently as a result of the model info
Meet Tega!
Tega: a “real-world ready” social robot!
Student models allow us to personalize curricular
content. How do we personalize affective support?
Affective Personalization
Affective Personalization of a
Social Robot Tutor for SSL
(presented at AAAI ’16)
•What’s it all about?
•Children learning Spanish as a second language with a
robot companion
•An Integrated System
•Tega Robot
•Custom Educational Game
• Affdex affective sensor
•All synchronized and coordinated through a ROS-
based cognitive architecture
•The Study
•Long-term, in-the-wild, fully autonomous interaction
•Personalization of affective response
Integrated System: Software
Game:
- Unity-based sprite game
- 8 sessions of content + review
- Fully autonomous play
- Virtual “instructor” character, robot as peer
Affdex phone:
- Real-time detection of facial
expressions
- Valence / Engagement used as
reward to RL algorithm
Educational Context
Robot again framed as peer,
with ‘bilingual’ Toucan as
teacher
As the student plays through
the game, the robot provides
affective support through
verbal + nonverbal actions
Reinforcement Learning on Affective Data
SARSA Algorithm
Reward = .4(Engagement) +.6( (Valence+100) )
2
State Space = 3 x 2 x 2 x 2 = 24 states total
Neg./Neut./Pos.
Valence
Hi/Lo
Engagement
On/Off
Task
Right/Wrong
Last Question
Action Space = 3 x 2 + No-action = 7 action classes total
ɛ-greedy algorithm, with ɛ decreasing across sessions
Sample Actions
Timeline
• 8 Weeks of In-Class deployment
• 1 Pre-test Session
• 6 Study Sessions (part review, part new content)
• 1 Post-test Session
Affective Personalization
***
**
*
*
***
Affective Personalization
*
Appropriate affective responses are
critical to avoiding “novelty effect”
Did they actually learn?
*
Contributions
• Novelty of current study:
• Long-term interaction (8 sessions)
• Fully autonomous social robot (Tega)
• In-the-wild experiment (inside a classroom)
• Affective personalization (Affdex)
• Age of participants (3-6 yrs)
Social robot personalized its affective response, thus
increasing children’s valence during long-term
interaction.
Looking ahead…
Old challenges are becoming
tractable: sensing,
deployment, robust systems.
New challenges are conceptual
and computational - i.e. how to
fully integrate emotions into an
agent’s cognition
Collaborators and Supporters
This research was supported by the National
Science Foundation
(NSF) under Grant CCF-1138986 and
Graduate Research
Fellowship Grant No 1122374.
Luke Plummer JinJoo Lee
Goren Gordon Jacqueline KoryProf. Cynthia Breazeal

More Related Content

PPTX
Umang Mehta - Emotion AI Developer Day 2016
PDF
Socially-Sensitive Interfaces: From Offline Studies to Interactive Experiences
PDF
Demola affective robotics_20120502
PDF
UXPA2019 Everyday Experiences with Robots
PPTX
The human element
PDF
Promoting critical thinking dispositions in children and adolescents through ...
PDF
'Robot Pain'
PDF
'Robot Pain'
Umang Mehta - Emotion AI Developer Day 2016
Socially-Sensitive Interfaces: From Offline Studies to Interactive Experiences
Demola affective robotics_20120502
UXPA2019 Everyday Experiences with Robots
The human element
Promoting critical thinking dispositions in children and adolescents through ...
'Robot Pain'
'Robot Pain'

Similar to Sam Spaulding - Emotion AI Developer Day 2016 (20)

PPTX
Detection of and Response to Online Users' Emotion
PPTX
Detection of and response to Online Users' Emotion
PDF
Leigh-Chantelle's OCURA2020 Presentation on Preschoolers and their Engagement...
PPT
Detecting and Responding to Student Emotion
PDF
COGNITION IN ROBOTS AND ROBOT SCIENTISTS
PPTX
The roadmap to emotionally accessible MOOCs
PDF
[244]로봇이 현실 세계에 대해 학습하도록 만들기
PPTX
Zaga thesis presentation
PDF
Can Working with a Robot Enhance Learning in Children with Intellectual Disab...
PDF
Teacher-Aware Active Robot Learning
ODP
HRI 2011 — Design and Assessment of the Haptic Creature’s Affect Display
PPTX
Dental TutorBot: Exploitation of Dental Textbooks for Automated Learning
PDF
Human robot
PPTX
Grandfathers, cogs and bots
PPTX
Analysing the attitude of students towards robots when lectured on programmin...
PDF
Analyzing the Attitude of Students Towards Robots when Lectured on Programmin...
PPT
A Robot’s Experience of Another Robot: Simulation
ODP
HRI 2010 — Young Pioneers Workshop — The Haptic Creature Project: Social Huma...
PDF
New research articles 2020 december issue- international journal of compute...
PDF
Better Machine Learning with Less Data - Slater Victoroff (Indico Data)
Detection of and Response to Online Users' Emotion
Detection of and response to Online Users' Emotion
Leigh-Chantelle's OCURA2020 Presentation on Preschoolers and their Engagement...
Detecting and Responding to Student Emotion
COGNITION IN ROBOTS AND ROBOT SCIENTISTS
The roadmap to emotionally accessible MOOCs
[244]로봇이 현실 세계에 대해 학습하도록 만들기
Zaga thesis presentation
Can Working with a Robot Enhance Learning in Children with Intellectual Disab...
Teacher-Aware Active Robot Learning
HRI 2011 — Design and Assessment of the Haptic Creature’s Affect Display
Dental TutorBot: Exploitation of Dental Textbooks for Automated Learning
Human robot
Grandfathers, cogs and bots
Analysing the attitude of students towards robots when lectured on programmin...
Analyzing the Attitude of Students Towards Robots when Lectured on Programmin...
A Robot’s Experience of Another Robot: Simulation
HRI 2010 — Young Pioneers Workshop — The Haptic Creature Project: Social Huma...
New research articles 2020 december issue- international journal of compute...
Better Machine Learning with Less Data - Slater Victoroff (Indico Data)
Ad

Recently uploaded (20)

PPT
Heredity-grade-9 Heredity-grade-9. Heredity-grade-9.
PPTX
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPTX
Microbes in human welfare class 12 .pptx
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PDF
An interstellar mission to test astrophysical black holes
PDF
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
PPTX
perinatal infections 2-171220190027.pptx
PDF
The Land of Punt — A research by Dhani Irwanto
PPTX
C1 cut-Methane and it's Derivatives.pptx
PPTX
Pharmacology of Autonomic nervous system
PPTX
BODY FLUIDS AND CIRCULATION class 11 .pptx
PDF
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
PPTX
Science Quipper for lesson in grade 8 Matatag Curriculum
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
PPTX
CORDINATION COMPOUND AND ITS APPLICATIONS
PDF
Sciences of Europe No 170 (2025)
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
BIOMOLECULES PPT........................
Heredity-grade-9 Heredity-grade-9. Heredity-grade-9.
POULTRY PRODUCTION AND MANAGEMENTNNN.pptx
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
Microbes in human welfare class 12 .pptx
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
An interstellar mission to test astrophysical black holes
CHAPTER 3 Cell Structures and Their Functions Lecture Outline.pdf
perinatal infections 2-171220190027.pptx
The Land of Punt — A research by Dhani Irwanto
C1 cut-Methane and it's Derivatives.pptx
Pharmacology of Autonomic nervous system
BODY FLUIDS AND CIRCULATION class 11 .pptx
Is Earendel a Star Cluster?: Metal-poor Globular Cluster Progenitors at z ∼ 6
Science Quipper for lesson in grade 8 Matatag Curriculum
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
CORDINATION COMPOUND AND ITS APPLICATIONS
Sciences of Europe No 170 (2025)
. Radiology Case Scenariosssssssssssssss
BIOMOLECULES PPT........................
Ad

Sam Spaulding - Emotion AI Developer Day 2016

  • 1. Socially Assistive Robots, Educational Tutoring, and Affective Computing Sam Spaulding MIT Media Lab
  • 2. Social Robots Inventing our Future while Learning about Ourselves Robotic Engineering Artificial Intelligence Studies of Human Behavior Human-Robot Interaction Educational Companion Aging-in-Place HelperAssembly-mate
  • 3. Socially Assistive Robots (SAR) Socially Assistive Robots are designed to leverage their social and affective attributes to provide social support to people in order to sustain engagement, motivate, coach, monitor, educate, or facilitate communication & teamwork for improved outcomes.
  • 5. Embodiment matters! Robots produce higher learning gains Robots are more able to form long-term bonds Robots produce greater compliance Leyzberg et al. (2012) Bainbridge et al. (2012) Kidd & Breazeal (2008) Compared to screen-based representations...
  • 6. Intelligent Tutoring Systems Use domain-general inference and modeling algorithms Have been extensively tested in real-world environments over long periods of time
  • 7. Intelligent Tutoring SystemsRobotic Tutors The best of both... Social Presence Onboard Sensing Agent-based Interaction Adaptive Personalization Data-driven Student Models Physically embodied robot tutors that: sense and understand emotions build models of students based on affective data act intelligently as a result of the model info
  • 8. Affect-aware Student Models for Robot Tutors - Child and Robot interact through shared “Storymaker” game context - Robot framed as peer, periodically asks child to demonstrate reading ability (to be presented at AAMAS ’16)
  • 9. Knowledge State Estimation - A key challenge for adaptive, computational tutors is - “how to personalize experience?” - In order to provide personalized curriculum, the tutor must first determine students’ initial knowledge state Task Difficulty Student Ability Boredom Overwhelmed Flow: Optimal Challenge “Flow”
  • 10. Bayesian Knowledge Tracing (BKT) Bayesian Knowledge Tracing (BKT) P(Li t) Correctt P(Li t+1) P(Li t+2) ... ... Correct t+1 Correct t+2 Background Model Domain Evaluation Contributions Sparse channel for knowledge, but widely studied Each ‘traced’ skill modeled by an HMM
  • 11. Affective Bayesian Knowledge Tracing Affective data drawn from 5s before question asked to 5s after question answered
  • 12. Affect-aware Student Models for Robot Tutors - 25 children came and played with Dragonbot - 13 children did same interaction with Tablet only - Experiment conducted in Summer 2014, affective analysis completed 6mo. later (to be presented at AAMAS ’16)
  • 13. Are Children More Emotionally Expressive When Interacting with A Robot? ... ... ... ... } { Avg Smile: 18 Avg BrowFurrow: 7 Avg BrowRaise: 62 Avg LipDepress: 4 AvgValence: -24 Avg Engage: 67 } {Median Filter } {Mean Metric Value Session Footage Raw Affdex Measurements Median-smoothed Affdex Data Subject Bag Average MetricValue over Interaction
  • 14. Are Children More Emotionally Expressive When Interacting with A Robot? * * * * p < .05 n=25 “Robot” condition n=13 “Tablet condition
  • 15. Training and Evaluating Skill Models BKT and Aff-BKT models trained for 4 Skills via Expectation Maximization Model classes evaluated via log-likelihood comparison, with Leave-one-out cross-validation
  • 16. Does Including Affective Data in Training Yield Better Models? ... }Affective + Right/Wrong Training Data Subject Bag Expectation Maximization { P(Li t) CorrecttSmilet P(Li t+1) ... Engagedt Correctt+1Smilet+1 Engagedt+1 ... P(Li t) CorrecttSmilet P(Li t+1) ... Engagedt Correctt+1Smilet+1 Engagedt+1 ... } Training Data Trained Model Trained Model Subset {Model Subset P(Li t) CorrecttSmilet P(Li t+1) ... Engagedt Correctt+1Smilet+1 Engagedt+1 ... P(Li t) Correctt P(Li t+1) ... Correctt+1 ... Held-out Right/Wrong Test Data, D' Likelihood of Model, Given Test Data D’ } D’ P(D’| θaff) θaff = maxθ P(Daff|θ) θaff, a subset of θaff, containing only BKT model parameters θaff ^ ^ ^ Daff
  • 17. Does Including Affective Data in Training Yield Better Models? [ [ [ [ Exact-Correct BKT Aff-BKT BKT Aff-BKT BKT Aff-BKT BKT Aff-BKT First-Letter Length Last-Letter
  • 18. Does Including Affective Data in Training Yield Better Models? p < 1.0 x 10-4 * * ** * * ** **p < 1.0 x 10-5 p < 1.0 x 10-6 * ***
  • 19. Are children more emotionally expressive when interacting with robots? Can we leverage emotional expression data to create better student models? Two main questions:
  • 20. Are children more emotionally expressive when interacting with robots? Can we leverage emotional expression data to create better student models? Two main questions:
  • 21. Intelligent Tutoring SystemsRobotic Tutors The best of both... Social Presence Onboard Sensing Agent-based Interaction Adaptive Personalization Data-driven Student Models Physically embodied robot tutors that: sense and understand emotions build models of students based on affective data act intelligently as a result of the model info
  • 23. Tega: a “real-world ready” social robot! Student models allow us to personalize curricular content. How do we personalize affective support? Affective Personalization
  • 24. Affective Personalization of a Social Robot Tutor for SSL (presented at AAAI ’16) •What’s it all about? •Children learning Spanish as a second language with a robot companion •An Integrated System •Tega Robot •Custom Educational Game • Affdex affective sensor •All synchronized and coordinated through a ROS- based cognitive architecture •The Study •Long-term, in-the-wild, fully autonomous interaction •Personalization of affective response
  • 25. Integrated System: Software Game: - Unity-based sprite game - 8 sessions of content + review - Fully autonomous play - Virtual “instructor” character, robot as peer Affdex phone: - Real-time detection of facial expressions - Valence / Engagement used as reward to RL algorithm
  • 26. Educational Context Robot again framed as peer, with ‘bilingual’ Toucan as teacher As the student plays through the game, the robot provides affective support through verbal + nonverbal actions
  • 27. Reinforcement Learning on Affective Data SARSA Algorithm Reward = .4(Engagement) +.6( (Valence+100) ) 2 State Space = 3 x 2 x 2 x 2 = 24 states total Neg./Neut./Pos. Valence Hi/Lo Engagement On/Off Task Right/Wrong Last Question Action Space = 3 x 2 + No-action = 7 action classes total ɛ-greedy algorithm, with ɛ decreasing across sessions
  • 29. Timeline • 8 Weeks of In-Class deployment • 1 Pre-test Session • 6 Study Sessions (part review, part new content) • 1 Post-test Session
  • 31. Affective Personalization * Appropriate affective responses are critical to avoiding “novelty effect”
  • 32. Did they actually learn? *
  • 33. Contributions • Novelty of current study: • Long-term interaction (8 sessions) • Fully autonomous social robot (Tega) • In-the-wild experiment (inside a classroom) • Affective personalization (Affdex) • Age of participants (3-6 yrs) Social robot personalized its affective response, thus increasing children’s valence during long-term interaction.
  • 34. Looking ahead… Old challenges are becoming tractable: sensing, deployment, robust systems. New challenges are conceptual and computational - i.e. how to fully integrate emotions into an agent’s cognition
  • 35. Collaborators and Supporters This research was supported by the National Science Foundation (NSF) under Grant CCF-1138986 and Graduate Research Fellowship Grant No 1122374. Luke Plummer JinJoo Lee Goren Gordon Jacqueline KoryProf. Cynthia Breazeal