SlideShare a Scribd company logo
Exponent Rules and Dividing
Polynomials
5.6
1. Divide exponential forms with the same base.
2. Divide numbers in scientific notation.
3. Divide monomials.
4. Divide a polynomial by a monomial.
6. Simplify expressions using rules of exponents.
5. Use long division to divide polynomials.
Objective 1
Divide exponential forms with the
same base.
Quotient Rule for Exponents
If m and n are integers and a is a real number,
where a 0, then
 .
m
m n
n
a
a
a


3
7
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
7









4
4
3
7
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2











1 1 1
1 1 1
When an equation in one variable is solved the answer is a point on a line.
Divide:
14
6
j
j
3
5
u
u
3
6
m
m
2
2
3
5
y
x
y
x
2
u 8
1
j

8
14
6 

 j
j
9
3
6 


 m
m 9
1
m
 y
x3
Objective 2
Divide numbers in scientific notation.
Divide and write the result in scientific notation.
7
3
2.34 10
3.6 10


7
3
2.34 10
3.6 10
 
7 3
0.65 10 
 
4
0.65 10
 
3
6.5 10
 
Note: This is not in scientific
notation.
When an equation in one variable is solved the answer is a point on a line.
Divide and write the result in scientific notation:
2
4
10
88
1
10
964
9



.
.
15
5
10
6
6
10
32
1

 
.
. 20
10
2 

.
21
10
0
2 

.
6
10
3
5 
.
Objective 3
Divide monomials.
Copyright © 2011 Pearson Education, Inc.
Divide.
3 6 2
4 3
18
24
x y z
x y
3 6 2
4 3
18
24 1

x y z
x y
3 4 6 3 2
18
24
 
 x y z
1 3 2
3
4

 x y z
3 2
3 1
4 1 1

y z
x
3 2
3
4

y z
x
  
  
  
1
24
18 2
3
6
4
3
z
y
y
x
x




Divide.
3 6 2
4 3
18
24
x y z
x y
3
1
24
18 2
3
6
4
3
z
y
y
x
x




4
1
x
y3
1
x
z
y
4
3 2
3

Dividing Monomials
1. Divide the coefficients or simplify them to
fractions in lowest terms.
2. Use the quotient rule for the exponents with like
bases.
3. Write the final expression so that all exponents
are positive.
When an equation in one variable is solved the answer is a point on a line.
Divide:
7
2
4
5
42
28
q
p
r
q
p
3
2
4
5
4
4
y
xy
xy
xy 64
43

3
3
3
2
q
r
p
Objective 4
Divide a polynomial by a monomial.
5
2
7
4
5
2
5
7
5
4 




5
2
5
7
5
4
5
2
7
4





From arithmetic…
or
Divide.
6 2 3
2
36 9 6
3
 
x y x y x
x y
6 2 3
2 2 2
36 9 6
3 3 3
  
x y x y x
x y x y x y
4 2
12 3
x y x
xy
  
Divide each term in the
polynomial by the monomial.
If a, b, and c are real numbers, variables, or
expressions with c 0, then
Dividing a Polynomial by a Monomial
Divide each term in the polynomial by the
monomial.
 .

 
a b a b
c c c
When an equation in one variable is solved the answer is a point on a line.
Divide:
2
2
5
3
5
15
30
xyz
xyz
yz
x


2
2
2
4
4
4
28
16
hk
k
h
hk
hk 

h
k
k 

7
4 2
3
6 3
2

 z
x
Objective 6
Simplify expressions using rules of
exponents.
Exponents Summary
Zero as an exponent: a0 = 1, where a 0.
Negative exponents:
Product rule for exponents:
Quotient rule for exponents:
Raising a power to a power:
Raising a product to a power:
Raising a quotient to a power:

1 1
, ,
n n
n n
a a
a a


 


m n m n
a a a
m
m n
n
a
a
a


  
n
m mn
a a
  
n n n
ab a b
   


n n
a b
b a
  
n
n
n
a a
b b

Use the quotient rule for exponents.
Use the power rule for exponents.
20
5
6
3
2
4
m
m

 
 5
4
3
2
2
4
m
m
14
2
m

20
6
32
64
m
m

2
1
1
m14
Evaluate coefficients.
Reduce coefficients.
4
1
2
2










z
y
x
4
4
8
4
2



z
y
x
8
4
4
4
2
x
z
y
 8
4
4
16
x
z
y

 
8
6
5
3


y
y
y
8
6
15



y
y
y
15
6
8
y
y
y
 21
8
y
y
 13
1
y

When an equation in one variable is solved the answer is a point on a line.
Simplify:
p
n
m
p
n
m
3
1
2
1
6
3




 
 3
7
2
4
6
3
y
y
3
2
7
3
p
n
m
13
24
1
y
Slide 5- 24
Copyright © 2011 Pearson Education, Inc.
Simplify.
a)
b)
c)
d)
2
5
3

 
 
 
a
a
16
1
a
4
1
a
16
a
4
a
5.6
Slide 5- 25
Copyright © 2011 Pearson Education, Inc.
Simplify.
a)
b)
c)
d)
2
5
3

 
 
 
a
a
16
1
a
4
1
a
16
a
4
a
5.6
Slide 5- 26
Copyright © 2011 Pearson Education, Inc.
Divide.
a) b)
c) d)
5.6
6
8
4
6
3
18
15
18
x
x
x
x 


2
5
6
6
x
x 
 2
2
6
5
6 x
x



2
6
5
6 x
x


 x
x
6
5
6 


Slide 5- 27
Copyright © 2011 Pearson Education, Inc.
Divide.
a) b)
c) d)
5.6
6
8
4
6
3
18
15
18
x
x
x
x 


2
5
6
6
x
x 
 2
2
6
5
6 x
x



2
6
5
6 x
x


 x
x
6
5
6 



More Related Content

PPT
dividing basics .ppt
PPT
All_of_dividing_Polynomials and mulitnomials
PPTX
Ultimate guide monomials exponents
PDF
Polinomios
PPTX
Division of polynomials
PPTX
January 29 30
PDF
0.2 Exponents and Polynomials
PDF
0.3 Polynomials
dividing basics .ppt
All_of_dividing_Polynomials and mulitnomials
Ultimate guide monomials exponents
Polinomios
Division of polynomials
January 29 30
0.2 Exponents and Polynomials
0.3 Polynomials

Similar to Section 56 .ppt (20)

PPT
# Introduction to polynomial class 10th #
PPT
Section 52.ppt maths subject chapter polinomials
PPTX
February 24, 2015
PDF
Dividing Polynomials
PPTX
Feb. 14th, 2014
PPT
Ppt on polynomial
PPTX
Class VIII- Polynomials.pptx ppt polynomials
DOC
Polynomial
DOC
Polynomial
PPT
Q2-W2-VERBAL-TO-MATH-AND-POLYNOMIALS.ppt
PPTX
Algebraic expressions and equations
PPT
Polynomials
PDF
Mathematics Grade 11 Term 1 Week 1_2021.pdf
PPTX
Polynomials
PPTX
1. DIVISION OF POLYNOMIALS.pptx
PPTX
Review of Basic Algebra for an introduction
DOC
Dividing polynomials
PPTX
Dividing Polynomials (1).pptx
PPT
Polynomial for class 9
PPT
Chapter4.4
# Introduction to polynomial class 10th #
Section 52.ppt maths subject chapter polinomials
February 24, 2015
Dividing Polynomials
Feb. 14th, 2014
Ppt on polynomial
Class VIII- Polynomials.pptx ppt polynomials
Polynomial
Polynomial
Q2-W2-VERBAL-TO-MATH-AND-POLYNOMIALS.ppt
Algebraic expressions and equations
Polynomials
Mathematics Grade 11 Term 1 Week 1_2021.pdf
Polynomials
1. DIVISION OF POLYNOMIALS.pptx
Review of Basic Algebra for an introduction
Dividing polynomials
Dividing Polynomials (1).pptx
Polynomial for class 9
Chapter4.4
Ad

More from jeymararizalapayumob (11)

PPTX
INTERFERENCE AND DIFFRACTION .pptx
PPTX
KAHALAGAHAN NGNPAGMAMAHAL SA DIYO S.pptx
PPT
aics9e_ppt_2 _1.ppt
PPTX
ANG-PAGLABAG-SA-KARAPATANG-PANTAO .pptx
PPTX
Dinastiya Tsina .pptx
PPTX
Ikalawang digmaang pandaigdig .pptx
PPTX
Daily Lesson Intro to inequalities. pptx
PPTX
Sswedding -181029125259 (1).pptx
PPTX
Charter change .pptx
PPTX
3. Magnetic force of moed particles.pptx
PPTX
electromagneticwaves-160913..110902.pptx
INTERFERENCE AND DIFFRACTION .pptx
KAHALAGAHAN NGNPAGMAMAHAL SA DIYO S.pptx
aics9e_ppt_2 _1.ppt
ANG-PAGLABAG-SA-KARAPATANG-PANTAO .pptx
Dinastiya Tsina .pptx
Ikalawang digmaang pandaigdig .pptx
Daily Lesson Intro to inequalities. pptx
Sswedding -181029125259 (1).pptx
Charter change .pptx
3. Magnetic force of moed particles.pptx
electromagneticwaves-160913..110902.pptx
Ad

Recently uploaded (20)

PDF
Integrated-2D-and-3D-Animation-Bridging-Dimensions-for-Impactful-Storytelling...
PPTX
6- Architecture design complete (1).pptx
PDF
Quality Control Management for RMG, Level- 4, Certificate
PPTX
YV PROFILE PROJECTS PROFILE PRES. DESIGN
PPTX
Entrepreneur intro, origin, process, method
PPTX
Wisp Textiles: Where Comfort Meets Everyday Style
PDF
SEVA- Fashion designing-Presentation.pdf
PPTX
rapid fire quiz in your house is your india.pptx
PPTX
LITERATURE CASE STUDY DESIGN SEMESTER 5.pptx
PPTX
joggers park landscape assignment bandra
PDF
BRANDBOOK-Presidential Award Scheme-Kenya-2023
PPT
Machine printing techniques and plangi dyeing
PDF
GREEN BUILDING MATERIALS FOR SUISTAINABLE ARCHITECTURE AND BUILDING STUDY
PPTX
mahatma gandhi bus terminal in india Case Study.pptx
PDF
Phone away, tabs closed: No multitasking
PPTX
Fundamental Principles of Visual Graphic Design.pptx
PPT
WHY_R12 Uaafafafpgradeaffafafafaffff.ppt
PDF
The Advantages of Working With a Design-Build Studio
PDF
Design Thinking - Module 1 - Introduction To Design Thinking - Dr. Rohan Dasg...
PDF
Trusted Executive Protection Services in Ontario — Discreet & Professional.pdf
Integrated-2D-and-3D-Animation-Bridging-Dimensions-for-Impactful-Storytelling...
6- Architecture design complete (1).pptx
Quality Control Management for RMG, Level- 4, Certificate
YV PROFILE PROJECTS PROFILE PRES. DESIGN
Entrepreneur intro, origin, process, method
Wisp Textiles: Where Comfort Meets Everyday Style
SEVA- Fashion designing-Presentation.pdf
rapid fire quiz in your house is your india.pptx
LITERATURE CASE STUDY DESIGN SEMESTER 5.pptx
joggers park landscape assignment bandra
BRANDBOOK-Presidential Award Scheme-Kenya-2023
Machine printing techniques and plangi dyeing
GREEN BUILDING MATERIALS FOR SUISTAINABLE ARCHITECTURE AND BUILDING STUDY
mahatma gandhi bus terminal in india Case Study.pptx
Phone away, tabs closed: No multitasking
Fundamental Principles of Visual Graphic Design.pptx
WHY_R12 Uaafafafpgradeaffafafafaffff.ppt
The Advantages of Working With a Design-Build Studio
Design Thinking - Module 1 - Introduction To Design Thinking - Dr. Rohan Dasg...
Trusted Executive Protection Services in Ontario — Discreet & Professional.pdf

Section 56 .ppt

  • 1. Exponent Rules and Dividing Polynomials 5.6 1. Divide exponential forms with the same base. 2. Divide numbers in scientific notation. 3. Divide monomials. 4. Divide a polynomial by a monomial. 6. Simplify expressions using rules of exponents. 5. Use long division to divide polynomials.
  • 2. Objective 1 Divide exponential forms with the same base.
  • 3. Quotient Rule for Exponents If m and n are integers and a is a real number, where a 0, then  . m m n n a a a   3 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 7          4 4 3 7 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2            1 1 1 1 1 1
  • 4. When an equation in one variable is solved the answer is a point on a line. Divide: 14 6 j j 3 5 u u 3 6 m m 2 2 3 5 y x y x 2 u 8 1 j  8 14 6    j j 9 3 6     m m 9 1 m  y x3
  • 5. Objective 2 Divide numbers in scientific notation.
  • 6. Divide and write the result in scientific notation. 7 3 2.34 10 3.6 10   7 3 2.34 10 3.6 10   7 3 0.65 10    4 0.65 10   3 6.5 10   Note: This is not in scientific notation.
  • 7. When an equation in one variable is solved the answer is a point on a line. Divide and write the result in scientific notation: 2 4 10 88 1 10 964 9    . . 15 5 10 6 6 10 32 1    . . 20 10 2   . 21 10 0 2   . 6 10 3 5  .
  • 9. Copyright © 2011 Pearson Education, Inc. Divide. 3 6 2 4 3 18 24 x y z x y 3 6 2 4 3 18 24 1  x y z x y 3 4 6 3 2 18 24    x y z 1 3 2 3 4   x y z 3 2 3 1 4 1 1  y z x 3 2 3 4  y z x         
  • 10. 1 24 18 2 3 6 4 3 z y y x x     Divide. 3 6 2 4 3 18 24 x y z x y 3 1 24 18 2 3 6 4 3 z y y x x     4 1 x y3 1 x z y 4 3 2 3 
  • 11. Dividing Monomials 1. Divide the coefficients or simplify them to fractions in lowest terms. 2. Use the quotient rule for the exponents with like bases. 3. Write the final expression so that all exponents are positive.
  • 12. When an equation in one variable is solved the answer is a point on a line. Divide: 7 2 4 5 42 28 q p r q p 3 2 4 5 4 4 y xy xy xy 64 43  3 3 3 2 q r p
  • 13. Objective 4 Divide a polynomial by a monomial.
  • 15. Divide. 6 2 3 2 36 9 6 3   x y x y x x y 6 2 3 2 2 2 36 9 6 3 3 3    x y x y x x y x y x y 4 2 12 3 x y x xy    Divide each term in the polynomial by the monomial.
  • 16. If a, b, and c are real numbers, variables, or expressions with c 0, then Dividing a Polynomial by a Monomial Divide each term in the polynomial by the monomial.  .    a b a b c c c
  • 17. When an equation in one variable is solved the answer is a point on a line. Divide: 2 2 5 3 5 15 30 xyz xyz yz x   2 2 2 4 4 4 28 16 hk k h hk hk   h k k   7 4 2 3 6 3 2   z x
  • 18. Objective 6 Simplify expressions using rules of exponents.
  • 19. Exponents Summary Zero as an exponent: a0 = 1, where a 0. Negative exponents: Product rule for exponents: Quotient rule for exponents: Raising a power to a power: Raising a product to a power: Raising a quotient to a power:  1 1 , , n n n n a a a a       m n m n a a a m m n n a a a      n m mn a a    n n n ab a b       n n a b b a    n n n a a b b 
  • 20. Use the quotient rule for exponents. Use the power rule for exponents. 20 5 6 3 2 4 m m     5 4 3 2 2 4 m m 14 2 m  20 6 32 64 m m  2 1 1 m14 Evaluate coefficients. Reduce coefficients.
  • 23. When an equation in one variable is solved the answer is a point on a line. Simplify: p n m p n m 3 1 2 1 6 3        3 7 2 4 6 3 y y 3 2 7 3 p n m 13 24 1 y
  • 24. Slide 5- 24 Copyright © 2011 Pearson Education, Inc. Simplify. a) b) c) d) 2 5 3        a a 16 1 a 4 1 a 16 a 4 a 5.6
  • 25. Slide 5- 25 Copyright © 2011 Pearson Education, Inc. Simplify. a) b) c) d) 2 5 3        a a 16 1 a 4 1 a 16 a 4 a 5.6
  • 26. Slide 5- 26 Copyright © 2011 Pearson Education, Inc. Divide. a) b) c) d) 5.6 6 8 4 6 3 18 15 18 x x x x    2 5 6 6 x x   2 2 6 5 6 x x    2 6 5 6 x x    x x 6 5 6   
  • 27. Slide 5- 27 Copyright © 2011 Pearson Education, Inc. Divide. a) b) c) d) 5.6 6 8 4 6 3 18 15 18 x x x x    2 5 6 6 x x   2 2 6 5 6 x x    2 6 5 6 x x    x x 6 5 6   