The document discusses series solutions for second order linear differential equations near ordinary and regular singular points.
It defines an ordinary point as a point where the functions p(x) and q(x) in the normalized form of the differential equation are analytic. Near an ordinary point, there exist two linearly independent power series solutions of the form Σcn(x-a)n that converge within the radii of convergence of p(x) and q(x).
It also discusses finding series solutions near a regular singular point x0=0, where the limits of p(x) and q(x) as x approaches 0 exist. An initial guess of a power series solution with exponent r is made, and the