2. page 2
4. Scanning Probe Microscopy
L-MA-SI 4. SPM
The scanning probe microscopy utilizes the interaction between a
microscopic tip and the sample surface in order to obtain properties
of the analyzed surface.
4. 4.1.1.1. Basics Principle & Result
STM - Scanning Tunneling Microscopy
nA
Icontrol
Itip
feedback loop
R
∆I -> V
∆
piezo actor
page 4
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.1 Basics Principle & Result
5. 4.1.1.1. Basics Principle & Result
Fe on Cu (4K)
Ni (011) surface
7x7 reconstructed
Si(111)
Copper surface
STM - Scanning Tunneling Microscopy
page 5
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.1 Basics Principle & Result
6. Quantenmechanik
tunnel
current
4.1.1.2. Physical Processes
The function of the STM needs a description on the basis of quantum physics.
Classical
Mechanics
Tip Sample
STM - Scanning Tunneling Microscopy
page 6
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
7. 4.1.1.2. Physical Processes
Parameters Influencing the Tunneling Current
Sample Tip
Energy
Distance
voltage U applied
at the tip (positive)
WF,S WF,T
Distance d
S
F
T W
d
U
I ,
exp
page 7
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
8. 4.1.1.2. Physical Processes
Parameters Influencing the Tunneling Current
Sample Tip
Energy
Distance
voltage U applied
at the tip (positive)
Distance d
Furthermore, the current density is influenced by the density of
states (DOS) in the tip and in the sample
page 8
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
9. N i Au
4.1.1.2. Physical Processes
Parameters Influencing the Tunneling Current
For example, the density of electronic states of Au is smaller in
comparison to Ni. To keep the current constant the tip has to be
approached closer to the surface at the position of the Au atom.
page 9
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
11. 4.1.1.2. Physical Processes
STM Tunneling Current
typical relation between
tunneling current and
distance sample - tip
the exponential correlation
results in an extreme
sensitivity of the current vs.
distance
Distance / nm
Tunneling
Current
/
nA
Half Atomic Radius
page 11
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
13. 4.1.2. Tool Setup & Application Examples
Basic Components
measurement tip
movement of tip in all 3 directions
feedback loop
signal processing
sample environment and sample holder
page 13
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples
14. 4.1.2.1. Measurement Tip
conditions - conducting tip (and sample!)
- extreme small tip radius (~ 10 nm)
- chemically stable
most common tip material:
tungsten tips, produced with
an electrochemical etching
process in NaOH
further methods for tip shape
optimization: ion milling
page 14
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.1. Measurement Tip
15. 4.1.2.1. Measurement Tip
The tips are sensitive ....
... and therefore consumables.
page 15
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.1. Measurement Tip
16. 4.1.2.2. Feedback Loop
Movement of the Tip and Feedback Loop
fixed: constant height z fixed: constant current i
current i
position x position x
position z
page 16
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.2. Feedback Loop
17. 4.1.2.2. Feedback Loop
The relative movement of the tip vs. the sample surface requires an
extreme spatial resolution of the corresponding drive.
Solution: piezo actors, reversible deformation of a crystalline lattice on
application of an external voltage
+ +
+
-
-
-
+ +
+
-
-
-
+
-
-
force
el.
potential
typical materials: quartz, barium titanate, etc.
Movement of the Tip and Feedback Loop
page 17
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.2. Feedback Loop
18. 4.1.2.2. Feedback Loop
length scales of movement for piezo actors
- typically about 5 nm / Volt in z direction
- total movement in x, y: 10 ... 50 µm
movement resolution determined by
- resolution and stability of controlling voltage
- thermal stability of the setup (materials with a
small thermal expansion employed)
- vibration damping
measures for vibration damping
- heavy base plate
- decoupling of setup from the building (e.g. spring
suspension)
- rather small overall height of the scan unit
(results in a high resonance frequency)
- cover to suppress influence of sound waves
Movement of the Tip and Feedback Loop
page 18
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.2. Feedback Loop
19. 4.1.2.3. Environment
Environmental Conditions
STM under ambient conditions is possible only for a small number of materials
examples: graphite, noble metals
the majority of applications requires UHV
page 19
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.3. Environment
21. 4.1.2.4. Application Examples
example: CO molecules on Cu
page 21
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
22. 4.1.2.4. Application Examples
Examples: details of thin film growth
Tb on W(110)
(200 x 150 nm2
)
blue - H adsorption sites
yellow/green - stacking faults in Tb
step height: 0.28 nm
page 22
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
23. 4.1.2.4. Application Examples
page 23
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
Dynamic Processes on Surfaces
scan field: 500 x 500 nm2
total measurement time: 13 h
24. Summary STM
• atomic resolution in three
dimension on surfaces
• limitation to conducting/metallic
samples
• investigation of details of the
electron distribution in the
material
• possibility to manipulate atoms
on the surface
• anodic oxidation of surface
48 Fe atoms on Cu (111)
26. 4.2.1.1. Basics Principle & Result
AFM - Atomic Force Microscopy
V
photo diode
mirror
laser
tip
piezo
sample
feedback loop
cantilever
page 26
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.1. Basic Principle & Result
27. 4.2.1.1. Basics Principle & Result
AFM - Atomic Force Microscopy
page 27
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.1. Basic Principle & Result
28. 4.2.1.2. Physical Processes
Distance-Force-Relation
Van-der-Waals bonding forces
dominate
repulsion due to the
Pauli principle dominates
force
on
the
tip
distance
tip - sample
typical length ~ 1 nm
The atomic force microscopy is
based on the measurement of
the force between the tip and the
sample.
page 28
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.2. Physical Processes
29. 4.2.1.2. Physical Processes
How a surface looks like under ambient conditions ?
water layer
The surface of materials under ambient
conditions has a thin water film on top,
particularly, if the surface is hydrophilic.
This is often the case for oxides. In this case
OH groups form the outer surface which
favours the bonding of water molecules.
The thickness of the water film depends on
the properties of the surface and the
humindity. Typical thicknesses on hydrophilic
surfaces are 1.5 ... 3 nm.
In hydrophobic materials (e.g. noble metals)
the thickness is reduced to about 1 ... 4
monolayers of water.
page 29
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.2. Physical Processes
30. 4.2.1.2. Physical Processes
Influence of the Tip Radius on the Lateral Resolution
The tip radius and the tip
aspect determines the
smallest resolvable
surface features.
page 30
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.2. Physical Processes
32. 4.2.2. Tool Setup & Application Examples
many components same as in STM (therefore often combined microscopes!)
Differences: measurement unit has cantilever + tip
no current flow between tip and sample
element to force vibration of the cantilever
...
Basic Components
measurement tip
movement of tip in all 3 directions
feedback loop
signal processing
sample environment and sample holder
page 32
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples
33. 4.2.2.1. Cantilever & Tip
material often isolating (e.g. Si3N4)
tip radius ≈ 10 .. 30 nm
spring constant of the cantilever:
k = 0,005 - 50 N/m
(for comparison
spring in a ball point pen - 1000 N/m
spring in a car - 10.000 N/m)
page 33
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.1. Cantilever & Tip
34. 4.2.2.1. Cantilever & Tip
parameter
- different shapes
- aspect ratio
- tip radius
- spring constant of the cantilever
page 34
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.1. Cantilever & Tip
35. 4.2.2.1. Cantilever & Tip
page 35
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.1. Cantilever & Tip
Production with Typical Methods from Microelectronics
37. 4.2.2.3. Measurement Modes
force
at
the
tip
distance
tip - sample
Contact Mode
• constant deflection of the cantilever
(constant force mode) or constant
height of piezo actor (constant height
mode no feedback loop)
• sample contact through the water film
• force range nN ... µN
page 37
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
38. 4.2.2.3. Measurement Modes
Contact Mode
advantages
• high scan speed
• especially suitable for rather
rough samples
• very good spatial resolution
page 38
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
39. 4.2.2.3. Measurement Modes
Contact Mode
disadvantages
• lateral forces may distort the image
• forces rather large due to the capillary forces of the water film
• deterioration of the surface possible
1 µm scan 2 µm scan
page 39
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
40. 4.2.2.3. Measurement Modes
force
at
the
tip
distance
tip - sample
Non-Contact Mode
• forced vibration of the cantilever close to
the resonance frequency
• oscillation amplitude ≤ 10 nm
• approach to the surface changes
frequence, hence, the amplitude as well
page 40
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
41. 4.2.2.3. Measurement Modes
Non-Contact Mode
Advantages:
• small deterioration of the sample
• practically no lateral forces
• high spatial resolution
NaCl surface
disadvantages
• often usable only in HV/UHV
• therefore not usable for
biologic sample
page 41
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
42. 4.2.2.3. Measurement Modes
force
at
the
tip
distance
tip - sample
Intermittent Mode
• forced vibration of the cantilever with
resonance frequency
• oscillation amplitude 20 .. 100 nm
• forces in the range ≤ 200 pN
• change of the amplitude by approaching
the sample surface
page 42
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
43. 4.2.2.3. Measurement Modes
Intermittent Mode
advantages
• small deterioration of samples
• works in liquids as well
• usable for biologic samples
disadvantages
• rather strong load of the cantilever
• reduced spatial resolution
structure of chromosoms
page 43
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
45. 4.2.2.3. Measurement Modes
More Possibilties for Measurements of the Cantilever Motion ...
until now
page 45
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
46. 4.2.2.3. Measurement Modes
Friction Force Microscopy
topography
friction force
Self-assembly of alkanethiol on gold
page 46
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
47. 2.3.2.4. Application Examples
Not Discussed Here ...
- details of atom movements
- nanolithography
- multi-tip setups
- nanoindentation
- local measurement of magnetic domains, thermal properties,
capacitance, conductivity
- ...
page 47
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
Editor's Notes
#5:links oben: Fe -Atome auf Kupfer, mit 2 lokalisierten Elektronen
links unten: 7x7 Reco auf (111) Silizium
Nickel (110) - Oberfläche
Kupfer-Oberfläche
#18:Die Größe von Störungen darf die gewünschte Auflösung nicht übersteigen. Typische externe Störungen sind Gebäudeschwingungen und Trittschall mit Frequenzen von 1-100 Hz und Amplituden im Bereich von 0.5 – 150 nm. Ferner können durch den Scanvorgang auch im STM störende Vibrationen angeregt werden. Durch eine spezielle Aufhängung des Geräts (Metallplatten und Vitonringe) sowie durch möglichst geringe Baugröße der eigentlichen Scaneinheit (hohe Resonanzfrequenz!) und geeigneter Wahl der Scanfrequenz werden die Störungen minimiert.
Das Rastertunnelmikroskop kann in verschiedenen Arbeitsmoden Betrieben werden:
Im „constant current mode“ wird der Abstand zwischen Spitze und Probe so geregelt, dass der Tunnelstrom einem vorgegebenen Wert („reference current“) entspricht. Der für den Tunnelstrom entscheidende Abstand zwischen Spitze und Probe bleibt so konstant. Aus den Spannungswerten am Piezostellelement kann die Topographie der Oberfläche berechnet werden.
externe und interne Schwingungsdämpfung
Verwendung von Materialien mit TK nahe 0
Kurzer Aufbau Probenhalter - Spitze
#19:Die Größe von Störungen darf die gewünschte Auflösung nicht übersteigen. Typische externe Störungen sind Gebäudeschwingungen und Trittschall mit Frequenzen von 1-100 Hz und Amplituden im Bereich von 0.5 – 150 nm. Ferner können durch den Scanvorgang auch im STM störende Vibrationen angeregt werden. Durch eine spezielle Aufhängung des Geräts (Metallplatten und Vitonringe) sowie durch möglichst geringe Baugröße der eigentlichen Scaneinheit (hohe Resonanzfrequenz!) und geeigneter Wahl der Scanfrequenz werden die Störungen minimiert.
Das Rastertunnelmikroskop kann in verschiedenen Arbeitsmoden Betrieben werden:
Im „constant current mode“ wird der Abstand zwischen Spitze und Probe so geregelt, dass der Tunnelstrom einem vorgegebenen Wert („reference current“) entspricht. Der für den Tunnelstrom entscheidende Abstand zwischen Spitze und Probe bleibt so konstant. Aus den Spannungswerten am Piezostellelement kann die Topographie der Oberfläche berechnet werden.
externe und interne Schwingungsdämpfung
Verwendung von Materialien mit TK nahe 0
Kurzer Aufbau Probenhalter - Spitze
#22:Sample::
Tb terraces on W(110); during the evaporation process the substrate temperature was lowered from 350 to 300 °C, resulting in the formation of such step pyramid like structures, with each step being only one single atomic layer (0.28 nm) high. Beside hydrogen adsorbtion sites (blue) the terraces exhibit two kind of regions of slightly different color, yellowish and greenish. The difference is due to stacking faults that are present in the Tb(0001) surface.
Image-size::
200 nm x 150 nm
Image:
10% topography+ 90% deviated topography at -0.3 VColor-information:
current imaging tunneling spectroscopy, obtained after the topography, dI/dU images at:
red = 0.1 V
green = 1 V
blue = 2.1 V
#23:Sample::
Tb terraces on W(110); during the evaporation process the substrate temperature was lowered from 350 to 300 °C, resulting in the formation of such step pyramid like structures, with each step being only one single atomic layer (0.28 nm) high. Beside hydrogen adsorbtion sites (blue) the terraces exhibit two kind of regions of slightly different color, yellowish and greenish. The difference is due to stacking faults that are present in the Tb(0001) surface.
Image-size::
200 nm x 150 nm
Image:
10% topography+ 90% deviated topography at -0.3 VColor-information:
current imaging tunneling spectroscopy, obtained after the topography, dI/dU images at:
red = 0.1 V
green = 1 V
blue = 2.1 V
#27:links oben: Fe -Atome auf Kupfer, mit 2 lokalisierten Elektronen
links unten: 7x7 Reco auf Silizium
rechts oben: Mikrostruktur, 3D-Messung
rechts unten: DVD - Oberflächenstruktur
#30:Cantilevers are fabricated on chips.
What you get when you order cantilevers is a small micro-precision-machined rectangular or triangular piece of silicon or silicon nitride with a shiny surface. The minute cuboid you can see is not the cantilever itself, but the chip that holds the cantilever. Generally you need a magnifying glass to see the cantilever at the narrow side of the chip. Sometimes there are two or more cantilevers attached to the narrow edges of the chip.
What you are unable to see without a good optical microscope is the tip at the end of the cantilever. The radius of the end of the tip determines the imaging quality. Typically the tip is a few microns long, some are shaped like a needle, and others look like an Egyptian pyramid.
Cantilevers can be seen as springs.
Remembering your physics lessons in school, you may recall that the extension of springs can be described by Hooke's Law
F = - k * s.
This means: The force F you need to extend the spring depends in linear manner on the range s by which you extend it. Derived from Hooke's law, you can allocate a spring constant k to any spring. The four damping springs of a car's wheels have a higher spring constant than the spring in your ball-point pen.
The spring constants of the commercially available cantilevers vary over four orders of magnitude; cantilevers with spring constants between 0.005 N/m and 40 N/m are commercially available. You can deduce the properties of a cantilever from its outer shape. Thicker and shorter ones tend to be stiffer and have higher resonant frequencies.