SlideShare a Scribd company logo
Scaling Up Renewable Energy Deployment
in Island Regions: Insights and Lessons
Webinar in Partnership with Leonardo Energy and
The Clean Energy Regulators Initiative (CERI)
12th of February 2015
Brief Bio
Toby  Couture  is  Founder  and  Director  of  
E3  Analytics,  an  international  renewable  
energy  consultancy  based  in  Berlin.  	
	
He  has  advised  over  thirty  governments  
around  the  world  on  the  economic,  
financial,  and  policy  aspects  of  renewable  
energy  development,  including  both  in  
on-­‐‑grid,  off-­‐‑grid,  and  island  regions.  Prior  
to  founding  E3  Analytics,  Toby  was  
Energy  &  Financial  Markets  Analyst  at  the  
U.S.  National  Renewable  Energy  
Laboratory  (NREL)  in  Colorado.  He  now  
lives  and  works  in  Berlin.  	
	
http://www.e3analytics.eu/
Overview
1.  The  Role  of  RE  Targets	
2.  Designing  Net  Metering  Policies  in  Island  Regions	
3.  Designing  Feed-­‐‑in  Tariff  Policies  in  Island  Regions	
4.  Utility-­‐‑led  Approaches  to  RE  Development	
	
5.  Designing  Bankable  PPAs  for  Island  Regions	
6.  Concluding  Remarks
 1.  The  Role  of  RE  Targets
The Role of RE Targets
•  Targets  have  become  a  defining  
feature  of  the  global  RE  landscape	
•  146  countries  in  the  world  with  RE  
targets  as  of  early  2015	
•  Targets  send  a  clear  signal  to  
investors,  and  help  mobilize  
stakeholders,  and  allocate  
resources  more  efficiently	
à  see  forthcoming  IRENA  report	
115
120
125
130
135
140
145
countries with policy
targets
countries with support
policies
2013 2014
+6
+11
Source: REN21 Global Status Report (GSR) 2014
Rationales for RE Targets
•  Increasing  energy  security  /  
Diversifying  the  fuel  mix	
•  Reducing  fossil  fuel  consumption  	
•  Improving  energy  access	
•  Mitigating  climate  change  and  other  
environmental  risks  (fuel  spills)	
•  Macro-­‐‑economic  benefits  (i.e.,  job  
creation)	
•  Increasing  private  sector  investment	
•  Etc.  
Island	
  Regions	
  and	
  RE	
  Targets	
  
•  A  growing  number  of  island  regions  in  
particular  are  adopting  ambitious  RE  Targets:	
§  Tokelau  (100%)	
§  Tuvalu  (100%)	
§  Cape  Verde  (50%  -­‐‑  100%)  	
§  Samsø  (100%)	
§  El  Hierro  (100%)	
§  Bonaire  (100%)	
§  Hawaii  (40%)	
§  Etc.  	
100%  Report:  h^p://bit.ly/1C9Bs9K    	
Tokelau:  h^p://ecogeneration.com.au/news/powering_the_pacific/078578/	
Bonaire:  h^p://www.edinenergy.org/bonaire.html  
RE	
  Targets	
  
	
	
	
à  In  order  to  achieve  targets,  governments  
need  clear  policies,  and  strategies
Overview  of  Three  Primary  Policy  Options	
1.  Net  Metering/Net  Billing	
2.  Feed-­‐‑in  Tariffs	
3.  Utility-­‐‑led  RE  Development  
2.  Designing  Net  Metering  Policies  in  Island  Regions
Q:  What  is  Net  Metering?	
Policy  allowing  customer-­‐‑sited  RE  projects  to  produce  
electricity  onsite  to  offset  their  onsite  consumption.  	
	
NM  enables  the  customer  to  “run  the  meter  backwards”  by  
exporting  power  back  to  the  grid.  	
	
Typically  does  not  involve  a  cash  payment:  credit  only.	
	
Excess  generation  can  typically  be  rolled  over  up  to  12  months
Q:  What  is  Net  Metering?	
Source: FPL
What is the difference between Net Metering and Net Billing?
Net   Metering:   the   same   meter   rolls   backward,   and   the   customer   gets   a  
credit  at  the  same  price  as  the  electricity  purchased.	
à  NM  traditionally  involved  only  one  bi-­‐‑directional  meter	
	
Net  Billing:  the  rate  at  which  customers  are  credited  is  different  from  the  
rate  they  pay:  can  be  higher  or  lower,  or  linked  to  time-­‐‑of-­‐‑day  	
à  Net   Billing   traditionally   involved   two   different   meters   (one   to  
meter  consumption,  the  other  to  meter  output)	
Neither   of   these   distinctions   is   universally   applicable:   too   many  
exceptions;  terms  are  used  in  different  ways.
Q: How to determine the appropriate rate to credit excess
generation under a Net Metering policy?
Three  basic  options:	
	
1.  Compensation  below  the  retail  rate  (E.g.  Palau  @  50%  of  avoided  
costs)	
2.  Compensation  at  the  retail  rate  (E.g.  Many  U.S.  States)	
	
3.  Compensation   above   the   retail   rate   (E.g.   Previous   policy   in  
Queensland,  Australia  @  AUS  $0.44/kWh)
Q: How to determine the appropriate rate to credit excess
generation under a Net Metering policy?
Cost  of  distributed  technologies  such  as  solar  PV  are  below  retail  rates  
+  often  below  utilities’  avoided  costs  of  generation	
	
Many  utilities  and  regulatory  agencies  are  concerned  that  traditional  
net  metering  may  lead  to  “over-­‐‑compensation”  and/or  cost-­‐‑shifting  
b/w  customers
Q: Why should island utilities encourage customer-owned and
sited generation?
When  customer-­‐‑sited  generation  is:  	
	
1.  cheaper  than  utility  avoided  costs  	
and/or  	
2.  when  electricity  tariffs  are  below  cost  recovery,  	
	
encouraging   customer-­‐‑owned   and   sited   generation   produces   net  
benefits  (and  savings)  both  to  society  and  to  the  utility.
Q: “But, if I design a Net Metering
policy in an island with high retail
rates, won’t my customers “jump on
the bandwagon” and leave the
utility with decreasing revenues
with which to service fixed costs,
and potentially threaten the utility’s
solvency?”
All  Net  Metering  policies  include  various  forms  of  caps	
Cap  or  Limit  Type	
 Description  and  Example	
1.  Caps  on  project  size  (kW)	
Most  NM  policies  include  limits  on  project  size.  	
à Philippines:  100kW  cap  on  each  system	
à Vanuatu’s  recent  proposal  would  cap  systems  at  19.8kW.	
2.   Caps   on   total   program   size  
(e.g.  5%  of  peak  demand,  or  #  
of  MW)	
Most  NM  policies  include  caps  on  total  program  size.	
à  Hawaii:  cap  at  2.5%  of  total  load  (under  review)	
à  The  Cook  Islands:  600kW  max  total  installed  capacity	
3.  Caps  on  max  allowable  
level  of  distribution  level  
penetration  on  a  per-­‐‑circuit  
basis	
Caps  on  the  max  PV  penetration  level  on  distribution  circuits  
to  restrict  new  applications  in  certain  grid  regions.  	
à  Hawaii:  15%  limit;  5%  is  reserved  for  systems  <10kW	
4.   Caps   based   on   a   %   of  
annual  onsite  load	
Arizona:  system  size  limit  of  125%  of  the  customer’s  average  
load  in  the  previous  3  years*.  
Net Metering in Island Regions
Net   Metering   involves   “compensation   rate”   considerations,   but   also  
other  design  issues:	
-­‐‑  Access  to  the  grid  (What  is  the  permi^ing  procedure?)	
-­‐‑  System  size  (How  large  can  customer-­‐‑sited  systems  be?)	
-­‐‑  Customer  classes  (Residential,  Commercial,  Industrial?)	
-­‐‑  Roll-­‐‑over  (How  long  can  excess  generation  be  rolled  over?)  	
-­‐‑  Fixed  charges  (What  kinds  of  fixed  charges  are  there?  Can  the  
NM   credits   wipe   out   fixed   charges   as   well   as   consumption  
charges?)	
-­‐‑  Etc.  
Net Metering in Island Regions
Each  Net  Metering  policy  is  a  unique  package  of  policy,  regulatory,  
and  administrative  provisions.  	
	
The  challenge  for  Net  Metering  policies  in  island  regions  is  to  design  
them   in   a   way   that   encourages   customer-­‐‑sited   generation   in   a  
controlled   way,   while   delivering   savings   for   both   society,   and   the  
utility.  	
	
Net  Metering  can  be  a  “win-­‐‑win-­‐‑win”  scenario
3.  Designing  FIT  Policies  in  Island  Regions
What are Feed-in Tariffs?
Three Key Elements:!
!
!1. Clear price for electricity sold to the grid!
!2. Clear, long-term contract!
!3. Guaranteed access to the grid!
!
à  Payment for 100% of generation!
à  100% export-oriented: no self-consumption !
à  Traditionally two separate meters; participants receive
both a check and a bill!
What are Feed-in Tariffs?
à  Price locked in irrespective
of utility avoided costs, fuel
costs, or retail prices!
à  Provides a hedge against fuel
price volatility!
à  Long-term contracts help
improve bankability, and
broaden participation!
! Source:  Couture  &  Gagnon  2010
What are Feed-in Tariffs?
-  FITs used in approximately 100 jurisdictions globally !
-  Responsible for ~ 45% of global wind power investment!
-  ~ 75% of global solar PV investment!
!
!
!
Q: Why have FITs been successful?
FITs provide homeowners & investors what they need: !
!
à Attractive policy and regulatory conditions (stable LT
contracts) to invest in renewable energy projects!
à a clear cost-based price for electricity sold to the
network over a pre-determined period!
à differentiated pricing by technology, and by project
size, !
!
Q: “But, if I design a FIT policy in an
island state, won’t my customers all race
to become IPPs, gradually take over the
generation business, profit from long-
term contracts underwritten by the utility,
and leave the utility with decreasing
revenues with which to pay for fixed
costs and ensure system reliability?”
Like Net Metering, FIT policies are often
designed with multiple caps and controls in
order to limit market growth: e.g. project size,
total program size, etc.
The goal of FITs is
ultimately to diversify the
generation mix away from
non-renewable resources.
Q: Are FITs appropriate for island regions?
-  Policy challenges can be limited through good policy
design !
-  Monitoring of project applications, and clear permitting
procedures, can also eliminate the risks of runaway
development!
!
à As with all public policy, the keys are in the design,
oversight, and overall structure of the policy. !
Q: How to set FIT rates for island regions with high avoided
costs of generation?
Three  basic  options:	
1.  Based  on  the  cost  of  generation:  i.e.  like  traditional  FITs	
2.  Based  on  the  full  utility  avoided  costs	
3.  Somewhere  in  between
Q: How to set FIT rates for island regions with high avoided
costs of generation?
Examples:	
•  Virgin  Islands:  Recently  adopted  FIT  policy  directs  the  Public  Service  
Commission  to  develop  FIT  rates.  The  PSC’s  sets  rates  at  a  slight  discount  
to  the  utility’s  avoided  cost  of  generation.  The  current  anticipated  rate  is  
USD  $0.26/kWh.  	
•  Hawaii:  FIT  policy  currently  ranges  from  USD  $0.189  to  $0.218/kWh,  
depending  on  system  size  and  is  below  generation  costs  but  a^ractive  for  
private  investment.  	
•  Grenada:  “Standard  Offer”  Program:  Customers  can  connect  and  receive  
one  of  two  options:  l  1)  fixed  FIT  of  USD  $0.17/kWh  over  10-­‐‑yrs;  or  2)  per  
kWh  payment  based  on  the  utility’s  avoided  fuel  cost,  adjusted  annually
Q: Should the FIT rate be linked to utility avoided costs /
avoided fuel prices?
Pros:  	
	
•  Avoids  the  risk  of  locking  in  
high  priced  contracts  if  fuel  
prices  decline  (overpayment)	
	
E.g.  California  (mid-­‐‑1980s),  
fuel  prices  collapsed  à  
utilities  continue  paying  
Standard  Offer  rates  far  
higher  than  their  avoided  
cost  of  supply	
Cons:  	
	
•  Risk  of  increasing  fuel  
prices  à  Overpayment  
and  “wealth  transfer”  	
	
•  Risk  of  decreasing  fuel  
prices  à  underpayment  	
	
Uncertainty  to  utilities  and  
customer/generators
Q: How to design FITs for island regions?
1.  Include appropriate oversight of the project application and
permitting process!
2.  Introduce clear caps on total capacity installed!
3.  Revise the tariffs regularly (e.g. annually) !
4.  Implement a clear accounting and monitoring system!
Q: How to design FITs for island regions?
5. Publish annual reports on the progress of the policy (e.g.
number of projects, total capacity installed, and total generation
(MWh) supplied to the network, etc.) !
!
6. Include incentives for customer-sited storage systems to
help smooth fluctuations in output and ease grid integration!
!
7. Enhance in-house forecasting capabilities!
!
8. Explore the use of “demand sinks”: e.g. desalination plants,
heating/cooling loads, ice production, etc. to stabilize the grid
and better align demand with supply!
4.  Utility-­‐‑led  Models  of  Developing  RE  on  Islands
Q: Rather than using a FIT or Net
Metering, why don’t utilities in island
regions build (or contract to own)
renewable energy projects themselves?
Utility-led Models of RE Development
Three basic options:!
!
1.  Utility-owned and Financed (privatized): !
A private utility finances the construction of the RE project and owns the
underlying asset. Typically earns a regulated rate of return on the investment.
Operations and maintenance (O&M) can be performed by the utility, or via
subcontract with a maintenance provider.
Example: HECO in Hawaii!
Utility-led Models of RE Development
!
2. Utility-owned and Financed (public): !
A public utility finances the construction of the RE project and owns the
underlying asset. Operations and maintenance can be performed by the
utility, or via subcontract with a maintenance provider, or the original EPC
team.
Example: Electra in Cape Verde:
Utility-led Models of RE Development
3. Utility-led, Privately-owned!
The utility leads the procurement process, and buys power from independent
power producers (IPPs).
Example: Cayman Islands: utility buys IPP power via competitive tenders,
as well as via the island’s Feed-in Tariff policy. Projects are privately owned.
Ramea Island, Canada: utility buys IPP power from a small wind developer
via a bilateral contract. Project is privately owned; operated jointly with the
public utility.
How should utilities allocate PPAs?
Three basic options
As a result of a competitive solicitation, auction, or
tender
As a result of launching a “standard offer”, or
feed-in tariff
Through bilateral negotiations with a particular
proponent
5.  Designing  Bankable  PPAs  on  Islands
A  PPA  is  a  long-­‐‑term  off-­‐‑take  agreement,  or  purchase  contract,  for  the  
sale  of  electricity  from  one  party  (the  developer)  to  another  (usually  a  
utility).  	
-­‐‑  generally  structured  over  a  10  to  20  year  period.	
	
à  The  goal  of  good  PPAs  is  to  provide  a  revenue  stream  to  the  
developer  that  is  sufficient  to  recover  their  costs  for  a  given  
project,  plus  a  reasonable,  risk-­‐‑adjusted  return  on  investment.  	
à  This  is  what  constitutes  a  “bankable”  PPA.	
	
What is a Power Purchase Agreement (PPA)?
1.  A  Fixed,  cost-­‐‑reflective  tariff	
2.  Appropriate  currency  provisions	
3.  Inflation  risk  protection  (e.g.  inflation  indexation  %/yr)	
4.  Protection  against  dispatch  risk:  e.g.  “take  and  pay”,  guaranteed  
purchase	
5.  Low  regulatory,  political,  and  legal  risks	
6.  Protection  against  ‘force  majeure’  risks	
7.  Dispute  resolution  mechanism	
8.  Termination  clauses:  what  happens  when?  	
9.  Low  interconnection  risk	
Key Requirements for a Bankable PPA
Guidelines for Negotiating PPAs in Island Regions
1.  Seek  out  other  PPA  contracts  that  have  been  signed,  either  in  the  
region,  or  globally  to  compare	
2.  Identify  and  organize  the  contract  clauses  on  a  topical  basis  (e.g.  
grid  connection,  payment  terms,  liquidated  damages,  etc.)	
3.  Use  the  sample  PPA  contracts,  and  identify  any  clauses  that  are  
missing,  or  that  need  to  be  adapted  to  the  local  island  context.  	
4.  Hire  an  expert  with  experience  in  PPA  design  in  island  regions  to  
either  participate  in  the  contract  negotiations,  to  draft  the  original  
contract  draft,  or  to  review  the  final  draft  before  it  is  signed
Concluding  Remarks
Concluding Remarks
Despite  the  fact  that  RETs  are  increasingly  
cheaper  than  conventional  supply  options  on  
islands,  it  is  still  important  to  have  strong  
policy  and  regulatory  frameworks  to  create  
the  right  conditions  for  new  investments  to  
occur.  	
	
	
à  Based  on  current  economics,  transitioning  
to  renewable  energy  island  regions  should  
produce  a  net  cost  saving  for  utilities,  and  
for  society	
Rarotonga  (Cook  Islands)
Thank you
Questions?

More Related Content

PPTX
PDF
Role of SMEs in Sustainable Energy Transition
PDF
Solar Power Development Vietnam
PDF
The key role of consumers in the new energy model
PDF
The CARICOM Energy Transition
PPTX
The Role of Renewable Natural Gas in State Climate Policy
PPTX
Pauyo - Electricity
PDF
Island states - Renewable Energy Policy Pioneers
Role of SMEs in Sustainable Energy Transition
Solar Power Development Vietnam
The key role of consumers in the new energy model
The CARICOM Energy Transition
The Role of Renewable Natural Gas in State Climate Policy
Pauyo - Electricity
Island states - Renewable Energy Policy Pioneers

What's hot (19)

PDF
Renewable Energy Act of 2008: Hits and Misses for the Philippine Geothermal I...
PDF
Customer Perspective on Green Tariffs
PPT
Allies Federal Energy Policy 7 09
PDF
Energy sector contribution to climate action
PDF
Alex wood Presentation - Continental Divide? Canadian and US Views on Energy ...
PPT
SEAI - National Energy Research and Policy Conference 2021, Session 1
PDF
Five myths of Renewable Energy 2013 Bangkok Prabaljit Sarkar
PPTX
The Clean Energy Package and the Role of Renewables
PDF
Ghana | May-16 | En Dev - Productive Use of Energy (PUE) in Ghana
PPTX
New Deal for Smart, Participative Energy
PDF
Renewable Energy Act of 2008 - Seven Years After
PDF
Clean + Modern Grid by Garrett Fitzgerald
PDF
Mark Jaccard SP SP Speaker Series: Climate Policy in Canada - Issues in Regio...
PPT
Day-3, Mr. Arvind Gujral, BSES
PPTX
IEA-RETD REMOTE PROSUMERS 20150624
PPTX
Kashi - Off Grid
POT
Greenpeace's report on india telecom sector ppt
PDF
Economic Instruments for Ecosystem Services in Canada
Renewable Energy Act of 2008: Hits and Misses for the Philippine Geothermal I...
Customer Perspective on Green Tariffs
Allies Federal Energy Policy 7 09
Energy sector contribution to climate action
Alex wood Presentation - Continental Divide? Canadian and US Views on Energy ...
SEAI - National Energy Research and Policy Conference 2021, Session 1
Five myths of Renewable Energy 2013 Bangkok Prabaljit Sarkar
The Clean Energy Package and the Role of Renewables
Ghana | May-16 | En Dev - Productive Use of Energy (PUE) in Ghana
New Deal for Smart, Participative Energy
Renewable Energy Act of 2008 - Seven Years After
Clean + Modern Grid by Garrett Fitzgerald
Mark Jaccard SP SP Speaker Series: Climate Policy in Canada - Issues in Regio...
Day-3, Mr. Arvind Gujral, BSES
IEA-RETD REMOTE PROSUMERS 20150624
Kashi - Off Grid
Greenpeace's report on india telecom sector ppt
Economic Instruments for Ecosystem Services in Canada
Ad

Viewers also liked (20)

PPT
Solar PV fire safety
PPT
юлія
PPSX
Getting Solar PV off the ground - some practical feedback from the Worthy Far...
PPT
Residential Photovoltaics in Hawaii
PPT
Agriculture, ecology and the multiple bottom line - Martin Wolfe (Organic Res...
PDF
Clean Energy Regulators Initiative - Role of Efficiency Analysis
PDF
Course on Regulation and Sustainable Energy in Developing Countries - Session 6
PDF
Course on Regulation and Sustainable Energy in Developing Countries - Session 8
PDF
Regulatory incentives for reduction of network losses
PDF
Energy Efficiency Based on Sectors
PDF
Course on Regulation and Sustainable Energy in Developing Countries - Session 4
PDF
GHG Science based targets
PDF
Auctioning RE projects: Lessons learned from auction design for renewable ele...
PDF
Course on Regulation and Sustainable Energy in Developing Countries - Session 10
PDF
Status and Trends of Carbon Pricing - 2014
PDF
IRENA - Setting Renewable Energy Targets
PDF
Webinar - Incentives to attract clean energy investments
PDF
Mapping Carbon Pricing Initiatives
PPT
Electricity Markets Regulation - Lesson 6 - Efficiency Assessments
PDF
Course on Regulation and Sustainable Energy in Developing Countries - Session 9
Solar PV fire safety
юлія
Getting Solar PV off the ground - some practical feedback from the Worthy Far...
Residential Photovoltaics in Hawaii
Agriculture, ecology and the multiple bottom line - Martin Wolfe (Organic Res...
Clean Energy Regulators Initiative - Role of Efficiency Analysis
Course on Regulation and Sustainable Energy in Developing Countries - Session 6
Course on Regulation and Sustainable Energy in Developing Countries - Session 8
Regulatory incentives for reduction of network losses
Energy Efficiency Based on Sectors
Course on Regulation and Sustainable Energy in Developing Countries - Session 4
GHG Science based targets
Auctioning RE projects: Lessons learned from auction design for renewable ele...
Course on Regulation and Sustainable Energy in Developing Countries - Session 10
Status and Trends of Carbon Pricing - 2014
IRENA - Setting Renewable Energy Targets
Webinar - Incentives to attract clean energy investments
Mapping Carbon Pricing Initiatives
Electricity Markets Regulation - Lesson 6 - Efficiency Assessments
Course on Regulation and Sustainable Energy in Developing Countries - Session 9
Ad

Similar to Scaling up renewable energy deployment in island regions: insights and lessons (20)

PDF
Island States: Renewable Energy Policy Pioneers
DOCX
Renewable Energy Policy Overview
PDF
The case for net metering in Country 'X'
PDF
Formulation of Net Metering Policy for Odisha to boost rooftop Solar Projects
PDF
Issues faced by developer for net metering
PPTX
Implementing Net Metering in the Developing World
PDF
Battery storage: The next disruptive technology in the power sector
PDF
William Hancock Honors Thesis
PPT
Presentation by A. K. Bohra on Issues & Challenges in Net Metering
PDF
Metering and Regulating the Electricity Grid
DOCX
Draft Article - V1
PDF
Smart electrical grids challenges and opportunities
PPTX
Patrick Costello Green Guide Presentation Final 032112
PDF
Policy & Regulatory Enablers for off-grid solar PV growth in India-Madhavan N...
PDF
Kennerly1Dec2014
PDF
How a successful Feed-in Tariff system will stimulate the growth of the PV in...
PDF
Course on Regulation and Sustainable Energy in Developing Countries - Session 3
PDF
Course on Regulation and Sustainable Energy in Developing Countries - Session...
PDF
Rate Design for Distributed Generation - NET METERING ALTERNATIVES
PDF
Emerging Solar Strategies: How Innovative Companies are Using Solar to Reduce...
Island States: Renewable Energy Policy Pioneers
Renewable Energy Policy Overview
The case for net metering in Country 'X'
Formulation of Net Metering Policy for Odisha to boost rooftop Solar Projects
Issues faced by developer for net metering
Implementing Net Metering in the Developing World
Battery storage: The next disruptive technology in the power sector
William Hancock Honors Thesis
Presentation by A. K. Bohra on Issues & Challenges in Net Metering
Metering and Regulating the Electricity Grid
Draft Article - V1
Smart electrical grids challenges and opportunities
Patrick Costello Green Guide Presentation Final 032112
Policy & Regulatory Enablers for off-grid solar PV growth in India-Madhavan N...
Kennerly1Dec2014
How a successful Feed-in Tariff system will stimulate the growth of the PV in...
Course on Regulation and Sustainable Energy in Developing Countries - Session 3
Course on Regulation and Sustainable Energy in Developing Countries - Session...
Rate Design for Distributed Generation - NET METERING ALTERNATIVES
Emerging Solar Strategies: How Innovative Companies are Using Solar to Reduce...

More from Leonardo ENERGY (20)

PDF
A new generation of instruments and tools to monitor buildings performance
PDF
Addressing the Energy Efficiency First Principle in a National Energy and Cli...
PDF
Auctions for energy efficiency and the experience of renewables
PDF
Energy efficiency first – retrofitting the building stock final
PDF
How auction design affects the financing of renewable energy projects
PDF
Energy Efficiency Funds in Europe (updated)
PDF
Energy Efficiency Funds in Europe
PDF
Five actions fit for 55: streamlining energy savings calculations
PDF
Recent energy efficiency trends in the EU
PDF
Energy and mobility poverty: Will the Social Climate Fund be enough to delive...
PDF
Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?
PPTX
Energy efficiency, structural change and energy savings in the manufacturing ...
PPTX
Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)
PDF
The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...
PDF
Modelling and optimisation of electric motors with hairpin windings
PDF
Casting zero porosity rotors
PDF
Direct coil cooling through hollow wire
PDF
Motor renovation - Potential savings and views from various EU Member States
PDF
The need for an updated European Motor Study - key findings from the 2021 US...
PDF
Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...
A new generation of instruments and tools to monitor buildings performance
Addressing the Energy Efficiency First Principle in a National Energy and Cli...
Auctions for energy efficiency and the experience of renewables
Energy efficiency first – retrofitting the building stock final
How auction design affects the financing of renewable energy projects
Energy Efficiency Funds in Europe (updated)
Energy Efficiency Funds in Europe
Five actions fit for 55: streamlining energy savings calculations
Recent energy efficiency trends in the EU
Energy and mobility poverty: Will the Social Climate Fund be enough to delive...
Does the EU Emission Trading Scheme ETS Promote Energy Efficiency?
Energy efficiency, structural change and energy savings in the manufacturing ...
Energy Sufficiency Indicators and Policies (Lea Gynther, Motiva)
The Super-efficient Equipment and Appliance Deployment (SEAD) Initiative Prod...
Modelling and optimisation of electric motors with hairpin windings
Casting zero porosity rotors
Direct coil cooling through hollow wire
Motor renovation - Potential savings and views from various EU Member States
The need for an updated European Motor Study - key findings from the 2021 US...
Efficient motor systems for a Net Zero world, by Conrad U. Brunner - Impact E...

Recently uploaded (20)

PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
A comparative study of natural language inference in Swahili using monolingua...
PPT
Teaching material agriculture food technology
PDF
August Patch Tuesday
PDF
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
PPTX
1. Introduction to Computer Programming.pptx
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PPTX
OMC Textile Division Presentation 2021.pptx
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Getting Started with Data Integration: FME Form 101
PDF
Encapsulation_ Review paper, used for researhc scholars
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Approach and Philosophy of On baking technology
PPTX
A Presentation on Artificial Intelligence
PDF
Encapsulation theory and applications.pdf
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Group 1 Presentation -Planning and Decision Making .pptx
A comparative study of natural language inference in Swahili using monolingua...
Teaching material agriculture food technology
August Patch Tuesday
Video forgery: An extensive analysis of inter-and intra-frame manipulation al...
1. Introduction to Computer Programming.pptx
SOPHOS-XG Firewall Administrator PPT.pptx
OMC Textile Division Presentation 2021.pptx
gpt5_lecture_notes_comprehensive_20250812015547.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Getting Started with Data Integration: FME Form 101
Encapsulation_ Review paper, used for researhc scholars
Digital-Transformation-Roadmap-for-Companies.pptx
Approach and Philosophy of On baking technology
A Presentation on Artificial Intelligence
Encapsulation theory and applications.pdf
Unlocking AI with Model Context Protocol (MCP)
Spectral efficient network and resource selection model in 5G networks
Reach Out and Touch Someone: Haptics and Empathic Computing
Agricultural_Statistics_at_a_Glance_2022_0.pdf

Scaling up renewable energy deployment in island regions: insights and lessons

  • 1. Scaling Up Renewable Energy Deployment in Island Regions: Insights and Lessons Webinar in Partnership with Leonardo Energy and The Clean Energy Regulators Initiative (CERI) 12th of February 2015
  • 2. Brief Bio Toby  Couture  is  Founder  and  Director  of   E3  Analytics,  an  international  renewable   energy  consultancy  based  in  Berlin.   He  has  advised  over  thirty  governments   around  the  world  on  the  economic,   financial,  and  policy  aspects  of  renewable   energy  development,  including  both  in   on-­‐‑grid,  off-­‐‑grid,  and  island  regions.  Prior   to  founding  E3  Analytics,  Toby  was   Energy  &  Financial  Markets  Analyst  at  the   U.S.  National  Renewable  Energy   Laboratory  (NREL)  in  Colorado.  He  now   lives  and  works  in  Berlin.   http://www.e3analytics.eu/
  • 3. Overview 1.  The  Role  of  RE  Targets 2.  Designing  Net  Metering  Policies  in  Island  Regions 3.  Designing  Feed-­‐‑in  Tariff  Policies  in  Island  Regions 4.  Utility-­‐‑led  Approaches  to  RE  Development 5.  Designing  Bankable  PPAs  for  Island  Regions 6.  Concluding  Remarks
  • 4.  1.  The  Role  of  RE  Targets
  • 5. The Role of RE Targets •  Targets  have  become  a  defining   feature  of  the  global  RE  landscape •  146  countries  in  the  world  with  RE   targets  as  of  early  2015 •  Targets  send  a  clear  signal  to   investors,  and  help  mobilize   stakeholders,  and  allocate   resources  more  efficiently à  see  forthcoming  IRENA  report 115 120 125 130 135 140 145 countries with policy targets countries with support policies 2013 2014 +6 +11 Source: REN21 Global Status Report (GSR) 2014
  • 6. Rationales for RE Targets •  Increasing  energy  security  /   Diversifying  the  fuel  mix •  Reducing  fossil  fuel  consumption   •  Improving  energy  access •  Mitigating  climate  change  and  other   environmental  risks  (fuel  spills) •  Macro-­‐‑economic  benefits  (i.e.,  job   creation) •  Increasing  private  sector  investment •  Etc.  
  • 7. Island  Regions  and  RE  Targets   •  A  growing  number  of  island  regions  in   particular  are  adopting  ambitious  RE  Targets: §  Tokelau  (100%) §  Tuvalu  (100%) §  Cape  Verde  (50%  -­‐‑  100%)   §  Samsø  (100%) §  El  Hierro  (100%) §  Bonaire  (100%) §  Hawaii  (40%) §  Etc.   100%  Report:  h^p://bit.ly/1C9Bs9K     Tokelau:  h^p://ecogeneration.com.au/news/powering_the_pacific/078578/ Bonaire:  h^p://www.edinenergy.org/bonaire.html  
  • 8. RE  Targets   à  In  order  to  achieve  targets,  governments   need  clear  policies,  and  strategies
  • 9. Overview  of  Three  Primary  Policy  Options 1.  Net  Metering/Net  Billing 2.  Feed-­‐‑in  Tariffs 3.  Utility-­‐‑led  RE  Development  
  • 10. 2.  Designing  Net  Metering  Policies  in  Island  Regions
  • 11. Q:  What  is  Net  Metering? Policy  allowing  customer-­‐‑sited  RE  projects  to  produce   electricity  onsite  to  offset  their  onsite  consumption.   NM  enables  the  customer  to  “run  the  meter  backwards”  by   exporting  power  back  to  the  grid.   Typically  does  not  involve  a  cash  payment:  credit  only. Excess  generation  can  typically  be  rolled  over  up  to  12  months
  • 12. Q:  What  is  Net  Metering? Source: FPL
  • 13. What is the difference between Net Metering and Net Billing? Net   Metering:   the   same   meter   rolls   backward,   and   the   customer   gets   a   credit  at  the  same  price  as  the  electricity  purchased. à  NM  traditionally  involved  only  one  bi-­‐‑directional  meter Net  Billing:  the  rate  at  which  customers  are  credited  is  different  from  the   rate  they  pay:  can  be  higher  or  lower,  or  linked  to  time-­‐‑of-­‐‑day   à  Net   Billing   traditionally   involved   two   different   meters   (one   to   meter  consumption,  the  other  to  meter  output) Neither   of   these   distinctions   is   universally   applicable:   too   many   exceptions;  terms  are  used  in  different  ways.
  • 14. Q: How to determine the appropriate rate to credit excess generation under a Net Metering policy? Three  basic  options: 1.  Compensation  below  the  retail  rate  (E.g.  Palau  @  50%  of  avoided   costs) 2.  Compensation  at  the  retail  rate  (E.g.  Many  U.S.  States) 3.  Compensation   above   the   retail   rate   (E.g.   Previous   policy   in   Queensland,  Australia  @  AUS  $0.44/kWh)
  • 15. Q: How to determine the appropriate rate to credit excess generation under a Net Metering policy? Cost  of  distributed  technologies  such  as  solar  PV  are  below  retail  rates   +  often  below  utilities’  avoided  costs  of  generation Many  utilities  and  regulatory  agencies  are  concerned  that  traditional   net  metering  may  lead  to  “over-­‐‑compensation”  and/or  cost-­‐‑shifting   b/w  customers
  • 16. Q: Why should island utilities encourage customer-owned and sited generation? When  customer-­‐‑sited  generation  is:   1.  cheaper  than  utility  avoided  costs   and/or   2.  when  electricity  tariffs  are  below  cost  recovery,   encouraging   customer-­‐‑owned   and   sited   generation   produces   net   benefits  (and  savings)  both  to  society  and  to  the  utility.
  • 17. Q: “But, if I design a Net Metering policy in an island with high retail rates, won’t my customers “jump on the bandwagon” and leave the utility with decreasing revenues with which to service fixed costs, and potentially threaten the utility’s solvency?”
  • 18. All  Net  Metering  policies  include  various  forms  of  caps Cap  or  Limit  Type Description  and  Example 1.  Caps  on  project  size  (kW) Most  NM  policies  include  limits  on  project  size.   à Philippines:  100kW  cap  on  each  system à Vanuatu’s  recent  proposal  would  cap  systems  at  19.8kW. 2.   Caps   on   total   program   size   (e.g.  5%  of  peak  demand,  or  #   of  MW) Most  NM  policies  include  caps  on  total  program  size. à  Hawaii:  cap  at  2.5%  of  total  load  (under  review) à  The  Cook  Islands:  600kW  max  total  installed  capacity 3.  Caps  on  max  allowable   level  of  distribution  level   penetration  on  a  per-­‐‑circuit   basis Caps  on  the  max  PV  penetration  level  on  distribution  circuits   to  restrict  new  applications  in  certain  grid  regions.   à  Hawaii:  15%  limit;  5%  is  reserved  for  systems  <10kW 4.   Caps   based   on   a   %   of   annual  onsite  load Arizona:  system  size  limit  of  125%  of  the  customer’s  average   load  in  the  previous  3  years*.  
  • 19. Net Metering in Island Regions Net   Metering   involves   “compensation   rate”   considerations,   but   also   other  design  issues: -­‐‑  Access  to  the  grid  (What  is  the  permi^ing  procedure?) -­‐‑  System  size  (How  large  can  customer-­‐‑sited  systems  be?) -­‐‑  Customer  classes  (Residential,  Commercial,  Industrial?) -­‐‑  Roll-­‐‑over  (How  long  can  excess  generation  be  rolled  over?)   -­‐‑  Fixed  charges  (What  kinds  of  fixed  charges  are  there?  Can  the   NM   credits   wipe   out   fixed   charges   as   well   as   consumption   charges?) -­‐‑  Etc.  
  • 20. Net Metering in Island Regions Each  Net  Metering  policy  is  a  unique  package  of  policy,  regulatory,   and  administrative  provisions.   The  challenge  for  Net  Metering  policies  in  island  regions  is  to  design   them   in   a   way   that   encourages   customer-­‐‑sited   generation   in   a   controlled   way,   while   delivering   savings   for   both   society,   and   the   utility.   Net  Metering  can  be  a  “win-­‐‑win-­‐‑win”  scenario
  • 21. 3.  Designing  FIT  Policies  in  Island  Regions
  • 22. What are Feed-in Tariffs? Three Key Elements:! ! !1. Clear price for electricity sold to the grid! !2. Clear, long-term contract! !3. Guaranteed access to the grid! ! à  Payment for 100% of generation! à  100% export-oriented: no self-consumption ! à  Traditionally two separate meters; participants receive both a check and a bill!
  • 23. What are Feed-in Tariffs? à  Price locked in irrespective of utility avoided costs, fuel costs, or retail prices! à  Provides a hedge against fuel price volatility! à  Long-term contracts help improve bankability, and broaden participation! ! Source:  Couture  &  Gagnon  2010
  • 24. What are Feed-in Tariffs? -  FITs used in approximately 100 jurisdictions globally ! -  Responsible for ~ 45% of global wind power investment! -  ~ 75% of global solar PV investment! ! ! !
  • 25. Q: Why have FITs been successful? FITs provide homeowners & investors what they need: ! ! à Attractive policy and regulatory conditions (stable LT contracts) to invest in renewable energy projects! à a clear cost-based price for electricity sold to the network over a pre-determined period! à differentiated pricing by technology, and by project size, ! !
  • 26. Q: “But, if I design a FIT policy in an island state, won’t my customers all race to become IPPs, gradually take over the generation business, profit from long- term contracts underwritten by the utility, and leave the utility with decreasing revenues with which to pay for fixed costs and ensure system reliability?”
  • 27. Like Net Metering, FIT policies are often designed with multiple caps and controls in order to limit market growth: e.g. project size, total program size, etc. The goal of FITs is ultimately to diversify the generation mix away from non-renewable resources.
  • 28. Q: Are FITs appropriate for island regions? -  Policy challenges can be limited through good policy design ! -  Monitoring of project applications, and clear permitting procedures, can also eliminate the risks of runaway development! ! à As with all public policy, the keys are in the design, oversight, and overall structure of the policy. !
  • 29. Q: How to set FIT rates for island regions with high avoided costs of generation? Three  basic  options: 1.  Based  on  the  cost  of  generation:  i.e.  like  traditional  FITs 2.  Based  on  the  full  utility  avoided  costs 3.  Somewhere  in  between
  • 30. Q: How to set FIT rates for island regions with high avoided costs of generation? Examples: •  Virgin  Islands:  Recently  adopted  FIT  policy  directs  the  Public  Service   Commission  to  develop  FIT  rates.  The  PSC’s  sets  rates  at  a  slight  discount   to  the  utility’s  avoided  cost  of  generation.  The  current  anticipated  rate  is   USD  $0.26/kWh.   •  Hawaii:  FIT  policy  currently  ranges  from  USD  $0.189  to  $0.218/kWh,   depending  on  system  size  and  is  below  generation  costs  but  a^ractive  for   private  investment.   •  Grenada:  “Standard  Offer”  Program:  Customers  can  connect  and  receive   one  of  two  options:  l  1)  fixed  FIT  of  USD  $0.17/kWh  over  10-­‐‑yrs;  or  2)  per   kWh  payment  based  on  the  utility’s  avoided  fuel  cost,  adjusted  annually
  • 31. Q: Should the FIT rate be linked to utility avoided costs / avoided fuel prices? Pros:   •  Avoids  the  risk  of  locking  in   high  priced  contracts  if  fuel   prices  decline  (overpayment) E.g.  California  (mid-­‐‑1980s),   fuel  prices  collapsed  à   utilities  continue  paying   Standard  Offer  rates  far   higher  than  their  avoided   cost  of  supply Cons:   •  Risk  of  increasing  fuel   prices  à  Overpayment   and  “wealth  transfer”   •  Risk  of  decreasing  fuel   prices  à  underpayment   Uncertainty  to  utilities  and   customer/generators
  • 32. Q: How to design FITs for island regions? 1.  Include appropriate oversight of the project application and permitting process! 2.  Introduce clear caps on total capacity installed! 3.  Revise the tariffs regularly (e.g. annually) ! 4.  Implement a clear accounting and monitoring system!
  • 33. Q: How to design FITs for island regions? 5. Publish annual reports on the progress of the policy (e.g. number of projects, total capacity installed, and total generation (MWh) supplied to the network, etc.) ! ! 6. Include incentives for customer-sited storage systems to help smooth fluctuations in output and ease grid integration! ! 7. Enhance in-house forecasting capabilities! ! 8. Explore the use of “demand sinks”: e.g. desalination plants, heating/cooling loads, ice production, etc. to stabilize the grid and better align demand with supply!
  • 34. 4.  Utility-­‐‑led  Models  of  Developing  RE  on  Islands
  • 35. Q: Rather than using a FIT or Net Metering, why don’t utilities in island regions build (or contract to own) renewable energy projects themselves?
  • 36. Utility-led Models of RE Development Three basic options:! ! 1.  Utility-owned and Financed (privatized): ! A private utility finances the construction of the RE project and owns the underlying asset. Typically earns a regulated rate of return on the investment. Operations and maintenance (O&M) can be performed by the utility, or via subcontract with a maintenance provider. Example: HECO in Hawaii!
  • 37. Utility-led Models of RE Development ! 2. Utility-owned and Financed (public): ! A public utility finances the construction of the RE project and owns the underlying asset. Operations and maintenance can be performed by the utility, or via subcontract with a maintenance provider, or the original EPC team. Example: Electra in Cape Verde:
  • 38. Utility-led Models of RE Development 3. Utility-led, Privately-owned! The utility leads the procurement process, and buys power from independent power producers (IPPs). Example: Cayman Islands: utility buys IPP power via competitive tenders, as well as via the island’s Feed-in Tariff policy. Projects are privately owned. Ramea Island, Canada: utility buys IPP power from a small wind developer via a bilateral contract. Project is privately owned; operated jointly with the public utility.
  • 39. How should utilities allocate PPAs? Three basic options As a result of a competitive solicitation, auction, or tender As a result of launching a “standard offer”, or feed-in tariff Through bilateral negotiations with a particular proponent
  • 40. 5.  Designing  Bankable  PPAs  on  Islands
  • 41. A  PPA  is  a  long-­‐‑term  off-­‐‑take  agreement,  or  purchase  contract,  for  the   sale  of  electricity  from  one  party  (the  developer)  to  another  (usually  a   utility).   -­‐‑  generally  structured  over  a  10  to  20  year  period. à  The  goal  of  good  PPAs  is  to  provide  a  revenue  stream  to  the   developer  that  is  sufficient  to  recover  their  costs  for  a  given   project,  plus  a  reasonable,  risk-­‐‑adjusted  return  on  investment.   à  This  is  what  constitutes  a  “bankable”  PPA. What is a Power Purchase Agreement (PPA)?
  • 42. 1.  A  Fixed,  cost-­‐‑reflective  tariff 2.  Appropriate  currency  provisions 3.  Inflation  risk  protection  (e.g.  inflation  indexation  %/yr) 4.  Protection  against  dispatch  risk:  e.g.  “take  and  pay”,  guaranteed   purchase 5.  Low  regulatory,  political,  and  legal  risks 6.  Protection  against  ‘force  majeure’  risks 7.  Dispute  resolution  mechanism 8.  Termination  clauses:  what  happens  when?   9.  Low  interconnection  risk Key Requirements for a Bankable PPA
  • 43. Guidelines for Negotiating PPAs in Island Regions 1.  Seek  out  other  PPA  contracts  that  have  been  signed,  either  in  the   region,  or  globally  to  compare 2.  Identify  and  organize  the  contract  clauses  on  a  topical  basis  (e.g.   grid  connection,  payment  terms,  liquidated  damages,  etc.) 3.  Use  the  sample  PPA  contracts,  and  identify  any  clauses  that  are   missing,  or  that  need  to  be  adapted  to  the  local  island  context.   4.  Hire  an  expert  with  experience  in  PPA  design  in  island  regions  to   either  participate  in  the  contract  negotiations,  to  draft  the  original   contract  draft,  or  to  review  the  final  draft  before  it  is  signed
  • 45. Concluding Remarks Despite  the  fact  that  RETs  are  increasingly   cheaper  than  conventional  supply  options  on   islands,  it  is  still  important  to  have  strong   policy  and  regulatory  frameworks  to  create   the  right  conditions  for  new  investments  to   occur.   à  Based  on  current  economics,  transitioning   to  renewable  energy  island  regions  should   produce  a  net  cost  saving  for  utilities,  and   for  society Rarotonga  (Cook  Islands)