SlideShare a Scribd company logo
4. SPM
abbreviation
SPM – Scanning Probe Microscopy
L-MA-SI 4. SPM Internal use @ EAH Jena only
page 2
4. Scanning Probe Microscopy
L-MA-SI 4. SPM
The scanning probe microscopy utilizes the interaction between a
microscopic tip and the sample surface in order to obtain properties
of the analyzed surface.
4. SPM
4.1. Scanning Tunneling Microscopy
4.1.1. Principle & Physics
abbreviation
STM – Scanning Tunneling Microscopy
page 3
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics
4.1.1.1. Basics Principle & Result
STM - Scanning Tunneling Microscopy
nA
Icontrol
Itip
feedback loop
R
∆I -> V
∆
piezo actor
page 4
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.1 Basics Principle & Result
4.1.1.1. Basics Principle & Result
Fe on Cu (4K)
Ni (011) surface
7x7 reconstructed
Si(111)
Copper surface
STM - Scanning Tunneling Microscopy
page 5
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.1 Basics Principle & Result
Quantenmechanik
tunnel
current
4.1.1.2. Physical Processes
The function of the STM needs a description on the basis of quantum physics.
Classical
Mechanics
Tip Sample
STM - Scanning Tunneling Microscopy
page 6
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
4.1.1.2. Physical Processes
Parameters Influencing the Tunneling Current
Sample Tip
Energy
Distance
voltage U applied
at the tip (positive)
WF,S WF,T
Distance d
 
S
F
T W
d
U
I ,
exp 



page 7
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
4.1.1.2. Physical Processes
Parameters Influencing the Tunneling Current
Sample Tip
Energy
Distance
voltage U applied
at the tip (positive)
Distance d
Furthermore, the current density is influenced by the density of
states (DOS) in the tip and in the sample
page 8
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
N i Au
4.1.1.2. Physical Processes
Parameters Influencing the Tunneling Current
For example, the density of electronic states of Au is smaller in
comparison to Ni. To keep the current constant the tip has to be
approached closer to the surface at the position of the Au atom.
page 9
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
Egap
Egap
V
V
I
dI/dV
I/V
VB LB
metal
semiconductor
4.1.1.2. Physical Processes
Possibility of Spectroscopic Invesitgations at a Fixed Position
page 10
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
4.1.1.2. Physical Processes
STM Tunneling Current
typical relation between
tunneling current and
distance sample - tip
the exponential correlation
results in an extreme
sensitivity of the current vs.
distance
Distance / nm
Tunneling
Current
/
nA
Half Atomic Radius
page 11
L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
4. SPM
4.1. Scanning Tunneling Microscopy
4.1.2. Tool Setup & Application Examples
page 12
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples
4.1.2. Tool Setup & Application Examples
Basic Components
measurement tip
movement of tip in all 3 directions
feedback loop
signal processing
sample environment and sample holder
page 13
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples
4.1.2.1. Measurement Tip
conditions - conducting tip (and sample!)
- extreme small tip radius (~ 10 nm)
- chemically stable
most common tip material:
tungsten tips, produced with
an electrochemical etching
process in NaOH
further methods for tip shape
optimization: ion milling
page 14
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.1. Measurement Tip
4.1.2.1. Measurement Tip
The tips are sensitive ....
... and therefore consumables.
page 15
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.1. Measurement Tip
4.1.2.2. Feedback Loop
Movement of the Tip and Feedback Loop
fixed: constant height z fixed: constant current i
current i
position x position x
position z
page 16
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.2. Feedback Loop
4.1.2.2. Feedback Loop
The relative movement of the tip vs. the sample surface requires an
extreme spatial resolution of the corresponding drive.
Solution: piezo actors, reversible deformation of a crystalline lattice on
application of an external voltage
+ +
+
-
-
-
+ +
+
-
-
-
+
-
-
force
el.
potential
typical materials: quartz, barium titanate, etc.
Movement of the Tip and Feedback Loop
page 17
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.2. Feedback Loop
4.1.2.2. Feedback Loop
length scales of movement for piezo actors
- typically about 5 nm / Volt in z direction
- total movement in x, y: 10 ... 50 µm
movement resolution determined by
- resolution and stability of controlling voltage
- thermal stability of the setup (materials with a
small thermal expansion employed)
- vibration damping
measures for vibration damping
- heavy base plate
- decoupling of setup from the building (e.g. spring
suspension)
- rather small overall height of the scan unit
(results in a high resonance frequency)
- cover to suppress influence of sound waves
Movement of the Tip and Feedback Loop
page 18
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.2. Feedback Loop
4.1.2.3. Environment
Environmental Conditions
STM under ambient conditions is possible only for a small number of materials
examples: graphite, noble metals
the majority of applications requires UHV
page 19
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.3. Environment
4.1.2.4. Application Examples
Example:
7x7 reconstructed
Si(111) surface
page 20
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
4.1.2.4. Application Examples
example: CO molecules on Cu
page 21
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
4.1.2.4. Application Examples
Examples: details of thin film growth
Tb on W(110)
(200 x 150 nm2
)
blue - H adsorption sites
yellow/green - stacking faults in Tb
step height: 0.28 nm
page 22
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
4.1.2.4. Application Examples
page 23
L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
Dynamic Processes on Surfaces
scan field: 500 x 500 nm2
total measurement time: 13 h
Summary STM
• atomic resolution in three
dimension on surfaces
• limitation to conducting/metallic
samples
• investigation of details of the
electron distribution in the
material
• possibility to manipulate atoms
on the surface
• anodic oxidation of surface
48 Fe atoms on Cu (111)
4. SPM
4.2. Atomic Force Microscopy
4.2.1. Principle & Physics
Abkürzung
AFM – Atomic Force Microscopy
page 25
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics
4.2.1.1. Basics Principle & Result
AFM - Atomic Force Microscopy
V
photo diode
mirror
laser
tip
piezo
sample
feedback loop
cantilever
page 26
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.1. Basic Principle & Result
4.2.1.1. Basics Principle & Result
AFM - Atomic Force Microscopy
page 27
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.1. Basic Principle & Result
4.2.1.2. Physical Processes
Distance-Force-Relation
Van-der-Waals bonding forces
dominate
repulsion due to the
Pauli principle dominates
force
on
the
tip
distance
tip - sample
typical length ~ 1 nm
The atomic force microscopy is
based on the measurement of
the force between the tip and the
sample.
page 28
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.2. Physical Processes
4.2.1.2. Physical Processes
How a surface looks like under ambient conditions ?
water layer
The surface of materials under ambient
conditions has a thin water film on top,
particularly, if the surface is hydrophilic.
This is often the case for oxides. In this case
OH groups form the outer surface which
favours the bonding of water molecules.
The thickness of the water film depends on
the properties of the surface and the
humindity. Typical thicknesses on hydrophilic
surfaces are 1.5 ... 3 nm.
In hydrophobic materials (e.g. noble metals)
the thickness is reduced to about 1 ... 4
monolayers of water.
page 29
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.2. Physical Processes
4.2.1.2. Physical Processes
Influence of the Tip Radius on the Lateral Resolution
The tip radius and the tip
aspect determines the
smallest resolvable
surface features.
page 30
L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.2. Physical Processes
4. SPM
4.2. Atomic Force Microscopy
4.2.2. Tool Setup & Application Examples
page 31
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples
4.2.2. Tool Setup & Application Examples
many components same as in STM (therefore often combined microscopes!)
Differences: measurement unit has cantilever + tip
no current flow between tip and sample
element to force vibration of the cantilever
...
Basic Components
measurement tip
movement of tip in all 3 directions
feedback loop
signal processing
sample environment and sample holder
page 32
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples
4.2.2.1. Cantilever & Tip
material often isolating (e.g. Si3N4)
tip radius ≈ 10 .. 30 nm
spring constant of the cantilever:
k = 0,005 - 50 N/m
(for comparison
spring in a ball point pen - 1000 N/m
spring in a car - 10.000 N/m)
page 33
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.1. Cantilever & Tip
4.2.2.1. Cantilever & Tip
parameter
- different shapes
- aspect ratio
- tip radius
- spring constant of the cantilever
page 34
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.1. Cantilever & Tip
4.2.2.1. Cantilever & Tip
page 35
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.1. Cantilever & Tip
Production with Typical Methods from Microelectronics
4.2.2.2. Feedback Loop
Cantilever & Tip Control
page 36
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.2. Feedback Loop
4.2.2.3. Measurement Modes
force
at
the
tip
distance
tip - sample
Contact Mode
• constant deflection of the cantilever
(constant force mode) or constant
height of piezo actor (constant height
mode  no feedback loop)
• sample contact through the water film
• force range nN ... µN
page 37
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
4.2.2.3. Measurement Modes
Contact Mode
advantages
• high scan speed
• especially suitable for rather
rough samples
• very good spatial resolution
page 38
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
4.2.2.3. Measurement Modes
Contact Mode
disadvantages
• lateral forces may distort the image
• forces rather large due to the capillary forces of the water film
• deterioration of the surface possible
1 µm scan 2 µm scan
page 39
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
4.2.2.3. Measurement Modes
force
at
the
tip
distance
tip - sample
Non-Contact Mode
• forced vibration of the cantilever close to
the resonance frequency
• oscillation amplitude ≤ 10 nm
• approach to the surface changes
frequence, hence, the amplitude as well
page 40
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
4.2.2.3. Measurement Modes
Non-Contact Mode
Advantages:
• small deterioration of the sample
• practically no lateral forces
• high spatial resolution
NaCl surface
disadvantages
• often usable only in HV/UHV
• therefore not usable for
biologic sample
page 41
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
4.2.2.3. Measurement Modes
force
at
the
tip
distance
tip - sample
Intermittent Mode
• forced vibration of the cantilever with
resonance frequency
• oscillation amplitude 20 .. 100 nm
• forces in the range ≤ 200 pN
• change of the amplitude by approaching
the sample surface
page 42
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
4.2.2.3. Measurement Modes
Intermittent Mode
advantages
• small deterioration of samples
• works in liquids as well
• usable for biologic samples
disadvantages
• rather strong load of the cantilever
• reduced spatial resolution
structure of chromosoms
page 43
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
4.2.2.3. Measurement Modes
Contact Mode - Special Application for Stiffness Measurements
topography force modulation
page 44
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
4.2.2.3. Measurement Modes
More Possibilties for Measurements of the Cantilever Motion ...
until now
page 45
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
4.2.2.3. Measurement Modes
Friction Force Microscopy
topography
friction force
Self-assembly of alkanethiol on gold
page 46
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
2.3.2.4. Application Examples
Not Discussed Here ...
- details of atom movements
- nanolithography
- multi-tip setups
- nanoindentation
- local measurement of magnetic domains, thermal properties,
capacitance, conductivity
- ...
page 47
L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes

More Related Content

PPTX
AFM and STM (Scanning probe microscopy)
PPTX
Scanning Tunneling Microscope and Atomic Tunneling Microscope
PPTX
PPT
Scanning probe microscope
PDF
7 nanotools_spm.pdf
PPTX
ETE444-lec3.pptx
PPT
Microscopy
PPT
SM_SPMSlides.ppt
AFM and STM (Scanning probe microscopy)
Scanning Tunneling Microscope and Atomic Tunneling Microscope
Scanning probe microscope
7 nanotools_spm.pdf
ETE444-lec3.pptx
Microscopy
SM_SPMSlides.ppt

Similar to Scanning Probe Microscopy Engineering and Technology (20)

PPTX
SPM test for characterization of nanoparticles
PDF
Scanning Tunnelling Microscope (STM).pdf
PPTX
Scanning Tunneling Microscopy and UHV Scanning Tunneling Microscopy
PPT
Stm 07.08.13
PPTX
Electronic probe microscope PSM and its types.pptx
PPTX
Scanning tunneling microscope by joshna.pptx
PPT
STM finalfor scanningtunnelingmicroscope experiments.ppt
PPTX
METODOS DE CARACTERIZACION de materiales.pptx
PPTX
TEM.pptx
PPTX
TEM.pptx
PPTX
Scanning tunneling microscope.pptx
PPTX
microscopy contd....pptxiyd d h n SD s duos d
PDF
ETE444-lec3.pdf
PDF
ETE444-lec3.pdf
PPTX
Scanning Tunneling Microscope
PDF
Scanning Probe Microscopy
PDF
Spm And Sicm Lecture
PPTX
Scanning tunneling microscopy
PPTX
AFM talk ASAS 10dec2015 Jenny to publish.pptx
SPM test for characterization of nanoparticles
Scanning Tunnelling Microscope (STM).pdf
Scanning Tunneling Microscopy and UHV Scanning Tunneling Microscopy
Stm 07.08.13
Electronic probe microscope PSM and its types.pptx
Scanning tunneling microscope by joshna.pptx
STM finalfor scanningtunnelingmicroscope experiments.ppt
METODOS DE CARACTERIZACION de materiales.pptx
TEM.pptx
TEM.pptx
Scanning tunneling microscope.pptx
microscopy contd....pptxiyd d h n SD s duos d
ETE444-lec3.pdf
ETE444-lec3.pdf
Scanning Tunneling Microscope
Scanning Probe Microscopy
Spm And Sicm Lecture
Scanning tunneling microscopy
AFM talk ASAS 10dec2015 Jenny to publish.pptx
Ad

Recently uploaded (20)

PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PPTX
Current and future trends in Computer Vision.pptx
PPTX
Information Storage and Retrieval Techniques Unit III
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPTX
communication and presentation skills 01
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PPTX
Feature types and data preprocessing steps
PPTX
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Current and future trends in Computer Vision.pptx
Information Storage and Retrieval Techniques Unit III
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
communication and presentation skills 01
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
distributed database system" (DDBS) is often used to refer to both the distri...
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Feature types and data preprocessing steps
6ME3A-Unit-II-Sensors and Actuators_Handouts.pptx
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
Soil Improvement Techniques Note - Rabbi
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Categorization of Factors Affecting Classification Algorithms Selection
Automation-in-Manufacturing-Chapter-Introduction.pdf
Visual Aids for Exploratory Data Analysis.pdf
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Ad

Scanning Probe Microscopy Engineering and Technology

  • 1. 4. SPM abbreviation SPM – Scanning Probe Microscopy L-MA-SI 4. SPM Internal use @ EAH Jena only
  • 2. page 2 4. Scanning Probe Microscopy L-MA-SI 4. SPM The scanning probe microscopy utilizes the interaction between a microscopic tip and the sample surface in order to obtain properties of the analyzed surface.
  • 3. 4. SPM 4.1. Scanning Tunneling Microscopy 4.1.1. Principle & Physics abbreviation STM – Scanning Tunneling Microscopy page 3 L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics
  • 4. 4.1.1.1. Basics Principle & Result STM - Scanning Tunneling Microscopy nA Icontrol Itip feedback loop R ∆I -> V ∆ piezo actor page 4 L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.1 Basics Principle & Result
  • 5. 4.1.1.1. Basics Principle & Result Fe on Cu (4K) Ni (011) surface 7x7 reconstructed Si(111) Copper surface STM - Scanning Tunneling Microscopy page 5 L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.1 Basics Principle & Result
  • 6. Quantenmechanik tunnel current 4.1.1.2. Physical Processes The function of the STM needs a description on the basis of quantum physics. Classical Mechanics Tip Sample STM - Scanning Tunneling Microscopy page 6 L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
  • 7. 4.1.1.2. Physical Processes Parameters Influencing the Tunneling Current Sample Tip Energy Distance voltage U applied at the tip (positive) WF,S WF,T Distance d   S F T W d U I , exp     page 7 L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
  • 8. 4.1.1.2. Physical Processes Parameters Influencing the Tunneling Current Sample Tip Energy Distance voltage U applied at the tip (positive) Distance d Furthermore, the current density is influenced by the density of states (DOS) in the tip and in the sample page 8 L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
  • 9. N i Au 4.1.1.2. Physical Processes Parameters Influencing the Tunneling Current For example, the density of electronic states of Au is smaller in comparison to Ni. To keep the current constant the tip has to be approached closer to the surface at the position of the Au atom. page 9 L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
  • 10. Egap Egap V V I dI/dV I/V VB LB metal semiconductor 4.1.1.2. Physical Processes Possibility of Spectroscopic Invesitgations at a Fixed Position page 10 L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
  • 11. 4.1.1.2. Physical Processes STM Tunneling Current typical relation between tunneling current and distance sample - tip the exponential correlation results in an extreme sensitivity of the current vs. distance Distance / nm Tunneling Current / nA Half Atomic Radius page 11 L-MA-SI 4. SPM 4.1. STM 4.1.1. Principle & Physics 4.1.1.2. Physical Processes
  • 12. 4. SPM 4.1. Scanning Tunneling Microscopy 4.1.2. Tool Setup & Application Examples page 12 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples
  • 13. 4.1.2. Tool Setup & Application Examples Basic Components measurement tip movement of tip in all 3 directions feedback loop signal processing sample environment and sample holder page 13 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples
  • 14. 4.1.2.1. Measurement Tip conditions - conducting tip (and sample!) - extreme small tip radius (~ 10 nm) - chemically stable most common tip material: tungsten tips, produced with an electrochemical etching process in NaOH further methods for tip shape optimization: ion milling page 14 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.1. Measurement Tip
  • 15. 4.1.2.1. Measurement Tip The tips are sensitive .... ... and therefore consumables. page 15 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.1. Measurement Tip
  • 16. 4.1.2.2. Feedback Loop Movement of the Tip and Feedback Loop fixed: constant height z fixed: constant current i current i position x position x position z page 16 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.2. Feedback Loop
  • 17. 4.1.2.2. Feedback Loop The relative movement of the tip vs. the sample surface requires an extreme spatial resolution of the corresponding drive. Solution: piezo actors, reversible deformation of a crystalline lattice on application of an external voltage + + + - - - + + + - - - + - - force el. potential typical materials: quartz, barium titanate, etc. Movement of the Tip and Feedback Loop page 17 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.2. Feedback Loop
  • 18. 4.1.2.2. Feedback Loop length scales of movement for piezo actors - typically about 5 nm / Volt in z direction - total movement in x, y: 10 ... 50 µm movement resolution determined by - resolution and stability of controlling voltage - thermal stability of the setup (materials with a small thermal expansion employed) - vibration damping measures for vibration damping - heavy base plate - decoupling of setup from the building (e.g. spring suspension) - rather small overall height of the scan unit (results in a high resonance frequency) - cover to suppress influence of sound waves Movement of the Tip and Feedback Loop page 18 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.2. Feedback Loop
  • 19. 4.1.2.3. Environment Environmental Conditions STM under ambient conditions is possible only for a small number of materials examples: graphite, noble metals the majority of applications requires UHV page 19 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.3. Environment
  • 20. 4.1.2.4. Application Examples Example: 7x7 reconstructed Si(111) surface page 20 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
  • 21. 4.1.2.4. Application Examples example: CO molecules on Cu page 21 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
  • 22. 4.1.2.4. Application Examples Examples: details of thin film growth Tb on W(110) (200 x 150 nm2 ) blue - H adsorption sites yellow/green - stacking faults in Tb step height: 0.28 nm page 22 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples
  • 23. 4.1.2.4. Application Examples page 23 L-MA-SI 4. SPM 4.1. STM 4.1.2. Tool Setup & Applciation Examples 4.1.2.4. Application Examples Dynamic Processes on Surfaces scan field: 500 x 500 nm2 total measurement time: 13 h
  • 24. Summary STM • atomic resolution in three dimension on surfaces • limitation to conducting/metallic samples • investigation of details of the electron distribution in the material • possibility to manipulate atoms on the surface • anodic oxidation of surface 48 Fe atoms on Cu (111)
  • 25. 4. SPM 4.2. Atomic Force Microscopy 4.2.1. Principle & Physics Abkürzung AFM – Atomic Force Microscopy page 25 L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics
  • 26. 4.2.1.1. Basics Principle & Result AFM - Atomic Force Microscopy V photo diode mirror laser tip piezo sample feedback loop cantilever page 26 L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.1. Basic Principle & Result
  • 27. 4.2.1.1. Basics Principle & Result AFM - Atomic Force Microscopy page 27 L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.1. Basic Principle & Result
  • 28. 4.2.1.2. Physical Processes Distance-Force-Relation Van-der-Waals bonding forces dominate repulsion due to the Pauli principle dominates force on the tip distance tip - sample typical length ~ 1 nm The atomic force microscopy is based on the measurement of the force between the tip and the sample. page 28 L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.2. Physical Processes
  • 29. 4.2.1.2. Physical Processes How a surface looks like under ambient conditions ? water layer The surface of materials under ambient conditions has a thin water film on top, particularly, if the surface is hydrophilic. This is often the case for oxides. In this case OH groups form the outer surface which favours the bonding of water molecules. The thickness of the water film depends on the properties of the surface and the humindity. Typical thicknesses on hydrophilic surfaces are 1.5 ... 3 nm. In hydrophobic materials (e.g. noble metals) the thickness is reduced to about 1 ... 4 monolayers of water. page 29 L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.2. Physical Processes
  • 30. 4.2.1.2. Physical Processes Influence of the Tip Radius on the Lateral Resolution The tip radius and the tip aspect determines the smallest resolvable surface features. page 30 L-MA-SI 4. SPM 4.2. AFM 4.2.1. Principle & Physics 4.2.1.2. Physical Processes
  • 31. 4. SPM 4.2. Atomic Force Microscopy 4.2.2. Tool Setup & Application Examples page 31 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples
  • 32. 4.2.2. Tool Setup & Application Examples many components same as in STM (therefore often combined microscopes!) Differences: measurement unit has cantilever + tip no current flow between tip and sample element to force vibration of the cantilever ... Basic Components measurement tip movement of tip in all 3 directions feedback loop signal processing sample environment and sample holder page 32 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples
  • 33. 4.2.2.1. Cantilever & Tip material often isolating (e.g. Si3N4) tip radius ≈ 10 .. 30 nm spring constant of the cantilever: k = 0,005 - 50 N/m (for comparison spring in a ball point pen - 1000 N/m spring in a car - 10.000 N/m) page 33 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.1. Cantilever & Tip
  • 34. 4.2.2.1. Cantilever & Tip parameter - different shapes - aspect ratio - tip radius - spring constant of the cantilever page 34 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.1. Cantilever & Tip
  • 35. 4.2.2.1. Cantilever & Tip page 35 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.1. Cantilever & Tip Production with Typical Methods from Microelectronics
  • 36. 4.2.2.2. Feedback Loop Cantilever & Tip Control page 36 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.2. Feedback Loop
  • 37. 4.2.2.3. Measurement Modes force at the tip distance tip - sample Contact Mode • constant deflection of the cantilever (constant force mode) or constant height of piezo actor (constant height mode  no feedback loop) • sample contact through the water film • force range nN ... µN page 37 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 38. 4.2.2.3. Measurement Modes Contact Mode advantages • high scan speed • especially suitable for rather rough samples • very good spatial resolution page 38 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 39. 4.2.2.3. Measurement Modes Contact Mode disadvantages • lateral forces may distort the image • forces rather large due to the capillary forces of the water film • deterioration of the surface possible 1 µm scan 2 µm scan page 39 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 40. 4.2.2.3. Measurement Modes force at the tip distance tip - sample Non-Contact Mode • forced vibration of the cantilever close to the resonance frequency • oscillation amplitude ≤ 10 nm • approach to the surface changes frequence, hence, the amplitude as well page 40 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 41. 4.2.2.3. Measurement Modes Non-Contact Mode Advantages: • small deterioration of the sample • practically no lateral forces • high spatial resolution NaCl surface disadvantages • often usable only in HV/UHV • therefore not usable for biologic sample page 41 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 42. 4.2.2.3. Measurement Modes force at the tip distance tip - sample Intermittent Mode • forced vibration of the cantilever with resonance frequency • oscillation amplitude 20 .. 100 nm • forces in the range ≤ 200 pN • change of the amplitude by approaching the sample surface page 42 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 43. 4.2.2.3. Measurement Modes Intermittent Mode advantages • small deterioration of samples • works in liquids as well • usable for biologic samples disadvantages • rather strong load of the cantilever • reduced spatial resolution structure of chromosoms page 43 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 44. 4.2.2.3. Measurement Modes Contact Mode - Special Application for Stiffness Measurements topography force modulation page 44 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 45. 4.2.2.3. Measurement Modes More Possibilties for Measurements of the Cantilever Motion ... until now page 45 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 46. 4.2.2.3. Measurement Modes Friction Force Microscopy topography friction force Self-assembly of alkanethiol on gold page 46 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes
  • 47. 2.3.2.4. Application Examples Not Discussed Here ... - details of atom movements - nanolithography - multi-tip setups - nanoindentation - local measurement of magnetic domains, thermal properties, capacitance, conductivity - ... page 47 L-MA-SI 4. SPM 4.2. AFM 4.2.2. Tool Setup & Application Examples 4.2.2.3. Measurement Modes

Editor's Notes

  • #5: links oben: Fe -Atome auf Kupfer, mit 2 lokalisierten Elektronen links unten: 7x7 Reco auf (111) Silizium Nickel (110) - Oberfläche Kupfer-Oberfläche
  • #18: Die Größe von Störungen darf die gewünschte Auflösung nicht übersteigen. Typische externe Störungen sind Gebäudeschwingungen und Trittschall mit Frequenzen von 1-100 Hz und Amplituden im Bereich von 0.5 – 150 nm. Ferner können durch den Scanvorgang auch im STM störende Vibrationen angeregt werden. Durch eine spezielle Aufhängung des Geräts (Metallplatten und Vitonringe) sowie durch möglichst geringe Baugröße der eigentlichen Scaneinheit (hohe Resonanzfrequenz!) und geeigneter Wahl der Scanfrequenz werden die Störungen minimiert. Das Rastertunnelmikroskop kann in verschiedenen Arbeitsmoden Betrieben werden: Im „constant current mode“ wird der Abstand zwischen Spitze und Probe so geregelt, dass der Tunnelstrom einem vorgegebenen Wert („reference current“) entspricht. Der für den Tunnelstrom entscheidende Abstand zwischen Spitze und Probe bleibt so konstant. Aus den Spannungswerten am Piezostellelement kann die Topographie der Oberfläche berechnet werden. externe und interne Schwingungsdämpfung Verwendung von Materialien mit TK nahe 0 Kurzer Aufbau Probenhalter - Spitze
  • #19: Die Größe von Störungen darf die gewünschte Auflösung nicht übersteigen. Typische externe Störungen sind Gebäudeschwingungen und Trittschall mit Frequenzen von 1-100 Hz und Amplituden im Bereich von 0.5 – 150 nm. Ferner können durch den Scanvorgang auch im STM störende Vibrationen angeregt werden. Durch eine spezielle Aufhängung des Geräts (Metallplatten und Vitonringe) sowie durch möglichst geringe Baugröße der eigentlichen Scaneinheit (hohe Resonanzfrequenz!) und geeigneter Wahl der Scanfrequenz werden die Störungen minimiert. Das Rastertunnelmikroskop kann in verschiedenen Arbeitsmoden Betrieben werden: Im „constant current mode“ wird der Abstand zwischen Spitze und Probe so geregelt, dass der Tunnelstrom einem vorgegebenen Wert („reference current“) entspricht. Der für den Tunnelstrom entscheidende Abstand zwischen Spitze und Probe bleibt so konstant. Aus den Spannungswerten am Piezostellelement kann die Topographie der Oberfläche berechnet werden. externe und interne Schwingungsdämpfung Verwendung von Materialien mit TK nahe 0 Kurzer Aufbau Probenhalter - Spitze
  • #22: Sample:: Tb terraces on W(110); during the evaporation process the substrate temperature was lowered from 350 to 300 °C, resulting in the formation of such step pyramid like structures, with each step being only one single atomic layer (0.28 nm) high. Beside hydrogen adsorbtion sites (blue) the terraces exhibit two kind of regions of slightly different color, yellowish and greenish. The difference is due to stacking faults that are present in the Tb(0001) surface. Image-size:: 200 nm x 150 nm Image: 10% topography+ 90% deviated topography at -0.3 VColor-information: current imaging tunneling spectroscopy, obtained after the  topography, dI/dU images at: red = 0.1 V green = 1 V blue = 2.1 V
  • #23: Sample:: Tb terraces on W(110); during the evaporation process the substrate temperature was lowered from 350 to 300 °C, resulting in the formation of such step pyramid like structures, with each step being only one single atomic layer (0.28 nm) high. Beside hydrogen adsorbtion sites (blue) the terraces exhibit two kind of regions of slightly different color, yellowish and greenish. The difference is due to stacking faults that are present in the Tb(0001) surface. Image-size:: 200 nm x 150 nm Image: 10% topography+ 90% deviated topography at -0.3 VColor-information: current imaging tunneling spectroscopy, obtained after the  topography, dI/dU images at: red = 0.1 V green = 1 V blue = 2.1 V
  • #27: links oben: Fe -Atome auf Kupfer, mit 2 lokalisierten Elektronen links unten: 7x7 Reco auf Silizium rechts oben: Mikrostruktur, 3D-Messung rechts unten: DVD - Oberflächenstruktur
  • #30: Cantilevers are fabricated on chips. What you get when you order cantilevers is a small micro-precision-machined rectangular or triangular piece of silicon or silicon nitride with a shiny surface. The minute cuboid you can see is not the cantilever itself, but the chip that holds the cantilever. Generally you need a magnifying glass to see the cantilever at the narrow side of the chip. Sometimes there are two or more cantilevers attached to the narrow edges of the chip. What you are unable to see without a good optical microscope is the tip at the end of the cantilever. The radius of the end of the tip determines the imaging quality. Typically the tip is a few microns long, some are shaped like a needle, and others look like an Egyptian pyramid. Cantilevers can be seen as springs. Remembering your physics lessons in school, you may recall that the extension of springs can be described by Hooke's Law F = - k * s. This means: The force F you need to extend the spring depends in linear manner on the range s by which you extend it. Derived from Hooke's law, you can allocate a spring constant k to any spring. The four damping springs of a car's wheels have a higher spring constant than the spring in your ball-point pen. The spring constants of the commercially available cantilevers vary over four orders of magnitude; cantilevers with spring constants between 0.005 N/m and 40 N/m are commercially available. You can deduce the properties of a cantilever from its outer shape. Thicker and shorter ones tend to be stiffer and have higher resonant frequencies.