SlideShare a Scribd company logo
CONSTRUCTION MANAGEMENT
Concept-Develop-Execute-Finish
__________________________________________________________________________________
Seun Sambath, PhD
Concrete Structures
(ACI 318-05)
in Mathcad
Sixth Edition
Phnom Penh 2010
___________________________________________________________________________________
Address: #M41, St.308, Sangkat Tonle Basac, Khan Chamkarmon,
Phnom Penh, Cambodia.
Tel: 012 659 848.
Table of Contents
1. Unit conversion ....................................................................................................... 1
2. Simple calculation ................................................................................................... 4
3. Materials ................................................................................................................ 5
4. Safety provision ....................................................................................................... 10
5. Loads on structures (case of two-way slab) ................................................................ 12
6. Loads on structures (case of one-way slab) ................................................................ 16
7. Loads on staircase .................................................................................................. 20
8. Loads on tile roof ..................................................................................................... 23
9. ASCE wind loads .................................................................................................... 25
10. Design of singly reinforced beams ............................................................................ 28
11. Design of doubly reinforced beams ......................................................................... 39
12. Design of T beams ................................................................................................. 52
13. Shear design ......................................................................................................... 60
14. Column design ...................................................................................................... 68
15. Design of footings .................................................................................................. 99
16. Design of pile caps ............................................................................................... 106
17. Slab design .......................................................................................................... 115
18. Design of staircase ............................................................................................... 142
19. Deflections ........................................................................................................... 148
20. Development lengths ............................................................................................. 158
Reference .................................................................................................................. 162
1. Unit Conversion
Length
in = inch
ft = foot
yd = yard
mi = mile
1in 25.4 mm 1cm 0.394 in
1ft 0.305 m 1m 3.281 ft 1ft 12 in
1yd 0.914 m 1m 1.094 yd 1yd 3 ft
1mi 1.609 km 1km 0.621 mi 1mi 1760 yd
1mi 5280 ft
1m 100mm 1.1m 1mi 200m 1.124 mi
Size of standard concrete cylinder D 6in 15.24 cm
H 12in 30.48 cm
Force
lbf = pound force
kip = kilopound force
1lbf 4.448 N 1lbf 0.454 kgf 1kgf 9.807 N
1N 0.225 lbf 1kgf 2.205 lbf 1N 0.102 kgf
1kip 4.448 kN 1kip 0.454 tonnef 1tonf 0.907 tonnef
1kN 0.225 kip 1tonnef 2.205 kip 1tonnef 1.102 tonf
1tonnef 1000 kgf 1tonf 2000 lbf
Page 1
Stress
psi = pound per square inch 1psi 1
lbf
in
2

ksi = kilopound per square inch 1ksi 1
kip
in
2

psf = pound per square foot 1psf 1
lbf
ft
2

1psi 6.895 kPa 1kPa 0.145 psi 1Pa 1
N
m
2

1ksi 6.895 MPa 1MPa 0.145 ksi 1kPa 1
kN
m
2

1MPa 1
N
mm
2

1psf 0.048
kN
m
2
 1
kN
m
2
20.885 psf
1psf 4.882
kgf
m
2
 1
kgf
m
2
0.205 psf
Concrete compression strength
3000psi 20.7 MPa 20MPa 2900.8 psi
4000psi 27.6 MPa 25MPa 3625.9 psi
5000psi 34.5 MPa 35MPa 5076.3 psi
8000psi 55.2 MPa 55MPa 7977.1 psi
Steel yield strength
60ksi 413.7 MPa 390MPa 56.6 ksi
75ksi 517.1 MPa 490MPa 71.1 ksi
Live loads
40psf 1.915
kN
m
2
 200
kgf
m
2
40.963 psf
100psf 4.788
kN
m
2
 4.80
kN
m
2
100.25 psf
Page 2
Density
1pcf 1
lbf
ft
3

125pcf 19.636
kN
m
3
 145pcf 22.778
kN
m
3

Moments
1ft kip 1.356 kN m
User setting
Riels 1
USD 4165Riels
124USD 516460 Riels
200000Riels 48.019 USD
CostSteel 665
USD
1tonnef

670kgf CostSteel 445.55 USD
Page 3
2. Simple Calculation
1 3
2
3







3
23.472
a 2 b 4 c 1
Δ b
2
4 a c
x1
b Δ
2 a
0.225
x2
b Δ
2 a
2.225
Page 4
3. Materials
1. Concrete
Standard concrete cylinder D 6in 15.24 cm D 150mm
H 12in 30.48 cm H 300mm
Concrete compression strength
f'c 3000psi 20.7 MPa f'c 20MPa 2900.8 psi
f'c 4000psi 27.6 MPa f'c 25MPa 3625.9 psi
f'c 5000psi 34.5 MPa f'c 35MPa 5076.3 psi
Concrete ultimate strain
εu 0.003
Cubic and cylinder compression strength
fcube
f'c
0.85
=
f'c 20MPa fcube
f'c
0.85
23.529 MPa
f'c 25MPa fcube
f'c
0.85
29.412 MPa
f'c 35MPa fcube
f'c
0.85
41.176 MPa
Modulus of rupture (tensile strength)
fr 7.5 f'c= (in psi)
Metric coefficient 7.5psi
f'c
psi
 7.5MPa
psi
MPa

f'c
MPa
MPa
psi
= C MPa
f'c
MPa
=
C 7.5
psi
MPa
MPa
psi
 0.623
fr 0.623 f'c= (in MPa)
Page 5
Modulus of elasticity
Ec 33 wc
1.5
 f'c= (in psi)
wc is a unit weight of concrete (in pcf)
Metric coefficient 33psi
kN
m
3
pcf








1.5

MPa
psi
 44.011 MPa
Ec 44 wc
1.5
 f'c= (in MPa)
wc in kN/m3
Example 3.1
Concrete compression strength f'c 25MPa
Unit weight of concrete wc 24
kN
m
3
 145pcf 22.778
kN
m
3

Modulus of rupture
fr 7.5psi
f'c
psi
 3.114 MPa
fr 0.623MPa
f'c
MPa
 3.115 MPa
Modulus of elasticity
Ec 33psi
wc
pcf






1.5

f'c
psi
 2.587 10
4
 MPa
Ec 44MPa
wc
kN
m
3










1.5

f'c
MPa
 2.587 10
4
 MPa
Page 6
2. Steel Reinforcements
Steel yield strength of deformed bar (DB) fy 390MPa 56.565 ksi
Steel yield strength of round bar (RB) fy 235MPa 34.084 ksi
Modulus of elasticity Es 29000000psi 1.999 10
5
 MPa
Es 2 10
5
MPa
Steel yield strength εy
fy
Es
=
US Steel Reinforcements
Bar No. (#) Bar diameter
no
3
4
5
6
7
8
9
10
11
12
13
14


































 D
no
8
in D
9.5
12.7
15.9
19
22.2
25.4
28.6
31.8
34.9
38.1
41.3
44.4


































mm
Page 7
Steel area
A
π D
2

4
 A
0.71
1.27
1.98
2.85
3.88
5.07
6.41
7.92
9.58
11.4
13.38
15.52


































cm
2

Weight of steel reinforcements
W A 7850
kgf
m
3
 W
0.559
0.994
1.554
2.237
3.045
3.978
5.034
6.215
7.52
8.95
10.503
12.182

































kgf
m

ORIGIN 1
n 1 9 Area
n 
A n
Page 8
1 2 3 4 5 6 7 8 9
3 9.5 0.71 1.43 2.14 2.85 3.56 4.28 4.99 5.70 6.41 0.559
4 12.7 1.27 2.53 3.80 5.07 6.33 7.60 8.87 10.13 11.40 0.994
5 15.9 1.98 3.96 5.94 7.92 9.90 11.88 13.86 15.83 17.81 1.554
6 19.1 2.85 5.70 8.55 11.40 14.25 17.10 19.95 22.80 25.65 2.237
7 22.2 3.88 7.76 11.64 15.52 19.40 23.28 27.16 31.04 34.92 3.045
8 25.4 5.07 10.13 15.20 20.27 25.34 30.40 35.47 40.54 45.60 3.978
9 28.6 6.41 12.83 19.24 25.65 32.07 38.48 44.89 51.30 57.72 5.034
10 31.8 7.92 15.83 23.75 31.67 39.59 47.50 55.42 63.34 71.26 6.215
11 34.9 9.58 19.16 28.74 38.32 47.90 57.48 67.06 76.64 86.22 7.520
12 38.1 11.40 22.80 34.20 45.60 57.00 68.41 79.81 91.21 102.61 8.950
13 41.3 13.38 26.76 40.14 53.52 66.90 80.28 93.66 107.04 120.42 10.503
14 44.5 15.52 31.04 46.55 62.07 77.59 93.11 108.63 124.14 139.66 12.182
Bar #
Diameter
(mm)
Area of cross section (cm
2
) for the number of bars is equal to Weight
(kgf/m)
Metric Steel Reinforcements
D 6 8 10 12 14 16 18 20 22 25 28 32 36 40( )
T
mm
A
π D
2

4
 W A 7850
kgf
m
3

n 1 9 Area
n 
A n
1 2 3 4 5 6 7 8 9
6 0.28 0.57 0.85 1.13 1.41 1.70 1.98 2.26 2.54 0.222
8 0.50 1.01 1.51 2.01 2.51 3.02 3.52 4.02 4.52 0.395
10 0.79 1.57 2.36 3.14 3.93 4.71 5.50 6.28 7.07 0.617
12 1.13 2.26 3.39 4.52 5.65 6.79 7.92 9.05 10.18 0.888
14 1.54 3.08 4.62 6.16 7.70 9.24 10.78 12.32 13.85 1.208
16 2.01 4.02 6.03 8.04 10.05 12.06 14.07 16.08 18.10 1.578
18 2.54 5.09 7.63 10.18 12.72 15.27 17.81 20.36 22.90 1.998
20 3.14 6.28 9.42 12.57 15.71 18.85 21.99 25.13 28.27 2.466
22 3.80 7.60 11.40 15.21 19.01 22.81 26.61 30.41 34.21 2.984
25 4.91 9.82 14.73 19.63 24.54 29.45 34.36 39.27 44.18 3.853
28 6.16 12.32 18.47 24.63 30.79 36.95 43.10 49.26 55.42 4.834
32 8.04 16.08 24.13 32.17 40.21 48.25 56.30 64.34 72.38 6.313
36 10.18 20.36 30.54 40.72 50.89 61.07 71.25 81.43 91.61 7.990
40 12.57 25.13 37.70 50.27 62.83 75.40 87.96 100.53 113.10 9.865
Diameter
(mm)
Area of cross section (cm
2
) for the number of bars is equal to Weight
(kgf/m)
Page 9
4. Safety Provision
Required_Strength Design_Strength
U ϕSn
where
U = required strength (factored loads)
ϕSn = design strength
Sn = nominal strength
ϕ = strength reduction factor
a. Load Combinations
Basic combination U 1.2 D 1.6 L=
Roof combination U 1.2 D 1.6 L 1.0 Lr=
Wind combination U 1.2 D 1.6 W 1.0 L 0.5 Lr=
where
D = dead load
L = live load
Lr = roof live load
W = wind load
Page 10
b. Strength Reduction Factor
Strength Condition Strength reduction factor ϕ
Tension-controlled members (εt 0.005 ) ϕ 0.9=
Compression-controlled (εt 0.002 )
Spirally reinforced ϕ 0.70=
Other ϕ 0.65=
Shear and torsion ϕ 0.75=
where
εt = net tensile strain
For spirally reinforced members
ϕ 0.9 εt 0.005if
0.70 εt 0.002if
1.7 200 εt
3
otherwise
= 0.7
0.9 0.7
0.005 0.002
εt 0.002 
0.7
200
3
εt 0.002 
1.7 200 εt
3
=
For other members
ϕ 0.9 εt 0.005if
0.65 εt 0.002if
1.45 250 εt
3
otherwise
=
Page 11
5. Loads on Structures (Case of Two-Way Slabs)
Slab dimension
Short side La 4m
Long side Lb 6m
A. Preliminary Design
Thickness of two-way slab
Perimeter La Lb  2
tmin
Perimeter
180
111.111 mm
t
1
30
1
50






La 133.333 80( ) mm
t 110mm
Section of beam B1
L 6m
h
1
10
1
15






L 600 400( ) mm h 500mm
b 0.3 0.6( ) h 150 300( ) mm b 250mm
For girders h
1
8
1
10






L=
For two-way slab beams h
1
10
1
15






L=
For floor beams h
1
15
1
20






L=
Section of beam B2
L 4m
h
1
10
1
15






L 400 266.667( ) mm h 300mm
b 0.3 0.6( ) h 90 180( ) mm b 200mm
Page 12
B. Loads on Slab
Floor cover Cover 50mm 22
kN
m
3
1.1
kN
m
2

RC slab Slab t 25
kN
m
3
2.75
kN
m
2

Ceiling Ceiling 0.40
kN
m
2

M & E Mechanical 0.20
kN
m
2

Partition Partition 1.00
kN
m
2

Dead load DL Cover Slab Ceiling Mechanical Partition 5.45
kN
m
2

Live load for Lab LL 60psf 2.873
kN
m
2

Factored load wu 1.2 DL 1.6 LL 11.137
kN
m
2

C. Loads of Wall
Void 30mm 30 mm 190 mm 4
wbrick.hollow 90mm 90 mm 190 mm Void( ) 20
kN
m
3
1.744 kgf
wbrick.solid 45mm 90 mm 190 mm 20
kN
m
3
1.569 kgf
ρbrick.hollow
wbrick.hollow
90mm 90 mm 190 mm
11.111
kN
m
3

Brickhollow.10 120mm Void
55
1m
2






20
kN
m
3
1.648
kN
m
2

Brickhollow.20 220mm Void
110
1m
2






20
kN
m
3
2.895
kN
m
2

Page 13
D. Loads on Beam B1
Self weight SW 25cm 50cm 110mm( ) 25
kN
m
3
2.438
kN
m

Wall wwall Brickhollow.10 3.5m 50cm( ) 4.943
kN
m

Slab α
4m
2
6m
0.333 k 1 2 α
2
 α
3
 0.815
wD.slab DL
4m
2
 2 k 17.763
kN
m

wL.slab LL
4m
2
 2 k 9.363
kN
m

Dead load wD SW wwall wD.slab 25.143
kN
m

Live load wL wL.slab 9.363
kN
m

Factored load wu 1.2 wD 1.6 wL 45.153
kN
m

E. Loads on Beam B2
Self weight SW 20cm 30cm 110mm( ) 25
kN
m
3
0.95
kN
m

Wall wwall Brickhollow.10 3.5m 30cm( ) 5.272
kN
m

Slab α
4m
2
4m
0.5 k 1 2 α
2
 α
3
 0.625
wD.slab DL
4m
2
 2 k 13.625
kN
m

wL.slab LL
4m
2
 2 k 7.182
kN
m

Dead load wD SW wwall wD.slab 19.847
kN
m

Live load wL wL.slab 7.182
kN
m

Factored load wu 1.2 wD 1.6 wL 35.308
kN
m

Page 14
F. Loads on Column
Tributary area B 4m L 6m
Slab loads PD.slab DL B L 130.8 kN
PL.slab LL B L 68.948 kN
Beam loads PB1 25cm 50cm 110mm( ) 25
kN
m
3
L 14.625 kN
PB2 20cm 30cm 110mm( ) 25
kN
m
3
B 3.8 kN
Wall loads Pwall.1 Brickhollow.10 3.5m 50cm( ) L 29.657 kN
Pwall.2 Brickhollow.10 3.5m 30cm( ) B 21.089 kN
SW of column SW 5% 7%( ) PD=
Total loads for number of floors n 7
PD PD.slab PB1 PB2 Pwall.1 Pwall.2  1.05 n 1469.787 kN
PL PL.slab n 482.633 kN
Pu 1.2 PD 1.6 PL 2535.958 kN
Pu
PD PL
1.299
Control
PD PL
n B L
11.622
kN
m
2
 (Ref. 10
kN
m
2
18
kN
m
2
 )
PL
PD PL
24.72 % (Ref. 15% 35% )
Page 15
06 . Loads on Structures (Case of One-Way Slabs)
A. Preliminary Design
Thickness of one-way slab (both ends continue)
L
6m
2
3 m
tmin
L
28
107.143 mm
t
1
25
1
35






L 120 85.714( ) mm
t 120mm
Page 16
Section of floor beam B1
L 8m
h
1
15
1
20






L 533.333 400( ) mm h 500mm
b 0.3 0.6( ) h 150 300( ) mm b 250mm
Section of girder B2
L 6m
h
1
8
1
10






L 750 600( ) mm h 600mm
b 0.3 0.6( ) h 180 360( ) mm b 300mm
B. Loads on Slab
Cover 50mm 22
kN
m
3
1.1
kN
m
2

Slab t 25
kN
m
3
3
kN
m
2

Ceiling 0.40
kN
m
2

Mechanical 0.20
kN
m
2

Partition 1.00
kN
m
2

DL Cover Slab Ceiling Mechanical Partition 5.7
kN
m
2

LL 60psf 2.873
kN
m
2

wu 1.2 DL 1.6 LL 11.437
kN
m
1m

Page 17
C. Loads on Beam B1
Void 30mm 30 mm 190 mm 4
Brickhollow.10 120mm Void
55
1m
2






20
kN
m
3
1.648
kN
m
2

SW 25cm 50cm 120mm( ) 25
kN
m
3
2.375
kN
m

wwall Brickhollow.10 3.5m 50cm( ) 4.943
kN
m

wD.slab DL 3 m 17.1
kN
m

wL.slab LL 3 m 8.618
kN
m

wD SW wwall wD.slab 24.418
kN
m

wL wL.slab 8.618
kN
m

wu 1.2 wD 1.6 wL 43.091
kN
m

D. Loads on Girder B2
SW 30cm 60cm 120mm( ) 25
kN
m
3
3.6
kN
m

wwall Brickhollow.10 3.5m 60cm( ) 4.778
kN
m

PB1 25cm 50cm 120mm( ) 25
kN
m
3
8m 4m
2
 14.25 kN
Pwall Brickhollow.10 3.5m 50cm( )
8m 4m
2
 29.657 kN
PD.slab DL 3 m
8m 4m
2
 102.6 kN
PL.slab LL 3 m
8m 4m
2
 51.711 kN
Page 18
Factored loads
wD SW wwall 8.378
kN
m

wL 0
wu 1.2 wD 1.6 wL 10.054
kN
m

PD PB1 Pwall PD.slab 146.507 kN
PL PL.slab 51.711 kN
Pu 1.2 PD 1.6 PL 258.545 kN
Page 19
7. Loads on Staircase
Run and rise of step G
3.5m
12
291.667 mm
H
3.8m
24
158.333 mm G 2 H 60.833 cm
Slope angle α atan
H
G






28.496 deg
Loads on Waist Slab
Thickness of waist slab t 120mm
Step cover Cover 50mm H G( ) 22
kN
m
3
1m
G 1 m
 1.697
kN
m
2

Page 20
SW of step Step
G H
2
24
kN
m
3
1m
G 1 m
 1.9
kN
m
2

SW of waist slab Slab t 25
kN
m
3
1m
2
1m
2
cos α( )
 3.414
kN
m
2

Renderring Renderring 0.40
kN
m
2
1m
2
1m
2
cos α( )
 0.455
kN
m
2

Handrail Handrail 0.50
kN
m
2

Total dead load DL Cover Step Slab Renderring Handrail
DL 7.966
kN
m
2

Live load for public staircase LL 100psf 4.788
kN
m
2

Factored load wu 1.2 DL 1.6 LL 17.22
kN
m
2

Loads on Landing Slab
Cover 50mm 22
kN
m
3
1.1
kN
m
2

Slab 150mm 25
kN
m
3
3.75
kN
m
2

Renderring 0.40
kN
m
2

Handrail 0.50
kN
m
2

DL Cover Slab Renderring Handrail 5.75
kN
m
2

LL 100psf 4.788
kN
m
2

wu 1.2 DL 1.6 LL 14.561
kN
m
2

Page 21
8. Loads on Roof
Slope angle α atan
3m
10m
2














30.964 deg
Srokalinh tile Tile 30mm 20
kN
m
3
0.6
kN
m
2

Purlins w20x20x1.0 20mm 20 mm 18mm 18 mm( ) 7850
kgf
m
3
0.597
kgf
1m

Purlin w20x20x1.0
1m
1m 100 mm cos α( )
 0.068
kN
m
2

Rafters w40x80x1.6 40mm 80 mm 36.8mm 76.8 mm( ) 7850
kgf
m
3

w40x80x1.6 2.934
kgf
1m

Rafter w40x80x1.6
1m
750mm1 m cos α( )
 0.045
kN
m
2

Page 23
Roof beam Beam 20cm 30 cm 25
kN
m
3
1m
1m
10m
4

 0.6
kN
m
2

Roof column Column 20cm 20 cm
3m
2
 25
kN
m
3
1
10m
4
4 m





 0.15
kN
m
2

Total dead load wD Tile Purlin Rafter Beam Column 1.463
kN
m
2

Live load wL 1.00
kN
m
2

Factored load wu 1.2 wD 1.6 wL 3.356
kN
m
2

Page 24
9. ASCE Wind Loads
Basic wind speed V 120
km
hr
 V 33.333
m
s
 V 74.565mph
Exposure category Expoure C=
Importance factor I 1.15
Topograpic factor Kzt 1.0
Gust factor G 0.85
Wind directionality factor Kd 0.85
Static wind pressure qs 0.613
N
m
2
V
m
s








2
 0.681
kN
m
2

Velocity pressure coefficients
zg 274m α 9.5 (For exposure C)
Kz z( ) 2.01
max z 4.6m( )
zg






2
α
 Kz 10m( ) 1.001
Velocity wind pressure
qz z( ) qs Kz z( ) Kzt I Kd qz 10m( ) 0.667
kN
m
2

Design wind pressure
pz z Cp  qz z( ) G Cp
Dimension of building in plan
B 6m 3 18 m
L 4m 5 20 m
λ
L
B
1.111
External pressure coefficients
Cp.windward 0.8
Page 25
Cp.leeward linterp
0
1
2
4
40














0.5
0.5
0.3
0.2
0.2














 λ














0.478
Cp.side 0.7
Floor heights
H
3.5m
3.5m
3.5m
3.5m
3.5m
3.5m
3.5m




















 H reverse H( ) h H
 24.5 m
ORIGIN 1
n rows H( ) 7
Wind forces
i 1 n a
i
1
i
k
H
k

H
i
2

a
n 1
H
 reverse a( )
24.5
22.75
19.25
15.75
12.25
8.75
5.25
1.75






















m
Bwindward 6m Bleeward 6m
Bside 4m
Pwindwardi
ai
ai 1
zpz z Cp.windward 



d Bwindward
Pleewardi
pz h Cp.leeward  a
i 1
a
i
  Bleeward
Psidei
pz h Cp.side  a
i 1
a
i
  Bside
Page 26
reverse augment Pwindward Pleeward Pside  
5.70
11.13
10.71
10.21
9.61
8.81
8.10
3.43
6.86
6.86
6.86
6.86
6.86
6.86
3.35
6.71
6.71
6.71
6.71
6.71
6.71




















kN
Alternative ways
i 1 n
b
i
1
i
k
H
k


Prectanglei
pz b
i
Cp.windward  a
i 1
a
i
  Bwindward
Ptrapeziumi
pz a
i
Cp.windward  pz a
i 1
Cp.windward 
2
a
i 1
a
i
  Bwindward
reverse augment Pwindward Prectangle Ptrapezium  
5.70
11.13
10.71
10.21
9.61
8.81
8.10
5.75
11.13
10.71
10.22
9.62
8.83
8.08
5.70
11.12
10.70
10.20
9.59
8.78
8.20




















kN
Page 27
10. Design of Singly Reinforced Beams
A. Concrete Stress Distribution
In actual distribution
Resultant C α f'c c b=
Location β c
In equivalent distribution
Location β c
a
2
=
Resultant C α f'c c b= γ f'c a b=
Thus, a 2 β c= β1 c= where β1 2 β=
γ α
c
a
=
α
β1
=
f'c 4000psi 5000psi 6000psi 7000psi 8000psi
α 0.72 0.68 0.64 0.60 0.56
β 0.425 0.400 0.375 0.350 0.325
β1 2 β= 0.85 0.80 0.75 0.70 0.65
γ
α
β1
=
0.72
0.85
0.847
0.68
0.80
0.85
0.64
0.75
0.853
0.60
0.70
0.857
0.56
0.65
0.862
Page 28
Conclusion: γ 0.85=
β1 0.85 f'c 4000psiif
0.65 f'c 8000psiif
0.85 0.05
f'c 4000psi
1000psi
 otherwise
= 4000psi 27.6 MPa
8000psi 55.2 MPa
1000psi 6.9 MPa
B. Strength Analysis
Equilibrium in forces
X
 0=
C T=
0.85 f'c a b As fs= (1)
Equilibrium in moments
M
 0=
Mn C d
a
2






= T d
a
2






=
Mn 0.85 f'c a b d
a
2






= (2.1)
Mn As fs d
a
2






= (2.2)
Conditions of strain compatibility
εs
εu
d c
c
=
εs εu
d c
c
= or εt εu
dt c
c
= (3.1)
c d
εu
εu εs
= or c dt
εu
εu εt
= (3.2)
Unknowns = 3 a As fs
Equations = 2 X
 0= M
 0=
Additional condition fs fy= (From economic criteria)
Page 29
C. Steel Ratios
ρ
As
b d
=
As fy
b d fy
=
0.85 f'c a b
b d fy
= 0.85 β1
f'c
fy

c
d
= 0.85 β1
f'c
fy

c
dt

dt
d
=
ρ 0.85 β1
f'c
fy

εu
εu εs
= 0.85 β1
f'c
fy

εu
εu εt

dt
d
=
Balanced steel ratio
fc f'c= fs fy= εs εy=
fy
Es
=
ρb 0.85 β1
f'c
fy

εu
εu εy
= 0.85 β1
f'c
fy

600MPa
600MPa fy
=
εu 0.003 Es 2 10
5
MPa εu Es 600 MPa
Maximum steel ratio
ACI 318-99 ρmax 0.75 ρb=
ACI 318-02 and later ρmax 0.85 β1
f'c
fy

εu
εu εt
= with εt 0.004
For fy 390MPa εs
fy
Es
0.002
For εt 0.004
ρmax
ρb
εu εy
εu 0.004
=
5
7
= 0.714=
For εt 0.005
ρmax
ρb
εu εy
εu 0.005
=
5
8
= 0.625=
Minimum steel ratio
ρmin
3 f'c
fy
200
fy
= (in psi)
ρmin
0.249 f'c
fy
1.379
fy
= (in MPa)
Page 30
D. Determination of Flexural Strength
Given: b d As f'c fy
Find: ϕMn
Step 1. Checking for steel ratio
ρ
As
b d
=
ρ ρmin : Steel reinforcement is not enough
ρmin ρ ρmax : the beam is singly reinforced
ρ ρmax : the beam is doubly reinforced
ρ ρmax= As ρ b d=
Step 2. Calculation of flexural strength
a
As fy
0.85 f'c b
= c
a
β1
=
Mn As fy d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
The design flexural strength is ϕ Mn
Example 10.1
Page 31
Concrete dimension b 200mm h 350mm
Steel reinforcements As 5
π 16mm( )
2

4
 10.053 cm
2

d h 30mm 6mm 16mm
40mm
2






 278 mm
dt h 30mm 6mm
16mm
2






 306 mm
Materials f'c 25MPa fy 390MPa
Solution
Checking for steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.004
 0.02
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
ρ
As
b d
0.018
Steel_Reinforcement "is Enough" ρ ρminif
"is not Enough" otherwise

Steel_Reinforcement "is Enough"
As min ρ ρmax  b d 10.053 cm
2

Calculation of flexural strength
a
As fy
0.85 f'c b
92.252 mm c
a
β1
108.532 mm
Mn As fy d
a
2






 90.911 kN m
Page 32
εt εu
dt c
c
 0.00546
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
The design flexural strength is ϕ Mn 81.82 kN m
E. Determination of Steel Area
Given: Mu b d f'c fy
Find: As
Relative depth of compression concrete
w
a
d
=
0.85 f'c a b
0.85 f'c b d
=
As fy
0.85 f'c b d
=
ρ fy
0.85 f'c
1=
Flexural resistance factor
R
Mn
b d
2

=
As fy d
a
2







b d
2

=
As
b d
fy
d
a
2

d
= ρ fy 1
1
2
w





=
R ρ fy 1
ρ fy
1.7 f'c







= 0.85 f'c w 1
1
2
w





=
Quadratic equation relative w
R
0.85 f'c
w 1
1
2
w





=
w
2
2 w 2
R
0.85 f'c
 0=
w1 1 1 2
R
0.85 f'c
 1= w2 1 1 2
R
0.85 f'c
 1=
w 1 1 2
R
0.85 f'c
=
ρ 0.85
f'c
fy
 w= 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
Page 33
Step 1. Assume ϕ 0.9=
Mn
Mu
ϕ
=
Step 2. Calculation of steel area
R
Mn
b d
2

=
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
ρ ρmax : the beam is doubly reinforced
(concrete is not enough)
ρ ρmax : the beam is singly reinforced
As max ρ ρmin  b d= (this is a required steel area)
Step 3. Checking for flexural strength
a
As fy
0.85 f'c b
= (As is a provided steel area)
Mn As fy d
a
2






=
c
a
β1
= εt εu
dt c
c
= ϕ ϕ εt =
FS
Mu
ϕ Mn
= (usage percentage)
FS 1 : the beam is safe
FS 1 : the beam is not safe
Example 10.2
Required strength Mu 153kN m
Concrete section b 200mm h 500mm
d h 30mm 8mm 18mm
40mm
2






 424 mm
Page 34
dt h 30mm 8mm
18mm
2






 453 mm
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.004
 0.02
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Assume ϕ 0.9
Mn
Mu
ϕ
170 kN m
Steel area
R
Mn
b d
2

4.728 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.014
ρmin ρ ρmax 1
As ρ b d 11.783 cm
2

As 6
π 16mm( )
2

4
 12.064 cm
2

Checking for flexural strength
a
As fy
0.85 f'c b
110.702 mm c
a
β1
130.238 mm
Mn As fy d
a
2






 173.444 kN m
Page 35
εt εu
dt c
c
 0.00743
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
FS
Mu
ϕ Mn
0.98
The_beam "is safe" FS 1if
"is not safe" otherwise
 The_beam "is safe"
F. Determination of Concrete Dimension and Steel Area
Given: Mu f'c fy
Find: b d As
Step 1. Determination of concrete dimension
Assume εt 0.004 (Usually εt 0.005 )
ρ 0.85 β1
f'c
fy

εu
εu εt
= R ρ fy 1
ρ fy
1.7 f'c







=
ϕ ϕ εt = Mn
Mu
ϕ
=
bd
2
Mn
R
=
Option 1: b
Mn
R
d
2
=
Option 2: d
Mn
R
b
=
Option 3: k
b
d
= d
3
Mn
R
k
= b k d=
Step 2. Calculation of steel area
R
Mn
b d
2

=
Page 36
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
As max ρ ρmin  b d=
Step 3. Checking for flexural strength
a
As fy
0.85 f'c b
= c
a
β1
=
Mn As fy d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
FS
Mu
ϕ Mn
=
Example 10.3
Required strength Mu 700kN m
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.004
 0.02
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Assume εt 0.007
ρ 0.85 β1
f'c
fy

εu
εu εt
 0.014 R ρ fy 1
ρ fy
1.7 f'c







 4.728 MPa
Page 37
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9 Mn
Mu
ϕ
777.778 kN m
Concrete dimension
k
b
d
= k
400
600
 Cover 30mm 10mm 25mm
40mm
2

Cover 85 mm
d
3
Mn
R
k
627.231 mm b k d 418.154 mm
h Round d Cover 50mm( ) 700 mm b Round b 50mm( ) 400 mm
d h Cover 615 mm
b
h






400
700






mm
Steel area
R
Mn
b d
2

5.141 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.015
As max ρ ρmin  b d 37.741 cm
2

As 8
π 25mm( )
2

4
 39.27 cm
2
 dt h 30mm 10mm
25mm
2







dt 647.5 mm
Checking for flexural strength
a
As fy
0.85 f'c b
180.18 mm c
a
β1
211.976 mm
Mn As fy d
a
2






 803.914 kN m
εt εu
dt c
c
 0.00616
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
FS
Mu
ϕ Mn
96.749 %
Page 38
11. Design of Doubly Reinforced Beams
ρ ρmax : the beam is singly reinforced
(with tensile reinforcements only)
ρ ρmax : the beam is doubly reinforced
(with tensile and compression reinforcements)
A. Strength Analysis
Equilibrium in forces
X
 0=
T C Cs= (1)
T As fs= As fy=
C 0.85 f'c a b=
Cs A's f's=
Equilibrium in moments
M
 0=
Mn Mn1 Mn2= (2)
Mn1 T d d'( )= A's f's d d'( )=
Mn2 C d
a
2






= 0.85 f'c a b d
a
2






=
Mn2 T Cs  d
a
2






= As fy A's f's  d
a
2






=
Page 39
Conditions of strain compatibility
εs
εu
d c
c
= (3.1)
εs εu
d c
c
= or εt εu
dt c
c
=
c d
εu
εu εs
= or c dt
εu
εu εt
=
ε's
εu
c d'
c
= (3.2)
ε's εu
c d'
c
=
c d'
εu
εu ε's
=
B. Steel Ratios
Compression steel ratio
ρ'
A's
b d
=
Tensile steel ratio
ρ
As
b d
=
As fy
b d fy
=
0.85 f'c a b A's f's
b d fy
= 0.85 β1
f'c
fy

c
d
 ρ'
f's
fy
=
Maximum tensile steel ratio
ρt.max ρmax ρ'
f's
fy
=
ρ ρt.max : concrete is enough
ρ ρt.max : concrete is not enough
Minimum tensile steel ratio
ρ 0.85 β1
f'c
fy

c
d
 ρ'
f's
fy
= 0.85 β1
f'c
fy

εu
εu ε's

d'
d
 ρ'
f's
fy
=
f's fy= ε's εy=
fy
Es
=
Page 40
ρcy 0.85 β1
f'c
fy

εu
εu εy

d'
d
 ρ'=
ρ ρcy : compression steel will yield f's fy=
ρ ρcy : compression steel will not yield f's fy
C. Determination of Flexural Strength
Given: b d dt d' As A's f'c fy
Find: ϕMn
Step 1. Checking for singly reinforced beam
ρ
As
b d
=
ρ ρmax : the beam is singly reinforced
ρ ρmax : the beam is doubly reinforced
ρ'
A's
b d
= ρt.max ρmax ρ'=
ρ ρt.max : concrete is enough
ρ ρt.max : concrete is not enough
ρ ρt.max= As ρ b d=
Step 2. Determination of compression parameters
2.1. Assume
f's fy=
2.2. Calculate
a
As fy A's f's
0.85 f'c b
= c
a
β1
=
ε's εu
c d'
c
= f's.revised Es ε's fy=
If f's.revised f's then f's f's.revised=
Goto 2.2
Page 41
Direct calculation
Case f's fy=
a
As fy A's fy
0.85 f'c b
=
Case f's fy
As fy 0.85 f'c a b A's f's= 0.85 f'c a b A's Es εu
c d'
c
=
As fy 0.85 f'c a b A's Es εu
β1 c β1 d'
β1 c
= 0.85 f'c a b A's f1
a β1 d'
a
=
where f1 Es εu= 600MPa=
0.85 f'c a
2
 b A's f1 As fy  a A's f1 β1 d' 0=
0.85 f'c a
2
 b A's f1 As fy  a A's f1 β1 d'
0.85 f'c d
2
 b
0=
a
d






2 ρ' f1 ρ fy
0.85 f'c
a
d

ρ' f1 β1
0.85 f'c
d'
d
 0=
w
2
2 p w q 0= p
1
2
ρ' f1 ρ fy
0.85 f'c
= q
ρ' f1 β1
0.85 f'c
d'
d
=
w1 p p
2
q 0= w2 p p
2
q 0=
a d p p
2
q = c
a
β1
=
ε's εu
c d'
c
= f's Es ε's fy=
Step 3. Calculation of flexural strength
Mn1 A's f's d d'( )=
Mn2 As fy A's f's  d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
ϕMn ϕ Mn1 Mn2 =
Page 42
Example 11.1
Concrete dimension b 300mm h 550mm
Steel reinforcements As 8
π 20mm( )
2

4
 25.133 cm
2

d h 30mm 10mm 16mm 20mm
40mm
2







d 454 mm
dt h 30mm 10mm 16mm
20mm
2






 484 mm
A's 4
π 20mm( )
2

4
 12.566 cm
2

d' 30mm 10mm
20mm
2
 50 mm
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.0174
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Checking for singly reinforced beam
ρ
As
b d
0.0185
The_beam "is singly reinforced" ρ ρmaxif
"is doubly reinforced" otherwise

The_beam "is doubly reinforced"
ρ'
A's
b d
9.226 10
3
 ρt.max ρmax ρ' 0.027
Page 43
Concrete "is enough" ρ ρt.maxif
"is not enough" otherwise

Concrete "is enough"
ρ min ρ ρt.max  0.0185
As ρ b d 25.133 cm
2

Determination of compression parameters
Es 2 10
5
MPa f1 Es εu 600 MPa
εy
fy
Es
1.95 10
3

ρcy 0.85 β1
f'c
fy

εu
εu εy

d'
d
 ρ' 0.024
Compression_steel "will yield" ρ ρcyif
"will not yield" otherwise

Compression_steel "will not yield"
a
As fy A's fy
0.85 f'c b
Compression_steel "will yield"=if
p
1
2
ρ' f1 ρ fy
0.85 f'c

q
ρ' f1 β1
0.85 f'c
d'
d

d p p
2
q 
otherwise

a 90.825 mm c
a
β1
106.853 mm
f's fy Compression_steel "will yield"=if
ε's εu
c d'
c

min Es ε's fy 
otherwise

f's 319.24 MPa
Flexural strength
Page 44
Mn1 A's f's d d'( ) 162.072 kN m
Mn2 As fy A's f's  d
a
2






 236.576 kN m
εt εu
dt c
c
 0.011
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
ϕMn ϕ Mn1 Mn2  358.783 kN m
D. Design of Doubly Reinforced Beam
Given: Mu b d dt d' f'c fs
Find: As A's
Step 1. Assume εt
ρ 0.85 β1
f'c
fy

εu
εu εt
=
ϕ ϕ εt =
Step 2. Cheching for singly reinforced beam
As ρ b d=
a
As fy
0.85 f'c b
=
Mn As fy d
a
2






=
Mu ϕMn : the beam is singly reinforced
Mu ϕMn : the beam is doubly reinforced
Step 3. Case of doubly reinforced beam
Mn2 Mn=
Mn1
Mu
ϕ
Mn2=
Page 45
c
a
β1
= f's Es εu
c d'
c
 fy=
A's
Mn1
f's d d'( )
= ρ'
A's
b d
= ρt.max ρmax ρ'=
As
0.85 f'c a b A's f's
fy
= ρ
As
b d
=
ρ ρt.max : concrete is enough
ρ ρt.max : concrete is not enough
Example 11.2
Required strength Mu 1350kN m
Concrete dimension b 400mm h 800mm
d h 30mm 12mm 25mm 25mm
40mm
2







d 688 mm
dt h 30mm 12mm 25mm
25mm
2






 720.5 mm
d' 30mm 12mm
25mm
2
 54.5 mm
Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.0174
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Assume εt 0.0092
ρ 0.85 β1
f'c
fy

εu
εu εt
 0.011
Page 46
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
Checking for singly reinforced beam
As ρ b d 31.342 cm
2

a
As fy
0.85 f'c b
143.803 mm c
a
β1
169.18 mm
Mn2 As fy d
a
2






 753.074 kN m
The_beam "is singly reinforced" Mu ϕ Mn2if
"is doubly reinforced" otherwise

The_beam "is doubly reinforced"
Case of doubly reinforced beam
Mn1
Mu
ϕ
Mn2 746.926 kN m
f's min Es εu
c d'
c
 fy





390 MPa
A's
Mn1
f's d d'( )
30.232 cm
2

ρ'
A's
b d
0.011 ρt.max ρmax ρ' 0.028
As
0.85 f'c a b A's f's
fy
61.574 cm
2
 ρ
As
b d
0.022
Concrete "is enough" ρ ρt.maxif
"is not enough" otherwise
 Concrete "is enough"
Compression steel A's 30.232 cm
2
 5
π 28mm( )
2

4
 30.788 cm
2

Tensile steel As 61.574 cm
2
 10
π 28mm( )
2

4
 61.575 cm
2

400mm 12mm 30mm( ) 2 28mm 5
4
44 mm
Page 47
E. Determination of Tensile Steel Area
Given: Mu b d dt d' A's f'c fy
Find: As
Step 1. Calculation of compression parameters
1.1. Assume f's fy= ϕ 0.9=
1.2. Calculate
Mn
Mu
ϕ
=
Mn1 A's f's d d'( )=
Mn2 Mn Mn1=
R
Mn2
b d
2

=
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
As ρ b d=
a
As fy
0.85 f'c b
= c
a
β1
=
f's.revised Es εu
c d'
c
 fy=
εt εu
dt c
c
= ϕ ϕ εt =
f's.revised f's : Goto 1.2
Mu ϕ Mn : Goto 1.2
Step 2. Calculation of tensile steel area
As
0.85 f'c a b A's f's
fy
= ρ
As
b d
=
ρ'
A's
b d
= ρt.max ρmax ρ'=
ρ ρt.max : concrete is enough
ρ ρt.max : concrete is not enough
Page 48
Example 11.3
Required strength Mu 1350kN m
Concrete dimension b 400mm h 800mm
d h 30mm 12mm 25mm 28mm
40mm
2







d 685 mm
dt h 30mm 12mm 25mm
28mm
2






 719 mm
d' 30mm 12mm
28mm
2
 56 mm
Compression reinforcements A's 5
π 28mm( )
2

4
 30.788 cm
2

Materials f'c 25MPa fy 390MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.0174
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
Compression parameters
Page 49
Compression ε( ) f's fy
ϕ 0.9
Mn
Mu
ϕ

Mn1 A's f's d d'( )
Mn2 Mn Mn1
R
Mn2
b d
2


ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c








As ρ b d
a
As fy
0.85 f'c b

c
a
β1

f's.revised min Es εu
c d'
c
 fy






Z
i 
f's
fy
ϕ
a
d
f's.revised
fy























εt εu
dt c
c

ϕ 0.65 max
1.45 250 εt
3






min 0.9







break( )
f's.revised f's
f's
ε






Mu ϕ Mn if
f's f's.revised
i 0 99for
reverse Z
T 

Z Compression 0.000001( )
Page 50
a Z
0 2
d 142.792 mm c
a
β1
167.99 mm
f's Z
0 0
fy 390 MPa
Tensile steel area
ρ'
A's
b d
0.011 ρt.max ρmax ρ' 0.029
As
0.85 f'c a b A's f's
fy
61.909 cm
2
 ρ
As
b d
0.023
Concrete "is enough" ρ ρt.maxif
"is not enough" otherwise
 Concrete "is enough"
Tensile steel As 61.909 cm
2
 10
π 28mm( )
2

4
 61.575 cm
2

Page 51
12. Design of T Beams
12.1. Effective Flange Width
For symmetrical T beam:
b
L
4
 b bw 16hf b s
where
L = span length of beam
s = spacing of beam
12.2. Strength Analysis
Design as rectangular section Design as T section
a hf a hf
or Mu ϕMnf or Mu ϕMnf
where Mnf 0.85 f'c hf b d
hf
2







=
Page 52
Equilibrium in forces X
 0=
T C1 C2=
T As fs= As fy=
C1 0.85 f'c hf b bw = Asf fy=
C2 0.85 f'c a bw= T C1= As fy Asf fy=
Equilibrium in moments M
 0=
Mn Mn1 Mn2=
Mn1 C1 d
hf
2







= Asf fy d
hf
2







=
Mn2 C2 d
a
2






= 0.85 f'c a bw d
a
2






=
Mn2 T C1  d
a
2






= As fy Asf fy  d
a
2






=
Condition of strain compatibility
εs
εu
d c
c
= or
εt
εs
dt c
c
=
εs εu
d c
c
= εt εu
dt c
c
=
c d
εu
εu εs
= c dt
εu
εu εt
=
12.3. Steel Ratios
ρw
As
bw d
=
As fy
bw d fy
=
0.85 f'c a bw Asf fy
bw d fy
=
ρw 0.85 β1
f'c
fy

c
d
 ρf= where ρf
Asf
bw d
=
Page 53
Maximum steel ratio
ρw.max ρmax ρf=
ρw ρw.max : concrete is enough
ρw ρw.max : concrete is not enough
12.4. Determination of Moment Capacity
Given: bw d b dt hf As f'c fy
Find: ϕMn
Step 1. Checking for rectangular beam
a
As fy
0.85 f'c b
=
a hf : the beam is rectangular
a hf : the beam is tee
Step 2. Case of T beam
Asf
0.85 f'c hf b bw 
fy
=
Mn1 Asf fy d
hf
2







=
a
As fy Asf fy
0.85 f'c bw
= c
a
β1
=
Mn2 As fy Asf fy  d
a
2






=
εt εu
dt c
c
= ϕ ϕ εt =
ϕMn ϕ Mn1 Mn2 =
Page 54
Example 12.1
Concrete dimension b 28in 711.2 mm
hf 6in 152.4 mm
bw 10in 254 mm
h 30in 762 mm d 26in 660.4 mm
dt 27.5in 698.5 mm
Steel reinforcements As 6
π
10
8
in





2

4
 As 7.363 in
2

Materials f'c 3000psi 20.684 MPa
fy 60ksi 413.685 MPa
Solution
Steel ratios
β1 0.65 max 0.85 0.05
f'c 4000psi
1000psi







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.014
ρmin max
3psi
f'c
psi

fy
200psi
fy











0.00333
Checking for rectangular beam
Page 55
a
As fy
0.85 f'c b
157.162 mm
The_beam "is rectangular" a hfif
"is T" otherwise
 The_beam "is T"
Case of T beam
Asf
0.85 f'c hf b bw 
fy
29.613 cm
2

ρf
Asf
bw d
0.018 ρw.max ρmax ρf 0.031
ρw
As
bw d
0.028
Concrete "is enough" ρw ρw.maxif
"is not enough" otherwise
 Concrete "is enough"
As min ρw ρw.max  bw d As 7.363 in
2

Mn1 Asf fy d
hf
2







 715.669 kN m
a
As fy Asf fy
0.85 f'c bw
165.734 mm c
a
β1
194.981 mm
Mn2 As fy Asf fy  d
a
2






 427.446 kN m
εt εu
dt c
c
 0.008
ϕ 0.65 max
1.45 250 εt
3






min 0.9






0.9
ϕMn ϕ Mn1 Mn2  1028.803 kN m
Page 56
12.5. Determination of Steel Area
Given: Mu bw d dt b hf f'c fy
Find: As
Step 1. Checking for rectangular beam
Mnf 0.85 f'c hf b d
hf
2







=
ϕ 0.9=
Mu ϕMn : the beam is rectangular
Mu ϕMn : the beam is tee
Step 2. Case of T beam
Asf
0.85 f'c hf b bw 
fy
= ρf
Asf
bw d
=
Mn1 Asf fy d
hf
2







=
Mn2
Mu
ϕ
Mn1=
R
Mn2
bw d
2

=
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







=
As2 ρ bw d=
a
As2 fy
0.85 f'c bw
=
As
0.85 f'c a bw Asf fy
fy
= ρw
As
bw d
=
ρw.max ρmax ρf=
ρw ρw.max : concrete is enough
ρw ρw.max : concrete is not enough
Page 57
Example 12.2
Concrete dimension hf 3in 76.2 mm
L 24ft 7.315 m s 47in 1.194 m
bw 11in 279.4 mm d 20in 508 mm
Required strength Mu 6400in kip 723.103 kN m
Materials f'c 3000psi 20.684 MPa fy 60ksi 413.685 MPa
Solution
Effective flange width
b min
L
4
bw 16 hf s





 b 1193.8 mm
Steel ratios
β1 0.65 max 0.85 0.05
f'c 4000psi
1000psi







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.014
ρmin max
3psi
f'c
psi

fy
200psi
fy











0.00333
Checking for rectangular beam
ϕ 0.9
Mnf 0.85 f'c hf b d
hf
2







 751.538 kN m
The_beam "is rectangular" Mu ϕ Mnfif
"is tee" otherwise
 The_beam "is tee"
Case of T beam
Page 58
Asf
0.85 f'c hf b bw 
fy
29.613 cm
2
 ρf
Asf
bw d
0.021
Mn1 Asf fy d
hf
2







 575.646 kN m
Mn2
Mu
ϕ
Mn1 227.801 kN m
R
Mn2
bw d
2

3.159 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 8.484 10
3

As2 ρ bw d 12.042 cm
2

a
As2 fy
0.85 f'c bw
101.408 mm c
a
β1
119.304 mm
As
0.85 f'c a bw Asf fy
fy
41.655 cm
2
 ρw
As
bw d
0.029
ρw.max ρmax ρf 0.034
Concrete "is enough" ρw ρw.maxif
"is not enough" otherwise
 Concrete "is enough"
As.min ρmin bw d
As max As As.min  41.655 cm
2
 6
π 32mm( )
2

4
 48.255 cm
2

Page 59
13. Shear Design
Safety provision
Vu ϕVn
where Vu = required shear strength
Vn = nominal shear strength
ϕ 0.75= is a strength reduction factor for shear
ϕVn = design shear strength
Required shear strength
Page 60
Nominal shear strength
Vn Vc Vs=
where
Vc = concrete shear strength
Vs = steel shear strength
Concrete shear strength
Vc 2 f'c bw d= (in psi)
Vc 0.166 f'c bw d= (in MPa)
Steel shear strength
Vs
Av fy d
s
=
where
Av = area of stirrup
fy = yield strength of stirrup
s = spacing of stirrup
No required stirrups
Vu
ϕVc
2
 : no stirrup is required
ϕVc
2
Vu ϕVc : stirrup is minimum
Vu ϕVc : stirrup is required
Minimum stirrups
Av.min 0.75 f'c
bw s
fy
 50
bw s
fy
= (in psi)
Av.min 0.062 f'c
bw s
fy
 0.345
bw s
fy
= (in MPa)
Page 61
Maximum spacing of stirrup
smax
Av fy
0.75 f'c bw
Av fy
50 bw
= (in psi)
smax
Av fy
0.062 f'c bw
Av fy
0.345 bw
= (in MPa)
Case Vs 2 Vc
smax
d
2
24in= 600mm=
Case 2 Vc Vs 4 Vc
smax
d
4
12in= 300mm=
Case Vs 4 Vc
Concrete is not enough
Example 13.1
Materials f'c 25MPa fy 390MPa
Page 62
Live load for garage LL 6.00
kN
m
2

Loads on slab
Hardener 8mm 24
kN
m
3
0.192
kN
m
2

Slab 200mm 25
kN
m
3
5
kN
m
2

Mechanical 0.30
kN
m
2

DL Hardener Slab Mechanical 5.492
kN
m
2

LL 6
kN
m
2

Loads on beam
wbeam 30cm 60cm 200mm( ) 25
kN
m
3
3
kN
m

wD.slab DL 3.5 m 19.222
kN
m

wL.slab LL 3.5 m 21
kN
m

wD wbeam wD.slab 22.222
kN
m

wL wL.slab 21
kN
m

wu 1.2 wD 1.6 wL 60.266
kN
m

Shear
L 8m
V0
wu L
2
241.066 kN
V x( ) V0 wu x
Concrete shear strength
bw 300mm d 600mm 40mm 10mm
20mm
2






 540 mm
Vc 0.166MPa
f'c
MPa
 bw d 134.46 kN
ϕ 0.75
Page 63
Location of no stirrup zone
V0 wu x
ϕVc
2
= x
V0
ϕ Vc
2

wu
3.163 m
Minimum stirrup
Av 2
π 10mm( )
2

4
 1.571 cm
2
 fy 390MPa
smax min
Av fy
0.062MPa
f'c
MPa
 bw
Av fy
0.345MPa bw











591.894 mm
smax Floor smax 50mm  550 mm
Vs.min
Av fy d
smax
60.147 kN
Location of minimum stirrup zone
V0 wu x ϕ Vc Vs.min = x
V0 ϕ Vc Vs.min 
wu
1.578 m
Required spacing of stirrup
Vu V0 wu
400mm
2






 229.012 kN
Vs
Vu
ϕ
Vc 170.89 kN
Concrete "is enough" Vs 4 Vcif
"is not enough" otherwise
 Concrete "is enough"
s
Av fy d
Vs
193.581 mm
smax.1 smax 550 mm
smax.2 min
d
2
600mm





Vs 2 Vcif
min
d
4
300mm





otherwise
 smax.2 270 mm
s Floor min s smax.1 smax.2  50mm  s 150 mm
Page 64
Example 13.2
Design of shear in support and midspan zones.
Stirrups in Support Zone
Required shear strength Vu V0 wu
400mm
2
 229.012 kN
Concrete shear strength
Vc 0.166MPa
f'c
MPa
 bw d 134.46 kN
ϕ 0.75
Stirrup "is minimum" Vu ϕ Vcif
"is required" otherwise
 Stirrup "is required"
Required steel shear strength
Vs
Vu
ϕ
Vc 170.89 kN
Concrete "is enough" Vs 4 Vcif
"is not enough" otherwise
 Concrete "is enough"
Spacing of stirrup
Av 2
π 10mm( )
2

4
 1.571 cm
2
 fy 390MPa
s
Av fy d
Vs
193.581 mm
smax.1 min
Av fy
0.062MPa
f'c
MPa
 bw
Av fy
0.345MPa bw











591.894 mm
Page 65
smax.2 min
d
2
600mm





Vs 2 Vcif
min
d
4
300mm





otherwise
 smax.2 270 mm
s Floor min s smax.1 smax.2  50mm  150 mm
Stirrups in Midspan Zone
Required shear strength Vu V0 wu
L
4
 120.533 kN
Stirrup "is minimum" Vu ϕ Vcif
"is required" otherwise
 Stirrup "is required"
Required steel shear strength
Vs
Vu
ϕ
Vc 26.25 kN
Concrete "is enough" Vs 4 Vcif
"is not enough" otherwise
 Concrete "is enough"
Spacing of stirrup
Av 2
π 10mm( )
2

4
 1.571 cm
2
 fy 390MPa
s
Av fy d
Vs
1260.208 mm
smax.1 min
Av fy
0.062MPa
f'c
MPa
 bw
Av fy
0.345MPa bw











591.894 mm
smax.2 min
d
2
600mm





Vs 2 Vcif
min
d
4
300mm





otherwise
 smax.2 270 mm
s Floor min s smax.1 smax.2  50mm  250 mm
Page 66
Page 67
14. Column Design
Type of columns (by design method)
1. Axially loaded columns
e
M
P
= 0=
2. Eccentric columns
e
M
P
= 0
2.1. Short columns (without buckling)
Pu Mu
2.2. Long (slender) columns (with buckling)
Pu Mu δns
1. Axially Loaded Columns
Safety provision
Pu ϕPn.max
where Pu = axial load on column
ϕPn.max = design axial strength
For tied columns
ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast =
with ϕ 0.65=
For spirally reinforced columns
ϕPn.max 0.85 ϕ 0.85 f'c Ag Ast  fy Ast =
with ϕ 0.70=
where Ag = area of gross section
Ast = area of steel reinforcements
Ag Ast Ac= is an area of concrete section
Page 68
For tied columns
Diameter of tie
Dv 10mm= for D 32mm
Dv 12mm= for D 32mm
Spacing of tie
s 48Dv s 16D s b
For spirally reinforced columns
Diameter of spiral Dv 10mm
Clear spacing 25mm s 75mm
Column steel ratio
ρg
Ast
Ag
= 1%= 8%
Page 69
Determination of Concrete Section
Ag
Pu
0.80 ϕ
0.85 f'c 1 ρg  fy ρg
=
Determination of Steel Area
Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
=
Example 14.1
Tributary area B 4m L 6m
Thickness of slab t 120mm
Section of beam B1 b 250mm h 500mm
Section of beam B2 b 200mm h 350mm
Live load for lab LL 3.00
kN
m
2

Materials f'c 25MPa fy 390MPa
Solution
Loads on slab
Cover 50mm 22
kN
m
3

Slab 120mm 25
kN
m
3

Ceiling 0.40
kN
m
2

Mechanical 0.20
kN
m
2

Partition 1.00
kN
m
2

DL Cover Slab Ceiling Mechanical Partition 5.7
kN
m
2

LL 3
kN
m
2

Page 70
Reduction of live load
Tributary area AT B L 24 m
2

For interior column KLL 4
Influence area AI KLL AT 96 m
2

Live load reduction factor αLL 0.25
4.572
AI
m
2
 0.717
Reduced live load LL0 LL αLL 2.15
kN
m
2

Loads of wall
Void 30mm 30 mm 190 mm 4
Brickhollow.10 120mm Void
55
1m
2






20
kN
m
3
1.648
kN
m
2

Brickhollow.20 220mm Void
110
1m
2






20
kN
m
3
2.895
kN
m
2

Loads on column
PD.slab DL B L 136.8 kN
PL.slab LL B L 72 kN
PB1 25cm 50cm 120mm( ) 25
kN
m
3
L 14.25 kN
PB2 20cm 35cm 120mm( ) 25
kN
m
3
B 4.6 kN
Pwall.1 Brickhollow.10 3.5m 50cm( ) L 29.657 kN
Pwall.2 Brickhollow.10 3.5m 35cm( ) B 20.76 kN
Number of floors n 6
PD PD.slab PB1 PB2 Pwall.1 Pwall.2  1.05 n 1298.219 kN
PL PL.slab n 432 kN SW 5% 7%( ) PD=
PD PL
B L n
12.015
kN
m
2

PL
PD PL
24.968 %
Page 71
Pu 1.2 PD 1.6 PL 2249.063 kN
Determination of column section
Assume ρg 0.03 k
b
h
= k
300
500

ϕ 0.65
Ag
Pu
0.80 ϕ
0.85 f'c 1 ρg  fy ρg
 Ag 1338.529 cm
2

h
Ag
k
472.322 mm b k h 283.393 mm
h Ceil h 50mm( ) 500 mm b Ceil b 50mm( ) 300 mm
b
h






300
500






mm Ag b h 1500 cm
2

Determination of steel area
Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
 Ast 30.851 cm
2

6
π 20mm( )
2

4
 6
π 16mm( )
2

4
 30.913 cm
2

Stirrups
Main bars D 20mm
Stirrup dia. Dv 10mm
Spacing of tie s min 16 D 48 Dv b  300 mm
Page 72
2. Short Columns
Safety provision
Pu ϕPn
Mu ϕMn
Equilibrium in forces X
 0=
Pn C Cs T=
Pn 0.85 f'c a b A's f's As fs=
Equilibrium in moments M
 0=
Mn Pn e= C
h
2
a
2






 Cs
h
2
d'





 T d
h
2






=
Mn Pn e= 0.85 f'c a b
h
2
a
2






 A's f's
h
2
d'





 As fs d
h
2






=
Conditions of strain compatibility
εs
εu
d c
c
= εs εu
d c
c
=
fs Es εs= Es εu
d c
c
=
ε's
εu
c d'
c
= ε's εu
c d'
c
=
f's Es ε's= Es εu
c d'
c
=
Page 73
Unknowns = 5 : a As A's fs f's
Equations = 4 : X
 0= M
 0= 2 conditions of strain compatibility
Case of symmetrical columns: As A's=
Case of unsymmetrical columns: fs fy=
A. Interaction Diagram for Column Strength
Interaction diagram is a graph of parametric function, where
Abscissa : Mn a( )
Ordinate: Pn a( )
B. Determination of Steel Area
Given: Mu Pu b h f'c fy
Find: As A's=
Answer: As AsN a( )= AsM a( )=
AsN a( )
Pu
ϕ
0.85 f'c a b
f's fs
=
AsM a( )
Mu
ϕ
0.85 f'c a b
h
2
a
2







f's
h
2
d'





 fs d
h
2







=
f's a( ) Es εu
c d'
c
 fy=
fs a( ) Es εu
d c
c
 fy=
Page 74
Example 14.2
Construction of interaction diagram for column strength.
Concrete dimension b 500mm h 200mm
Steel reinforcements As 5
π 16mm( )
2

4
 10.053 cm
2

A's As 10.053 cm
2

d' 30mm 6mm
16mm
2
 44 mm
d h d' 156 mm
Materials f'c 25MPa
fy 390MPa
Solution
Case of axially loaded column
Ag b h
Ast As A's
ϕ 0.65
ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  1490.536 kN
Case of eccentric column
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
c a( )
a
β1

Es 2 10
5
MPa εu 0.003 dt d
fs a( ) min Es εu
d c a( )
c a( )
 fy






f's a( ) min Es εu
c a( ) d'
c a( )
 fy






ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.65 max
1.45 250 εt
3






min 0.90








Page 75
ϕPn a( ) min ϕ a( ) 0.85 f'c a b A's f's a( ) As fs a( )  ϕPn.max 
ϕMn a( ) ϕ a( ) 0.85 f'c a b
h
2
a
2






 A's f's a( )
h
2
d'





 As fs a( ) d
h
2













a 0
h
100
 h
0 20 40 60
0
250
500
750
1000
1250
1500
Interaction diagram for column strength
ϕPn a( )
kN
ϕMn a( )
kN m
Example 14.3
Determination of steel area.
Required strength Pu 1152.27kN
Mu 42.64kN m
Concrete dimension b 500mm h 200mm
Materials f'c 25MPa
fy 390MPa
Concrete cover to main bars cc 30mm 6mm
16mm
2

Page 76
Solution
Location of steel re-bars
d' cc 44 mm
d h cc 156 mm
Case of axially loaded column
Ag b h ϕ 0.65
ϕ 0.65
Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
2.465 cm
2

Case of eccentric column
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
c a( )
a
β1

Es 2 10
5
MPa εu 0.003 dt d
fs a( ) min Es εu
d c a( )
c a( )
 fy






f's a( ) min Es εu
c a( ) d'
c a( )
 fy






ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.65 max
1.45 250 εt
3






min 0.90








Graphical solution
AsN a( )
Pu
ϕ a( )
0.85 f'c a b
f's a( ) fs a( )

AsM a( )
Mu
ϕ a( )
0.85 f'c a b
h
2
a
2







f's a( )
h
2
d'





 fs a( ) d
h
2








a1 134.2mm a2 134.25mm
a a1 a1
a2 a1
50
 a2
Page 77
0.13418 0.1342 0.13422 0.13424 0.13426
8.715 10
4

8.72 10
4

8.725 10
4

8.73 10
4

8.735 10
4

AsN a( )
AsM a( )
a
a 134.23mm
AsN a( ) 8.722 cm
2

AsM a( ) 8.725 cm
2

As
AsN a( ) AsM a( )
2
8.724 cm
2
 5
π 16mm( )
2

4
 10.053 cm
2

Page 78
Analytical solution
ORIGIN 1
Asteel No( ) k 1
f f's a( ) fs a( )
continue( ) f 0=if
AsN
Pu
ϕ a( )
0.85 f'c a b
f

continue( ) AsN 0if
fd f's a( )
h
2
d'





 fs a( ) d
h
2







continue( ) fd 0=if
AsM
Mu
ϕ a( )
0.85 f'c a b
h
2
a
2







fd

continue( ) AsM 0if
Z
k 
a
h
AsN
Ag
AsM
Ag
AsN AsM
Ag

























k k 1
a cc cc
h
No
 hfor
csort Z
T
4 

Z Asteel 5000( ) rows Z( ) 2046
a Z
1 1
h 134.24 mm
AsN Z
1 2
Ag 8.719 cm
2
 AsM Z
1 3
Ag 8.728 cm
2

As
AsN AsM
2
8.723 cm
2

Page 79
C. Case of Distributed Reinforcements
rUb 3>1> ssrcakp©it EdlmanEdkBRgayeRcInCYr
CMuvijmuxkat;ebtug
b
dn
d1
Pne
Tn T1
C
h
a
cf 85.0
c
u
s,1
s,n
dn
Equilibrium in forces X
 0=
Pn C
1
n
i
T
i

= 0.85 f'c a b
1
n
i
A
s i
f
s i
 

=
Equilibrium in moments M
 0=
Mn Pn e= C
h
2
a
2







1
n
i
T
i
d
i
h
2













=
Mn 0.85 f'c a b
h
2
a
2







1
n
i
A
s i
f
s i
 d
i
h
2













=
Page 80
Conditions of strain compatibility
ε
s i
εu
d
i
c
c
=
ε
s i
εu
d
i
c
c
=
f
s i
Es ε
s i
= Es εu
d
i
c
c
=
Example 14.4
Checking for column strength.
Required strength Pu 13994.6kN
Mu 57.53kN m
Materials f'c 35MPa
fy 390MPa
Solution
Determination of Concrete Section
Case of axially loaded column
ϕ 0.65
Assume ρg 0.04
Ag
Pu
0.80 ϕ
0.85 f'c 1 ρg  fy ρg
6094.36 cm
2

Aspect ratio of column section λ
b
h
= λ 1
h
Ag
λ
780.664 mm b λ h 780.664 mm
h Ceil h 50mm( ) b Ceil b 50mm( )
b
h






800
800






mm Ag b h 6400 cm
2

Page 81
Steel area
Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
 Ast 218.534 cm
2

4 7 4( )
π 25mm( )
2

4
 4 5 4( )
π 20mm( )
2

4
 232.478 cm
2

Spacing
800mm 50mm 2
8
87.5 mm
Interaction Diagram for Column Strength
Distribution of reinforcements
Bars
25
25
25
25
25
25
25
25
25
25
20
20
20
20
20
20
20
25
25
20
0
0
0
0
0
20
25
25
20
0
0
0
0
0
20
25
25
20
0
0
0
0
0
20
25
25
20
0
0
0
0
0
20
25
25
20
0
0
0
0
0
20
25
25
20
20
20
20
20
20
20
25
25
25
25
25
25
25
25
25
25
























mm
Number of reinforcement rows n cols Bars( ) 9
Steel area
As0
π Bars
2

4


i 1 n Asi
As0
i 

Ast As Ast 232.478 cm
2

Location of reinforcement rows
Concrete cover Cover 30mm 10mm 40 mm
d
1
Cover
Bars
1 n
2
 52.5 mm ΔS
h d
1
2
n 1
86.875 mm
i 2 n d
i
d
i 1
ΔS
reverse d( )
T
747.5 660.63 573.75 486.88 400 313.13 226.25 139.38 52.5( ) mm
Case of axially loaded column
Page 82
ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast 
ϕPn.max 14255.808 kN
Case of eccentric column
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.796
c a( )
a
β1

fs i a( ) εs εu
d
i
c a( )
c a( )

sign εs  min Es εs fy 

dt max d( ) 747.5 mm
ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.65 max
1.45 250 εt
3






min 0.9








ϕPn a( ) min ϕ a( ) 0.85 f'c a b
1
n
i
Asi
fs i a( )













 ϕPn.max









ϕMn a( ) ϕ a( ) 0.85 f'c a b
h
2
a
2







1
n
i
Asi
fs i a( ) d
i
h
2























a 0
h
100
 h
Page 83
0 1000 2000 3000
0
5000
10000
ϕPn a( )
kN
Pu
kN
ϕMn a( )
kN m
Mu
kN m

Page 84
D. Design of Circular Columns
Symbols
ns = number of re-bars
Dc = column diameter
Ds = diameter of re-bar circle
Location of steel re-bar
d
i
rc rs cos α
s i = rc
Dc
2
= rs
Ds
2
=
α
s i
2 π
ns
i 1( )=
Page 85
Depth of compression concrete
α acos
rc a
rc






=
Area and centroid of compression concrete
Asector
1
2
Radius Arch=
1
2
rc rc 2 α = rc
2
α=
x1
2
3
rc
sin α( )
α
=
Atriangle
1
2
Base Height=
1
2
2 rc sin α( ) rc cos α( )= rc
2
sin α( ) cos α( )=
x2
2
3
rc cos α( )=
Ac Asegment= Asector Atringle= rc
2
α sin α( ) cos α( )( )=
xc
Asector x1 Atrinagle x2
Ac
=
2
3
rc
sin α( ) sin α( ) cos α( )
2

α sin α( ) cos α( )
=
xc
2 rc
3
sin α( )
3
α sin α( ) cos α( )
=
Equilibrium in forces X
 0=
Pn C
1
ns
i
T
i

= 0.85 f'c Ac
1
ns
i
A
s i
f
s i
 

=
Equilibrium in moments M
 0=
Mn Pn e= C xc
1
ns
i
T
i
d
i
Dc
2















=
Mn Pn e= 0.85 f'c Ac xc
1
ns
i
A
s i
f
s i
 d
i
rc  

=
Conditions of strain compatibility
ε
s i
εu
d
i
c
c
=
f
s i
Es ε
s i
= Es ε
u

d
i
c
c
= with f
s i
fy
Page 86
Example 14.5
Required strength Pu 3437.31kN
Mu 42.53kN m
Materials f'c 20MPa
fy 390MPa
Solution
Determination of concrete dimension
ϕ 0.70
Assume ρg 0.02
Ag
Pu
0.85 ϕ
0.85 f'c 1 ρg  fy ρg
2361.812 cm
2

Dc Ceil
Ag
π
4
50mm








550 mm
Ag
π Dc
2

4
2375.829 cm
2

Determination of steel area
Ast
Pu
0.85 ϕ
0.85 f'c Ag
0.85 f'c fy
46.597 cm
2

Ds Dc 30mm 10mm
20mm
2






2 450 mm
ns ceil
π Ds
100mm






15 As0
π 20mm( )
2

4
3.142 cm
2

Ast ns As0 47.124 cm
2
 s
π Ds
ns
94.248 mm
Interaction diagram for column strength
ϕPn.max 0.85 ϕ 0.85 f'c Ag Ast  fy Ast  3448.996 kN
Page 87
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
Es 2 10
5
MPa εu 0.003
c a( )
a
β1

i 1 ns αsi
2 π
ns
i 1( ) d
i
Dc
2
Ds
2
cos αsi





dt max d( ) 495.083 mm
ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.70 max
1.7 200 εt
3






min 0.9








fs i a( ) εs εu
d
i
c a( )
c a( )

sign εs  min Es εs fy 

rc
Dc
2

α a( ) acos
rc a
rc







xc a( )
2 rc
3
sin α a( )( )
3
α a( ) sin α a( )( ) cos α a( )( )

Ac a( ) rc
2
α a( ) sin α a( )( ) cos α a( )( )( )
ϕPn a( ) min ϕ a( ) 0.85 f'c Ac a( )
1
ns
i
As0 fs i a( ) 










 ϕPn.max









ϕMn a( ) ϕ a( ) 0.85 f'c Ac a( ) xc a( )
1
ns
i
As0 fs i a( ) d
i
rc  











a 0
Dc
100
 Dc
Page 88
0 100 200 300
0
1000
2000
3000
Interaction diagram for column strength
ϕPn a( )
kN
Pu
kN
ϕMn a( )
kN m
Mu
kN m

3. Long (Slender) Columns
Stability index
Q
ΣPu Δ0
Vu Lc
=
where
ΣPu Vu = total vertical force and story shear
Δ0 = relative deflection between column ends
Lc = center-to-center length of column
Q 0.05 : Frame is nonsway (braced)
Q 0.05 : Frame is sway (unbraced)
Page 89
Unbraced Frame Braced Frame
ShearWall
Braced Frame
Brick Wall
Ties
Slenderness of column
The column is short, if
In nonsway frame:
k Lu
r
min 34 12
M1
M2
 40







In sway frame:
k Lu
r
22
where
M1 min MA MB = M2 max MA MB =
= minimum and maximum moments at the ends of column
Lu = unsuppported length of column
r = radius of gyration
r
I
A
=
I A = moment of inertia and area of column section
k = effective length factor
k k ψA ψB =
ψA ψB = degree of end restraint (release)
Page 90
ψ
EIc
Lc







EIb
Lb







=
ψ 0= : column is fixed
ψ ∞= : column is pinned
Moments of inertia
For column Ic 0.70Ig=
For beam Ib 0.35Ig=
Ig = moment of inertia of gross section
Determination of effective length factor
Way 1. Using graph
Way 2. Using equations
For braced frames:
ψA ψB
4
π
k






2

ψA ψB
2
1
π
k
tan
π
k


















2 tan
π
2 k







π
k
 1=
Page 91
For unbraced frames:
ψA ψB
π
k






2
 36
6 ψA ψB 
π
k
tan
π
k






=
Way 3. Using approximate relations
In nonsway frames:
k 0.7 0.05 ψA ψB  1.0=
k 0.85 0.05 ψmin 1.0=
ψmin min ψA ψB =
In sway frames:
Case ψm 2
k
20 ψm
20
1 ψm=
Case ψm 2
k 0.9 1 ψm=
ψm
ψA ψB
2
=
Case of column is hinged at one end
k 2.0 0.3 ψ=
ψ is the value in the restrained end.
Moment on column
Mc M2 δns M2.min δns=
where
M2.min Pu 15mm 0.03h( )=
Moment magnification factor
Page 92
δns
Cm
1
Pu
0.75 Pc

1=
Euler's critical load
Pc
π
2
EI
k Lu 
2
=
EI
0.4 Ec Ig
1 βd
=
βd
1.2 PD
1.2 PD 1.6 PL
=
Coefficient
Cm 0.6 0.4
M1
M2
 0.4=
Example 14.6
Required strength Pu 6402.35kN
PD
PL






4273.41kN
796.25kN







MA 77.75kN m MB 122.68 kN m
Length of column Lc 7.8m
Upper and lower columns
ba
ha
La










60cm
60cm
3.6m









bb
hb
Lb










65cm
65cm
1.5m









Upper and lower beams ba1
ha1
La1










30cm
50cm
6m









ba2
ha2
La2










30cm
50cm
6m









bb1
hb1
Lb1










30cm
50cm
6m









bb2
hb2
Lb2










30cm
50cm
6m









Materials f'c 30MPa
fy 390MPa
Page 93
Solution
Determination of concrete dimension
ϕ 0.65
Assume ρg 0.03
Ag
Pu
0.80 ϕ
0.85 f'c 1 ρg  fy ρg
3379.226 cm
2

Proportion of column section k
b
h
= k
60
60

h
Ag
k
581.311 mm b k h 581.311 mm
h Ceil h 50mm( ) 600 mm
b Ceil b 50mm( ) 600 mm
b
h






600
600






mm
Determination of steel area
Ag b h 3.6 10
3
 cm
2

Ast
Pu
0.80 ϕ
0.85 f'c Ag
0.85 f'c fy
85.932 cm
2
 20
π 25mm( )
2

4
 98.175 cm
2

Bars
1
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
1
1
1
1
1
















25 mm As0
π Bars
2

4


i 1 cols As0  As1i
As0
i 
 As As1
Ast As Ast 98.175 cm
2

Ast
Ag
0.027
ns rows As  ns 6
Cover 40mm 10mm
25mm
2
 62.5 mm
Page 94
d1
1
Cover Δs
h Cover 2
ns 1
95 mm
i 2 ns d1
i
d1
i 1
Δs
d d1 d
62.5
157.5
252.5
347.5
442.5
537.5
















mm
ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  6634.405 kN
Slenderness of column
Stability index Q 0
Radius of gyration r
h
12
0.173 m
Modulus of elasticity
wc 24
kN
m
3

Ec 44MPa
wc
kN
m
3










1.5

f'c
MPa
 2.834 10
4
 MPa
Degree of end restraint
Ia1 0.35
ba1 ha1
3

12
 Ia2 0.35
ba2 ha2
3

12

Ib1 0.35
bb1 hb1
3

12
 Ib2 0.35
bb2 hb2
3

12

Ica 0.70
ba ha
3

12
 Icb 0.70
bb hb
3

12

Ic 0.70
b h
3

12

Σica
Ec Ica
La
Ec Ic
Lc
 Σicb
Ec Icb
Lb
Ec Ic
Lc

Σiba
Ec Ia1
La1
Ec Ia2
La2
 Σibb
Ec Ib1
Lb1
Ec Ib2
Lb2

ψA
Σica
Σiba
8.418 ψB
Σicb
Σibb
21.699
Page 95
Effective length factor
k 0.6
Given
ψA ψB
4
π
k






2

ψA ψB
2
1
π
k
tan
π
k


















2 tan
π
2 k







π
k
 1=
k 0.5 k 1.0
k Find k( ) k 0.969
Checking for long column
M1 MA MA MBif
MB otherwise
 M2 MB MA MBif
MA otherwise

M1 77.75 kN m M2 122.68 kN m
Lu Lc
max ha1 ha2  max hb1 hb2 
2
 7.3m
k Lu
r
40.834 min 34 12
M1
M2
 40






40
The_column "is short"
k Lu
r
min 34 12
M1
M2
 40






if
"is long" otherwise

The_column "is long"
Case of long column
βd
1.2 PD
1.2 PD 1.6 PL
0.801
Ig
b h
3

12
 EI
0.4 Ec Ig
1 βd

Pc
π
2
EI
k Lu 
2
13409.955 kN
Cm max 0.6 0.4
M1
M2
 0.4






0.4
Page 96
δns max
Cm
1
Pu
0.75 Pc

1










1.101
M2.min Pu 15mm 0.03 h( ) 211.278 kN m
Mc δns max M2 M2.min  The_column "is long"=if
max M2 M2.min  otherwise

Interaction diagram for column strength
c a( )
a
β1

dt max d( ) 537.5 mm
ϕ a( ) εt εu
dt c a( )
c a( )

ϕ 0.65 max
1.45 250 εt
3






min 0.90








fs i a( ) εs εu
d
i
c a( )
c a( )

sign εs  min Es εs fy 

ϕPn a( ) min ϕ a( ) 0.85 f'c a b
1
ns
i
Asi
fs i a( )













 ϕPn.max









ϕMn a( ) ϕ a( ) 0.85 f'c a b
h
2
a
2







1
ns
i
Asi
fs i a( ) d
i
h
2























a 0
h
100
 h
Page 97
0 200 400 600 800 1000 1200
0
1000
2000
3000
4000
5000
6000
7000
Interaction diagram for column strength
ϕPn a( )
kN
Pu
kN
ϕMn a( )
kN m
Mc
kN m

Page 98
15. Footing Design
A. Determination of Footing Dimension
Required area of footing
Areq
PD PL
qe
=
where
PD PL = dead and live loads on footing
qe = effective bearing capacity of soil
qe qa 20
kN
m
3
H=
qa = allowable bearing capacity of soil with FS 2.5= 3
20
kN
m
3
= average density of soil and concrete
H = depth of foundation
Checking for maximum stress of soil under footing
qmax qu
qmax
P
B L
1
6 e
L






 e
L
6
if
4P
3 B L 2 e( )
e
L
6
if
=
where
qu = design bearing capacity of soil
qu qa
1.2PD 1.6 PL
PD PL
=
P = axial load on footing
P 1.2 PD P0  1.6 PL=
P0 20
kN
m
3
H B L=
e = eccentricity of load
Page 99
e
M
P
=
L B = long and width of footing
B. Determination of Depth of Footing
Checking for Punching
Vu ϕVc
where
Vu = punching shear
Vc = punching shear strength
ϕ 0.75= is a strength reduction factor for shear
Punching shear
Vu qu A A0 =
A B L=
A0 bc d  hc d =
Punching shear strength
Vc 4 f'c b0 d= (in psi)
Page 100
Vc 0.332 f'c b0 d= (in MPa)
b0 bc d  hc d   2=
Checking for Beam Shear
Vu1 ϕVc1
Vu2 ϕVc2
where
Vu1 Vu2 = beam shears
Vc1 Vc2 = beam shear strength
Beam shears
Vu1 qu B
L
2
hc
2
 d






=
Vu2 qu L
B
2
bc
2
 d






=
Beam shear strength
Vc1 0.166 f'c B d=
Vc2 0.166 f'c L d=
C. Determination of Steel Area
Page 101
Steel re-bars in long direction
Required strength
q1 qu B= L1
L
2
hc
2
=
Mu1
q1 L1
2

2
=
Design section: rectangular singly reinforced beam of B d
Steel re-bars in short direction
Required strength
q2 qu L= L2
B
2
bc
2
=
Mu2
q2 L2
2

2
=
Design section: rectangular singly reinforced beam of L d
Example 15.1
Required strength PD 484.71kN
PL 228.56kN
PL
PD PL
0.32
Mu 5.03kN m
Dimension of column stub bc 350mm hc 350mm
Depth of foundation H 2.0m
Allowable bearing capacity of soil qa 178.33
kN
m
2
3
2.5
 213.996
kN
m
2

Materials f'c 25MPa
fy 390MPa
Page 102
Solution
Determination of Dimension of Footing
Effective bearing capacity of soil
qe qa 20
kN
m
3
H 173.996
kN
m
2

Required area of footing
Areq
PD PL
qe
4.099 m
2

Footing proportion k
B
L
= k
2
2.1

L
Areq
k
2.075 m B k L 1.976 m
L Ceil L 50mm( ) 2.1m B Ceil B 50mm( ) 2 m
B
L






2
2.1






m
Design bearing capacity of soil
qu qa
1.2 PD 1.6 PL
PD PL
 284.224
kN
m
2

Checking for maximum stress of soil
Pu 1.2 PD B L H 20
kN
m
3






 1.6 PL 1148.948 kN
e
Mu
Pu
4.378 mm
qmax
Pu
B L
1
6 e
L






 e
L
6
if
4Pu
3 B L 2 e( )
otherwise
 qmax 276.981
kN
m
2

qmax
qu
0.975
Soil "is safe" qmax quif
"is not safe" otherwise
 Soil "is safe"
Page 103
Determination of depth of footing
Punching shear
A0 d( ) bc d  hc d  A B L
Vu d( ) qu A A0 d( )  Vu 320mm( ) 1066.154 kN
Punching shear strength
b0 d( ) bc d  hc d   2
ϕ 0.75
ϕVc d( ) ϕ 0.332 MPa
f'c
MPa
 b0 d( ) d ϕVc 320mm( ) 1067.712 kN
Beam shears
Vu1 d( ) qu B
L
2
hc
2
 d






 Vu1 300mm( ) 326.858 kN
Vu2 d( ) qu L
B
2
bc
2
 d






 Vu2 300mm( ) 313.357 kN
Beam shear strength
ϕVc1 d( ) ϕ 0.166 MPa
f'c
MPa
 B d ϕVc1 300mm( ) 373.5 kN
ϕVc2 d( ) ϕ 0.166 MPa
f'c
MPa
 L d ϕVc2 300mm( ) 392.175 kN
c 50mm 20mm
20mm
2
 80 mm
dmin 150mm c 70 mm
d d dmin
d d 50mm
Vu d( ) ϕVc d( )  Vu1 d( ) ϕVc1 d( )  Vu2 d( ) ϕVc2 d( ) while
d

d 320 mm h d c 400 mm
Page 104
Steel reinforcements
ρshrinkage 0.0020return( ) fy 50ksiif
0.0018return( ) fy 60ksiif
max 0.0018
60ksi
fy
 0.0014





return





otherwise

ρshrinkage 0.0018
Re-bars in long direction
b B Ln
L
2
hc
2
 0.875 m wu qu b
Mu
wu Ln
2

2
217.609 kN m Mn
Mu
0.9

Mu
b
108.805
kN m
1m

R
Mn
b d
2

1.181 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00312
As max ρ b d ρshrinkage b h  19.944 cm
2

s 150mm D 14mm n floor
b 75mm 2 D
s






1 13
n
π D
2

4
 20.012 cm
2

Re-bars in short direction
b L Ln
B
2
bc
2
 0.825 m wu qu b
Mu
wu Ln
2

2
203.123 kN m Mn
Mu
0.9

Mu
b
96.725
kN m
1m

R
Mn
b d
2

1.05 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00276
As max ρ b d ρshrinkage b h  18.554 cm
2

s 160mm D 14mm n floor
b 75mm 2 D
s






1 13
n
π D
2

4
 20.012 cm
2

Page 105
16. Design of Pile Caps
1. Determination of Pile Cap
Number of required piles
n
PD PL
Qe
=
where
PD PL = dead and live loads on pile cap
Qe = effective bearing capacity of pile
Qe Qa 20
kN
m
3
3 D( )
2
 H=
20
kN
m
3
= average density of soil and concrete
D = pile size
H = depth of foundation
Distance between piles = 2 D 4 D
Distance from face of pile to face of pile cap =
D
2
200mm
Checking for pile reaction
R
i
P
n
M
y
x
i

1
n
k
x
k 
2



M
x
y
i

1
n
k
y
k 
2


 Qu=
where
P = load on pile cap
Mx My = moments on pile cap
Qu = design bearing capacity of pile
Qu Qa
1.2 PD 1.6 PL
PD PL
=
Page 106
2. Depth of Pile Cap
Case of punching
Vu ϕ Vc
where
Vu = punching shear
Vu Routside= Qu noutside=
Vc = punching shear strength
Vc 0.332 f'c b0 d=
b0 bc d  hc d   2=
Case of beam shear
Vu1 ϕVc1
Vu2 ϕVc2
where
Vu1 Vu2 = beam shears
Vc1 Vc2 = beam shear strength
Vu1 max Rleft Rright





=
Vu2 max Rbottom Rtop





=
Vc1 0.166 f'c B d=
Vc2 0.166 f'c L d=
Page 107
3. Determination of Steel Reinforcements
In long direction
Required moment: Mu1 max Rleft xleft
hc
2







 Rright xright
hc
2














=
Design section: Rectangular singly reinforced of B d
In short direction
Required moment: Mu2 max Rbottom xbottom
bc
2







 Rtop xtop
bc
2














=
Design section: Rectangular singly reinforced of L d
Example 16.1
Pile size D 300mm Lp 9m
Allowable bearing capacity of pile Qa 351.5kN
Loads on pile cap PD 1769.88kN PL 417.11kN
My 33.92kN m Mx 56.82kN m
Depth of foundation H 1.5m
Column stub bc 350mm hc 500mm
Materials f'c 25MPa
fy 390MPa
Diameters of main bar
D1
D2






16mm
16mm







Concrete cover c 75mm
Depth of concrete crack hshrinkage 200mm
Diameter of shrinkage rebar Dshrinkage 12mm
Solution
Design of pile
Required strength of pile concrete
Page 108
Ag D D
f'c.pile
Qa
1
4
Ag
15.622 MPa Use f'c.pile 20MPa
Steel re-bars
Ast 0.005 Ag 4.5 cm
2
 4
π 16mm( )
2

4
 8.042 cm
2

Dimension of pile cap
Effective bearing capacity of pile
Qe Qa 20
kN
m
3
3 D( )
2
 H 327.2 kN
Number of piles
n
PD PL
Qe
6.684
Required number of piles ceil n( ) 7
Location of pile
X
1 m
0
1m
0.5 m
0.5m
1 m
0
1m






















 Y
0.8m
0.8m
0.8m
0
0
0.8 m
0.8 m
0.8 m























Number of piles n rows X( ) n 8
Dimension of pile cap
B max Y( ) min Y( ) min
D
2
200mm





D
2






2 B 2.2m
L max X( ) min X( ) min
D
2
200mm





D
2






2 L 2.6m
Checking for pile reactions
Page 109
Qu Qa
1.2 PD 1.6 PL
PD PL
 448.616 kN
P0 20
kN
m
3
H B L 171.6 kN
Pu 1.2 PD P0  1.6 PL 2997.152 kN
i 1 n ORIGIN 1
Rui
Pu
n
My X
i

1
n
k
X
k 
2



Mx Y
i

1
n
k
Y
k 
2



Ru
Qu
0.845
0.861
0.878
0.827
0.844
0.792
0.809
0.826























Xcap
1
1
1
1
1














L
2
 Ycap
1
1
1
1
1














B
2

i 1 n
Xpile
i 
X
i
1
1
1
1
1














D
2
 Ypile
i 
Y
i
1
1
1
1
1














D
2

2 1 0 1 2
2
1
1
2
Ycap
Ypile
Y
Xcap Xpile X
Page 110
Determination of Depth of Pile Cap
Punching shear
Outside d( ) X
hc
2
d
2







Y
bc
2
d
2
















Vu d( ) Ru Outside d( ) Vu 700mm( ) 2247.864 kN
Punching shear strength
ϕ 0.75
b0 d( ) hc d  bc d   2
ϕVc d( ) ϕ 0.332 MPa
f'c
MPa
 b0 d( ) d ϕVc 700mm( ) 3921.75 kN
Beam shears
Left d( ) X
hc
2
d














 Right d( ) X
hc
2
d















Bottom d( ) Y
bc
2
d














 Top d( ) Y
bc
2
d















Vu1 d( ) max Ru Left d( ) Ru Right d( )  Vu1 700mm( ) 764.364 kN
Vu2 d( ) max Ru Bottom d( ) Ru Top d( )  Vu2 700mm( ) 0 N
Beam shear strength
ϕVc1 d( ) ϕ 0.166 MPa
f'c
MPa
 B d ϕVc1 700mm( ) 958.65 kN
ϕVc2 d( ) ϕ 0.166 MPa
f'c
MPa
 L d ϕVc2 700mm( ) 1132.95 kN
Depth of pile cap
Cover c D1
D2
2
 99 mm
d d 300mm Cover
d d 50mm
Vu d( ) ϕVc d( )  Vu1 d( ) ϕVc1 d( )  Vu2 d( ) ϕVc2 d( ) while
d

d 651 mm h d Cover 750 mm
Page 111
Steel Reinforcements
ρshrinkage 0.0020return( ) fy 50ksiif
0.0018return( ) fy 60ksiif
max 0.0018
60ksi
fy
 0.0014





return





otherwise

In long direction
b B
Mu1 Left 0( ) Ru
hc
2
X














 643.378 kN m
Mu2 Right 0( ) Ru X
hc
2















 667.876 kN m
Mu max Mu1 Mu2  667.876 kN m Mn
Mu
0.9

R
Mn
b d
2

0.796 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00208
As max ρ b d ρshrinkage b h  As 29.797 cm
2

As1
π D1
2

4
 n1 ceil
As
As1






15
s1 Floor
b c
D1
2







2
n1 1
5mm










145 mm
In short direction
b L
Mu1 Bottom 0( ) Ru
bc
2
Y














 680.262 kN m
Mu2 Top 0( ) Ru Y
bc
2















 724.653 kN m
Mu max Mu1 Mu2  724.653 kN m Mn
Mu
0.9

Page 112
R
Mn
b d
2

0.731 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00191
As max ρ b d ρshrinkage b h  As 35.1 cm
2

As2
π D2
2

4
 n2 ceil
As
As2






18
s2 Floor
b c
D2
2







2
n2 1
5mm










140 mm
Shrinkage reinforcement
b 1m hshrinkage h hshrinkage 0=if
hshrinkage otherwise

As ρshrinkage b hshrinkage 3.6 cm
2

As0
π Dshrinkage
2

4
 n
As
As0

sshrinkage Floor
b
n
5mm





310 mm
Table
L c
D1
2







2
m
B c
D2
2







2
m
"N/A"
D1
mm
D2
mm
Dshrinkage
mm
n1
n2
"N/A"
s1
mm
s2
mm
sshrinkage
mm























Page 113
Dimension of pile cap B= 2.20 m
L= 2.60 m
Depth of pile cap h= 750 mm
Direction Length (mm) Dia. (mm) NOS Spacing (mm)
Long 2.43 16 15 145
Short 2.03 16 18 140
Top N/A 12 N/A 310
Page 114
17. Slab Design
A. Design of One-Way Slabs
La = length of short side
Lb = length of long side
La
Lb
0.5 : the slab in one-way
La
Lb
0.5 : the slab is two-way
Thickness of one-way slab
Simply supported
Ln
20
One end continuous
Ln
24
Both ends continuous
Ln
28
Cantilever
Ln
10
Analysis of one-way slab
Design scheme: continuous beam
Determination of bending moments: using ACI moment coefficients
Design of one-way slab
Design section: rectangular section of 1m x h
Type section: singly reinforced beam
Page 115
Example 17.1
Span of slab Ln 2m 20cm 1.8m
Live load LL 12
kN
m
2

Materials f'c 20MPa
fy 390MPa
Solution
Thickness of one-way slab
tmin
Ln
28
64.286 mm
Use t 100mm
Loads on slab
Cover 50mm 22
kN
m
3
1.1
kN
m
2

Slab t 25
kN
m
3
2.5
kN
m
2

Ceiling 0.40
kN
m
2

Mechanical 0.20
kN
m
2

Partition 1.00
kN
m
2

DL Cover Slab Ceiling Mechanical Partition 5.2
kN
m
2

wu 1.2 DL 1.6 LL 25.44
kN
m
2

Bending moments
Msupport
1
11
wu Ln
2
 7.493
kN m
1m

Mmidspan
1
16
wu Ln
2
 5.152
kN m
1m

Steel reinforcements
Page 116
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.014
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
ρshrinkage 0.0020return( ) fy 50ksiif
0.0018return( ) fy 60ksiif
max 0.0018
60ksi
fy
 0.0014





return





otherwise

ρshrinkage 0.0018
Top rebars
b 1m d t 20mm
10mm
2






 75 mm
Mu Msupport b 7.493 kN m
Mn
Mu
0.9
8.326 kN m
R
Mn
b d
2

1.48 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.004 ρ ρmax 1
As max ρ b d ρshrinkage b t  2.982 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 3 t 450mm( )
s min Floor
b
n
10mm





smax





260 mm
Bottom rebars
Mu Mmidspan b 5.152 kN m
Mn
Mu
0.9
5.724 kN m
Page 117
R
Mn
b d
2

1.018 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.003 ρ ρmax 1
As max ρ b d ρshrinkage b t  2.019 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 3 t 450mm( )
s min Floor
b
n
10mm





smax





300 mm
Link rebars
As ρshrinkage b t 1.8 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 5 t 450mm( )
s min Floor
b
n
10mm





smax





430 mm
B. Design of Two-Way Slabs
Design methods:
- Load distribution method
- Moment coefficient method
- Direct design method (DDM)
- Equivalent frame method
- Strip method
- Yield line method
Page 118
(1) Load Distribution Method
Principle: Equality of deflection in short and long directions
fa fb=
αa
wa La
4

EI
 αb
wb Lb
4

EI
=
Case αa αb=
wa
wb
Lb
4
La
4
=
1
λ
4
= λ
La
Lb
=
wa wb wu=
From which, wa wu
1
1 λ
4

=
wb wu
λ
4
1 λ
4

=
For λ 1
1
1 λ
4

0.5
λ
4
1 λ
4

0.5
For λ 0.8
1
1 λ
4

0.709
λ
4
1 λ
4

0.291
For λ 0.6
1
1 λ
4

0.885
λ
4
1 λ
4

0.115
For λ 0.5
1
1 λ
4

0.941
λ
4
1 λ
4

0.059
For λ 0.4
1
1 λ
4

0.975
λ
4
1 λ
4

0.025
Page 119
Example 17.2
Slab dimension La 4.3m
Lb 5.5m
Live load LL 2.00
kN
m
2

Materials f'c 20MPa
fy 390MPa
Solution
Thickness of two-way slab
Perimeter La Lb  2
tmin
Perimeter
180
108.889 mm
t
1
30
1
50






La 143.333 86( ) mm
Use t 120mm
Loads on slab
SDL 50mm 22
kN
m
3
0.40
kN
m
2
 1.00
kN
m
2
 2.5
kN
m
2

DL SDL t 25
kN
m
3
 5.5
kN
m
2

LL 2
kN
m
2

wu 1.2 DL 1.6 LL 9.8
kN
m
2

Load distribution
λ
La
Lb
0.782
wa
1
1 λ
4

wu 7.134
kN
m
2

wb
λ
4
1 λ
4

wu 2.666
kN
m
2

Page 120
Bending moments
Ma.neg
1
11
wa La
2
 11.992
kN m
1m

Ma.pos
1
16
wa La
2
 8.245
kN m
1m

Mb.neg
1
11
wb Lb
2
 7.33
kN m
1m

Mb.pos
1
16
wb Lb
2
 5.04
kN m
1m

Steel reinforcements
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.014
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
ρshrinkage 0.0020return( ) fy 50ksiif
0.0018return( ) fy 60ksiif
max 0.0018
60ksi
fy
 0.0014





return





otherwise

ρshrinkage 0.0018
Top rebar in short direction
b 1m d t 20mm 10mm
10mm
2






 85 mm
Mu Ma.neg b 11.992 kN m
Mn
Mu
0.9
13.325 kN m
R
Mn
b d
2

1.844 MPa
Page 121
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.005 ρ ρmax 1
As max ρ b d ρshrinkage b t  4.265 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





180 mm
Bottom rebar in short direction
Mu Ma.pos b 8.245 kN m
Mn
Mu
0.9
9.161 kN m
R
Mn
b d
2

1.268 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.003 ρ ρmax 1
As max ρ b d ρshrinkage b t  2.875 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Top rebar in long direction
Mu Mb.neg b 7.33 kN m
Mn
Mu
0.9
8.145 kN m
R
Mn
b d
2

1.127 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.003 ρ ρmax 1
As max ρ b d ρshrinkage b t  2.544 cm
2

Page 122
As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Bottom rebar in long direction
Mu Mb.pos b 5.04 kN m
Mn
Mu
0.9
5.599 kN m
R
Mn
b d
2

0.775 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.002 ρ ρmax 1
As max ρ b d ρshrinkage b t  2.16 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Shrinkage rebars
b 1m
As ρshrinkage b t 2.16 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 5 t 450mm( )
s min Floor
b
n
10mm





smax





360 mm
Page 123
(2) Moment Coefficient Method
Negative moments
Ma.neg Ca.neg wu La
2
=
Mb.neg Cb.neg wu Lb
2
=
Positive moments
Ma.pos Ca.pos.DL wD La
2
 Ca.pos.LL wL La
2
=
Mb.pos Cb.pos.DL wD Lb
2
 Cb.pos.LL wL Lb
2
=
where Ca.neg Cb.neg Ca.pos.DL Ca.pos.LL Cb.pos.DL Cb.pos.LL
are tabulated moment coefficients
wD 1.2 DL= wL 1.6 LL=
wu 1.2 1.6 LL=
Example 17.3
Slab dimension La 5.0m 25cm 4.75 m
Lb 5.5m 20cm 5.3m
Live load for office LL 2.40
kN
m
2

Materials f'c 20MPa fy 390MPa
Boundary conditions in short and long directions
Simple
Continuous






0
1






 Short
Continuous
Continuous







Long
Continuous
Continuous







Solution
Thickness of two-way slab
Perimeter La Lb  2
Page 124
tmin
Perimeter
180
111.667 mm
t
1
30
1
50






La 158.333 95( ) mm
Use t 120mm
Loads on slab
Cover 50mm 22
kN
m
3
1.1
kN
m
2

Slab t 25
kN
m
3
3
kN
m
2

Ceiling 0.40
kN
m
2

Partition 1.00
kN
m
2

SDL Cover Ceiling Partition 2.5
kN
m
2

DL SDL Slab 5.5
kN
m
2
 wD 1.2 DL
LL 2.4
kN
m
2
 wL 1.6 LL
wu 1.2 DL 1.6LL 10.44
kN
m
2

Moment coefficients
Page 125
Table 12.3a
Coefficients for negative moments in short direction of slab
m Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
1.00 0.000 0.045 0.000 0.050 0.075 0.071 0.000 0.033 0.061
0.95 0.000 0.050 0.000 0.055 0.079 0.075 0.000 0.038 0.065
0.90 0.000 0.055 0.000 0.060 0.080 0.079 0.000 0.043 0.068
0.85 0.000 0.060 0.000 0.066 0.082 0.083 0.000 0.049 0.072
0.80 0.000 0.065 0.000 0.071 0.083 0.086 0.000 0.055 0.075
0.75 0.000 0.069 0.000 0.076 0.085 0.088 0.000 0.061 0.078
0.70 0.000 0.074 0.000 0.081 0.086 0.091 0.000 0.068 0.081
0.65 0.000 0.077 0.000 0.085 0.087 0.093 0.000 0.074 0.083
0.60 0.000 0.081 0.000 0.089 0.088 0.095 0.000 0.080 0.085
0.55 0.000 0.084 0.000 0.092 0.089 0.096 0.000 0.085 0.086
0.50 0.000 0.086 0.000 0.094 0.090 0.097 0.000 0.089 0.088
Table 12.3b
Coefficients for negative moments in long direction of slab
m Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
1.00 0.000 0.045 0.076 0.050 0.000 0.000 0.071 0.061 0.033
0.95 0.000 0.041 0.072 0.045 0.000 0.000 0.067 0.056 0.029
0.90 0.000 0.037 0.070 0.040 0.000 0.000 0.062 0.052 0.025
0.85 0.000 0.031 0.065 0.034 0.000 0.000 0.057 0.046 0.021
0.80 0.000 0.027 0.061 0.029 0.000 0.000 0.051 0.041 0.017
0.75 0.000 0.022 0.056 0.024 0.000 0.000 0.044 0.036 0.014
0.70 0.000 0.017 0.050 0.019 0.000 0.000 0.038 0.029 0.011
0.65 0.000 0.014 0.043 0.015 0.000 0.000 0.031 0.024 0.008
0.60 0.000 0.010 0.035 0.011 0.000 0.000 0.024 0.018 0.006
0.55 0.000 0.007 0.028 0.008 0.000 0.000 0.019 0.014 0.005
0.50 0.000 0.006 0.022 0.006 0.000 0.000 0.014 0.010 0.003
ORIGIN 1
Index
1
2
2
3






 I Index
Short1 1 Short2 1  3
J Index
Long1 1 Long2 1  3
Table
1
6
5
7
4
9
3
8
2








 Case Table
I J
2
Vλ reverse Vλ( )
Vaneg reverse Taneg
Case 
  Vbneg reverse Tbneg
Case 
 
VaposDL reverse TaposDL
Case 
  VbposDL reverse TbposDL
Case 
 
VaposLL reverse TaposLL
Case 
  VbposLL reverse TbposLL
Case 
 
λ
La
Lb
0.896
vs1 pspline Vλ Vaneg( ) Ca.neg interp vs1 Vλ Vaneg λ( ) 0.055
Page 126
vs2 pspline Vλ Vbneg( ) Cb.neg interp vs2 Vλ Vbneg λ( ) 0.037
vs3 pspline Vλ VaposDL( ) Ca.pos.DL interp vs3 Vλ VaposDL λ( ) 0.022
vs4 pspline Vλ VbposDL( ) Cb.pos.DL interp vs4 Vλ VbposDL λ( ) 0.014
vs5 pspline Vλ VaposLL( ) Ca.pos.LL interp vs5 Vλ VaposLL λ( ) 0.034
vs6 pspline Vλ VbposLL( ) Cb.pos.LL interp vs6 Vλ VbposLL λ( ) 0.022
Bending moments
Ma.neg Ca.neg wu La
2
 13.043
kN m
1m

Mb.neg Cb.neg wu Lb
2
 10.729
kN m
1m

Ma.pos Ca.pos.DL wD La
2
 Ca.pos.LL wL La
2
 6.266
kN m
1m

Mb.pos Cb.pos.DL wD Lb
2
 Cb.pos.LL wL Lb
2
 4.911
kN m
1m

Steel reinforcements
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
εu 0.003
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.014
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy











0.00354
ρshrinkage 0.0020return( ) fy 50ksiif
0.0018return( ) fy 60ksiif
max 0.0018
60ksi
fy
 0.0014





return





otherwise

ρshrinkage 0.0018
Top rebars in short direction
b 1m d t 20mm 10mm
10mm
2






 85 mm
Page 127
Mu Ma.neg b 13.043 kN m
Mn
Mu
0.9
14.492 kN m
R
Mn
b d
2

2.006 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.005 ρ ρmax 1
As max ρ b d ρshrinkage b t  4.666 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





160 mm
Bottom rebars in short direction
Mu Ma.pos b 6.266 kN m
Mn
Mu
0.9
6.963 kN m
R
Mn
b d
2

0.964 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.003 ρ ρmax 1
As max ρ b d ρshrinkage b t  2.163 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Top rebars in long direction
Mu Mb.neg b 10.729 kN m
Mn
Mu
0.9
11.921 kN m
Page 128
R
Mn
b d
2

1.65 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.004 ρ ρmax 1
As max ρ b d ρshrinkage b t  3.79 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





200 mm
Bottom rebars in long direction
Mu Mb.pos b 4.911 kN m
Mn
Mu
0.9
5.457 kN m
R
Mn
b d
2

0.755 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.002 ρ ρmax 1
As max ρ b d ρshrinkage b t  2.16 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Shrinkage rebars
b 1m
As ρshrinkage b t 2.16 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 5 t 450mm( )
s min Floor
b
n
10mm





smax





360 mm
Page 129
(3) Direct Design Method (DDM)
Total static moment
M0
wu L2 Ln
2

8
=
Longitudinal distribution of moments
Mneg Cneg M0=
Mpos Cpos M0=
Lateral distribution of moments
Mneg.col Cneg.col Mneg=
Mneg.mid Cneg.mid Mneg=
Mpos.col Cpos.col Mpos=
Mpos.mid Cpos.mid Mpos=
Page 130
Example 17.4
Slab dimension La 4m Lb 6m
Live load for hospital LL 3.00
kN
m
2

Materials f'c 25MPa fy 390MPa
Page 131
Solution
Section of beam in long direction
L Lb 6 m
h
1
10
1
15






L 600 400( ) mm h 500mm
b 0.3 0.6( ) h 150 300( ) mm b 250mm
bb
hb






b
h







Section of beam in short direction
L La 4 m
h
1
10
1
15






L 400 266.667( ) mm h 300mm
b 0.3 0.6( ) h 90 180( ) mm b 200mm
ba
ha






b
h







Determination of slab thickness
Perimeter La Lb  2
tmin
Perimeter
180
111.111 mm
Assume t 120mm
In long direction
bw bb h hb hf t
hw h hf
b min bw 2 hw bw 8 hf  1.01 m
A1 bw h x1
h
2

A2 b bw  hf x2
hf
2

xc
x1 A1 x2 A2
A1 A2
169.852 mm
I1
bw h
3

12
A1 x1 xc 
2

I2
b bw  hf
3

12
A2 x2 xc 
2

Page 132
Ib I1 I2 4.617 10
5
 cm
4

Is
La hf
3

12

wc 24
kN
m
3
 Ec 44MPa
wc
kN
m
3










1.5

f'c
MPa
 2.587 10
4
 MPa
α
Ec Ib
Ec Is
8.016 αb α
In short direction
bw ba h ha hf t
hw h hf
b min bw 2 hw bw 8 hf  0.56 m
A1 bw h x1
h
2

A2 b bw  hf x2
hf
2

xc
x1 A1 x2 A2
A1 A2
112.326 mm
I1
bw h
3

12
A1 x1 xc 2

I2
b bw  hf
3

12
A2 x2 xc 2

Ib I1 I2 7.053 10
4
 cm
4
 Iba Ib
Is
Lb hf
3

12
8.64 10
4
 cm
4

α
Ec Ib
Ec Is
0.816 αa α
Required thickness of slab
αm
αa 2 αb 2
4
4.416
β
Lb
La
1.5
Ln Lb 20cm 5.8m
Page 133
hf max
Ln 0.8
fy
200ksi








36 5 β αm 0.2 
5in










0.2 αm 2.0if
max
Ln 0.8
fy
200ksi








36 9 β
3.5in








2.0 αm 5.0if
"DDM is not applied" otherwise

hf 126.876 mm
Loads on slab
DL 50mm 22
kN
m
3
t 25
kN
m
3
 0.40
kN
m
2
 1.00
kN
m
2
 5.5
kN
m
2

LL 3
kN
m
2

wu 1.2 DL 1.6 LL 11.4
kN
m
2

In long direction
L1 Lb 6 m Ln L1 ba 5.8m
L2 La 4 m α1 αb 8.016
Total static moment
M0
wu L2 Ln
2

8
191.748 kN m
Longitudinal distribution of moments
Mneg 0.65 M0 124.636 kN m
Mpos 0.35 M0 67.112 kN m
Lateral distribution of moments
k1
L2
L1
0.667 k2 α1
L2
L1
 5.344
linterp2 VX VY M x y( )
V
j
linterp VX M
j 
 x 
j 1 rows VY( )for
linterp VY V y( )

Page 134
Cneg.col linterp2
0
1
10








0.5
1.0
2.0









0.75
0.90
0.90
0.75
0.75
0.75
0.75
0.45
0.45








 k2 k1








0.85
Cneg.mid 1 Cneg.col 0.15
Cpos.col linterp2
0
1
10








0.5
1.0
2.0









0.60
0.90
0.90
0.60
0.75
0.75
0.60
0.45
0.45








 k2 k1








0.85
Cpos.mid 1 Cpos.col 0.15
Mneg.col Cneg.col Mneg 105.941 kN m
Mneg.mid Cneg.mid Mneg 18.695 kN m
Mpos.col Cpos.col Mpos 57.045 kN m
Mpos.mid Cpos.mid Mpos 10.067 kN m
Ccol.beam linterp
0
1
10








0
0.85
0.85








 k2








0.85
Ccol.slab 1 Ccol.beam 0.15
Mneg.col.beam Ccol.beam Mneg.col 90.05 kN m
Mneg.col.slab Ccol.slab Mneg.col 15.891 kN m
Mpos.col.beam Ccol.beam Mpos.col 48.488 kN m
Mpos.col.slab Ccol.slab Mpos.col 8.557 kN m
bcol
min L1 L2 
4
2 2 m
bmid L2 bcol 2 m
Top rebars in column strip
b bcol d t 20mm 10mm
10mm
2






 85 mm
Mu Mneg.col.slab 15.891 kN m
Mn
Mu
0.9
17.657 kN m
Page 135
R
Mn
b d
2

1.222 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.003 ρ ρmax 1
As max ρ b d ρshrinkage b t  5.489 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Bottom rebars in column strip
Mu Mpos.col.slab 8.557 kN m
Mn
Mu
0.9
9.508 kN m
R
Mn
b d
2

0.658 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.002 ρ ρmax 1
As max ρ b d ρshrinkage b t  4.32 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Top rebars in middle strip
b bmid
Mu Mneg.mid 18.695 kN m
Mn
Mu
0.9
20.773 kN m
R
Mn
b d
2

1.438 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.004 ρ ρmax 1
Page 136
As max ρ b d ρshrinkage b t  6.494 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Bottom rebars in middle strip
Mu Mpos.mid 10.067 kN m
Mn
Mu
0.9
11.185 kN m
R
Mn
b d
2

0.774 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.002 ρ ρmax 1
As max ρ b d ρshrinkage b t  4.32 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
In short direction
L1 La 4 m Ln L1 bb 3.75 m
L2 Lb 6 m α1 αa 0.816
Total static moment
M0
wu L2 Ln
2

8
120.234 kN m
Longitudinal distribution of moments
Mneg 0.65 M0 78.152 kN m
Mpos 0.35 M0 42.082 kN m
Lateral distribution of moments
Page 137
k1
L2
L1
1.5 k2 α1
L2
L1
 1.224
Cneg.col linterp2
0
1
10








0.5
1.0
2.0









0.75
0.90
0.90
0.75
0.75
0.75
0.75
0.45
0.45








 k2 k1








0.6
Cneg.mid 1 Cneg.col 0.4
Cpos.col linterp2
0
1
10








0.5
1.0
2.0









0.60
0.90
0.90
0.60
0.75
0.75
0.60
0.45
0.45








 k2 k1








0.6
Cpos.mid 1 Cpos.col 0.4
Mneg.col Cneg.col Mneg 46.891 kN m
Mneg.mid Cneg.mid Mneg 31.261 kN m
Mpos.col Cpos.col Mpos 25.249 kN m
Mpos.mid Cpos.mid Mpos 16.833 kN m
Ccol.beam linterp
0
1
10








0
0.85
0.85








 k2








0.85
Ccol.slab 1 Ccol.beam 0.15
Mneg.col.beam Ccol.beam Mneg.col 39.858 kN m
Mneg.col.slab Ccol.slab Mneg.col 7.034 kN m
Mpos.col.beam Ccol.beam Mpos.col 21.462 kN m
Mpos.col.slab Ccol.slab Mpos.col 3.787 kN m
bcol
min L1 L2 
4
2 2 m
bmid L2 bcol 4 m
Top rebars in column strip
b bcol
Mu Mneg.col.slab 7.034 kN m
Mn
Mu
0.9
7.815 kN m
Page 138
R
Mn
b d
2

0.541 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.001 ρ ρmax 1
As max ρ b d ρshrinkage b t  4.32 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Bottom rebars in column strip
Mu Mpos.col.slab 3.787 kN m
Mn
Mu
0.9
4.208 kN m
R
Mn
b d
2

0.291 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.001 ρ ρmax 1
As max ρ b d ρshrinkage b t  4.32 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Top rebars in middle strip
b bmid
Mu Mneg.mid 31.261 kN m
Mn
Mu
0.9
34.734 kN m
R
Mn
b d
2

1.202 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.003 ρ ρmax 1
Page 139
As max ρ b d ρshrinkage b t  10.792 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Bottom rebars in middle strip
Mu Mpos.mid 16.833 kN m
Mn
Mu
0.9
18.703 kN m
R
Mn
b d
2

0.647 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.002 ρ ρmax 1
As max ρ b d ρshrinkage b t  8.64 cm
2

As0
π 10mm( )
2

4
 n
As
As0
 smax min 2 t 450mm( )
s min Floor
b
n
10mm





smax





240 mm
Page 140
Page 141
18. Design of Staircase
Step dimension G
3.1m
11
281.818 mm
H
1.8m
11
163.636 mm
G 2 H 60.909 cm Reference:
G 2 H 60cm= 64cm
H 150mm= 190mm
Number of steps n 11
Loads on waist slab
Slope angle α atan
H
G






30.141 deg
Thickness of waist slab twaist 120mm
Step cover Cover 50mm H G( ) 22
kN
m
3
1m
1m G
 1.739
kN
m
2

Concrete step Step
G H
2
24
kN
m
3
1m
1m G
 1.964
kN
m
2

RC slab Slab twaist 25
kN
m
3
1m
2
1m
2
cos α( )
 3.469
kN
m
2

Page 142
Ceiling Ceiling 0.40
kN
m
2
1m
2
1m
2
cos α( )
 0.463
kN
m
2

Handrail Handrail 0.50
kN
m
2

Dead load DL Cover Step Slab Ceiling Handrail
DL 8.134
kN
m
2

Live load LL 4.80
kN
m
2

Factored load wwaist 1.2 DL 1.6 LL 17.441
kN
m
2

Loads on landing slab
Thickness of landing slab tlanding 150mm
Slab cover Cover 50mm 22
kN
m
3
1.1
kN
m
2

RC slab Slab tlanding 25
kN
m
3
3.75
kN
m
2

Ceiling Ceiling 0.40
kN
m
2

Handrail Handrail 0.50
kN
m
2

Dead load DL Cover Slab Ceiling Handrail 5.75
kN
m
2

Live load LL 4.80
kN
m
2

Factored load wlanding 1.2 DL 1.6 LL 14.58
kN
m
2

Analysis of Staircase
Concrete modulus of elasticity
f'c 25MPa
wc 24
kN
m
3
 Ec 44MPa
wc
kN
m
3










1.5

f'c
MPa
 2.587 10
4
 MPa
Page 143
Geometry of staicase
L0 3.1m L2 1.9m h 1.8m
L1 L0
2
h
2
 3.585 m
t1 twaist 120 mm t2 tlanding 150 mm
Flexural stiffness
b 1m
EI1 Ec
b t1
3

12
 EI2 Ec
b t2
3

12

Loads on staircase
w1 wwaist b 17.441
kN
m

w2 wlanding b 14.58
kN
m

Coefficients
r11 4
EI1
L1
 3
EI2
L2
 R1p
w1 L0
2

12
w2 L2
2

8

Angular rotation
Z1
R1p
r11
4.723 10
4
 φB Z1
Bending moments
MA 2
EI1
L1
 Z1
w1 L0
2

12
 14.949 kN m
MBA 4
EI1
L1
 Z1
w1 L0
2

12
 12.004 kN m
MBC 3
EI2
L2
 Z1
w2 L2
2

8
 12.004 kN m
MC 0
Shears
w0 w1 cos α( )
2
 13.043
kN
m

VAB
MBA MA
L1
w0 L1
2
 24.199 kN
Page 144
VBA VAB w0 L1 22.557 kN
VBC
MC MBC
L2
w2 L2
2
 20.169 kN
VCB VBC w2 L2 7.533 kN
Positive moments
x1
VAB
w0
1.855 m
Mmax.AB MA VAB x1
w0 x1
2

2
 7.5 kN m
x2
VBC
w2
1.383 m
Mmax.BC MBC VBC x2
w2 x2
2

2
 1.946 kN m
Design of Staircase
Materials
f'c 25MPa fy 390MPa
εu 0.003
β1 0.65 max 0.85 0.05
f'c 27.6MPa
6.9MPa







min 0.85






0.85
ρmax 0.85 β1
f'c
fy

εu
εu 0.005
 0.017
ρmin max
0.249MPa
f'c
MPa

fy
1.379MPa
fy












ρshrinkage 0.0020return fy 50ksiif
0.0018return fy 60ksiif
max 0.0018
60ksi
fy
 0.0014





return otherwise
 ρshrinkage 0.0018
Top rebars in waist slab
Page 145
b 1 m d twaist 30mm
16mm
2






 82 mm
Mu max MA MBA  14.949 kN m Mn
Mu
0.9

R
Mn
b d
2

2.47 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00675
As max ρ b d ρshrinkage b twaist  5.537 cm
2

b
200mm
π 14mm( )
2

4
 7.697 cm
2

Top rebars in landing slab
b 1 m d tlanding 30mm
16mm
2






 112 mm
Mu max MBC MC  12.004 kN m Mn
Mu
0.9

R
Mn
b d
2

1.063 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.0028
As max ρ b d ρshrinkage b twaist  3.134 cm
2

b
200mm
π 10mm( )
2

4
 3.927 cm
2

Bottom rebars in waist slab
b 1 m d twaist 30mm
16mm
2






 82 mm
Mu Mmax.AB 7.5 kN m Mn
Mu
0.9

R
Mn
b d
2

1.239 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00328
As max ρ b d ρshrinkage b twaist  2.687 cm
2

Page 146
b
200mm
π 10mm( )
2

4
 3.927 cm
2

Bottom rebars in landing slab
b 1 m d tlanding 30mm
16mm
2






 112 mm
Mu Mmax.BC 1.946 kN m Mn
Mu
0.9

R
Mn
b d
2

0.172 MPa
ρ 0.85
f'c
fy
 1 1 2
R
0.85 f'c







 0.00044
As max ρ b d ρshrinkage b twaist  2.16 cm
2

b
200mm
π 10mm( )
2

4
 3.927 cm
2

Link rebars
b 1m t max twaist tlanding  150 mm
As ρshrinkage b t 2.7 cm
2

b
250mm
π 10mm( )
2

4
 3.142 cm
2

Page 147
19. Deflection
A. Immediate (Initial) Deflection
Initial or short-term deflection in midspan of continuous beam
Δi K
5 Ma Ln
2

48 Ec Ie
=
where Ma = support moment for cantilever or midspan moment for simple or cotinuous
beam
Ln = span length of beam
Ec = concrete modulus of elasticity
Ie = effective moment of inertia of cracked section
K = deflection coefficient for uniform distributed load w
1. Cantilever K 2.40=
2. Simple beam K 1.0=
3. Continuous beam K 1.2 0.2
M0
Ma
=
4. Fixed-hinged beam
Midspan deflection K 0.8=
Max. deflection using
max. moment
K 0.74=
5. Fixed-fixed beam K 0.60=
where M0
w Ln
2

8
=
Effective moment of inertia of cracked section
Ie Icr
Mcr
Ma






3
Ig Icr  Ig=
where
Icr = moment of inertia of cracked transformed section
Ig = moment of inertia of gross section
Mcr = cracking moment
Page 148
Case of continuous beams
According ACI Code 9.5.2 for continuous span
Ie 0.50 Im 0.25 Ie1 Ie2 =
Beams with both ends continuous
Ie 0.70 Im 0.15 Ie1 Ie2 =
Beams with one end continuous
Ie 0.85 Im 0.15 Icont.end=
where
Im = midspan section Ie
Ie1 Ie2 = Ie for the respective beam ends
Icont.end = Ie of continuous end
Transformed Section
εc
fc
Ec
= εs=
fs
Es
=
From which fs
Es
Ec
fc= n fc=
where n
Es
Ec
= is a modulus ratio
Axial force
P Ac fc As fs= Ac n As  fc= At fc=
where At Ac n As= Ag n 1( ) As=
is a transformed section
Ag = area of gross section
Cracking Moment
Mcr
Iut fr
yt
= (exact expression)
Page 149
Mcr
Ig fr
yt
= (simplied expression)
where
Iut = moment of inertia of uncracked transformed section At
Ig = moment of inertia of gross section Ag
fr = modulus of rupture
fr 7.5psi
f'c
psi
= 0.623MPa
f'c
MPa
=
yt = distance from neutral axis to the tension face
Moment of inertia of cracked section
Condition of strain compatibity
εs
εu
d x
x
= εs εu
d x
x
=
Equilibrium in forces
C T=
fc x
2
b As fs=
Ec εu b x
2
As Es εs= As Es εu
d x
x
=
b x
2
 2 n As d x( )=
Page 150
b x
2

b d
2

2 n As d x( )
b d
2

=
x
d






2
2 n ρ 1
x
d






=
x
d






2
2 n ρ
x
d
 2 n ρ 0=
x
d
n ρ n ρ( )
2
2 n ρ=
Moment of inertia of cracked section
Icr
b x
3

3
n As d x( )
2
=
B. Long-Term Deflection
Long-term deflection due to combined effect of creep and shrinkage
Δt λ Δi= λ
ξ
1 50 ρ'
=
where ρ'
A's
b d
=
ξ = time-dependent coefficient
Sustained load duration Value ξ
________________________________________________
5 year and more 2.0
12 months 1.4
6 months 1.2
3 months 1.0
Page 151
C. Minimum Depth-Span Ratio
D. Permisible Deflection
Page 152
Example
Span length Ln 9.8m 60cm 9.2m
Beam section b 300mm h 750mm
Bending moments MD.neg 419.34kN m MD.pos 319.33kN m
ML.neg 223.09kN m ML.pos 176.58kN m
Steel re-bars As.sup 6
π 25mm( )
2

4
 29.452 cm
2

A's.sup 3
π 25mm( )
2

4
 14.726 cm
2

As.mid 5
π 25mm( )
2

4
 24.544 cm
2

A's.mid 3
π 25mm( )
2

4
 14.726 cm
2

Materials f'c 25MPa
fy 390MPa
Solution
Modulus of rupture
fr 0.623MPa
f'c
MPa
 3.115 MPa
Modulus ratio
Es 2 10
5
MPa
wc 24
kN
m
3
 Ec 44MPa
wc
kN
m
3









1.5

f'c
MPa
 2.587 10
4
 MPa
n
Es
Ec
7.732
Support section
Centroid of uncracked section
A1 b h y1
h
2

As As.sup d h 30mm 10mm 20mm 25mm
40mm
2






 645 mm
Page 153
A2 n As y2 d
yc
A1 y1 A2 y2
A1 A2
399.815 mm
Moment of inertia of gross section
I1
b h
3

12

Ig I1 A1 y1 yc 
2
 A2 y2 yc 
2
 1.205 10
6
 cm
4

Cracking moment
yt h yc 350.185 mm
Mcr fr
Ig
yt
 107.228 kN m
Location of neutral axis of cracked section
C T=
fc x
2
b As fs=
Ec εu x b 2 As Es εs=
εu x b 2 As
Es
Eu
 εu
d x
x
=
b x
2
 2 As n d x( )=
x
d






2
2 ρ n 1
x
d






= ρ
As
b d
0.015
x
d






2
2 ρ n
x
d
 2 ρ n 0=
x d ρ n ρ n( )
2
2 ρ n



 246.092 mm
Moment of inertia of cracked section
Icr
b x
3

3
A2 d x( )
2
 5.114 10
5
 cm
4

Effective moment of inertia of cracked section
Mneg MD.neg ML.neg 642.43 kN m Ma Mneg
Ie1 min Icr
Mcr
Ma






3
Ig Icr  Ig








5.146 10
5
 cm
4

Page 154
Ie2 Ie1
Midspan section
Centroid of uncracked section
A1 b h y1
h
2

As As.mid d h 30mm 10mm 25mm
40mm
2






 665 mm
A2 n As y2 d
yc
A1 y1 A2 y2
A1 A2
397.557 mm
Moment of inertia of gross section
I1
b h
3

12

Ig I1 A1 y1 yc 2
 A2 y2 yc 2
 1.202 10
6
 cm
4

Cracking moment
yt h yc 352.443 mm
Mcr fr
Ig
yt
 106.225 kN m
Location of neutral axis of cracked section
C T=
fc x
2
b As fs=
Ec εu x b 2 As Es εs=
εu x b 2 As
Es
Eu
 εu
d x
x
=
b x
2
 2 As n d x( )=
x
d






2
2 ρ n 1
x
d






= ρ
As
b d
0.012
x
d






2
2 ρ n
x
d
 2 ρ n 0=
x d ρ n ρ n( )
2
2 ρ n



 233.616 mm
Page 155
Moment of inertia of cracked section
Icr
b x
3

3
A2 d x( )
2
 4.806 10
5
 cm
4

Effective moment of inertia of cracked section
Mpos MD.pos ML.pos 495.91 kN m Ma Mpos
Im min Icr
Mcr
Ma






3
Ig Icr  Ig








4.877 10
5
 cm
4

Calculation of deflection
Effective moment of inertia
Ie 0.70 Im 0.15 Ie1 Ie2  4.958 10
5
 cm
4

Initial deflection due to dead and live loads
Ma 495.91 kN m
M0 Mneg Mpos 1138.34 kN m
K 1.2 0.2
M0
Ma
 0.741
ΔD+L K
5 Ma Ln
2

48 Ec Ie
 25.259 mm
Long-term deflection due to dead load
ξ 2
A's A's.mid ρ'
A's
b d

λ
ξ
1 50 ρ'
1.461
ΔD λ ΔD+L
MD.pos
Mpos
 23.761 mm
Long-term deflection due to sustained live load
Δ0.20L ΔD+L
0.20 ML.pos
Mpos
 1.799 mm
Short-term deflection due to live load
Page 156
Δ0.80L ΔD+L
0.80 ML.pos
Mpos
 7.195 mm
Total deflection
Δ ΔD Δ0.20L Δ0.80L 32.755 mm
Permisible deflection
Ln
480
19.167 mm
Ln
360
25.556 mm
Page 157
20. Development Lengths
A. Development length of deformed bar in tension
Diameter of deformed bar db 20mm
Steel yield strength fy 390MPa
Concrete compression strength f'c 25MPa
Depth of concrete below development length H 350mm
Reinforcement coating
Type of concrete
Concrete cover c 1 db
Clear spacing of re-bars s 2 db
ψt 1.3 H 300mmif
1.0 otherwise
 ψt 1.3
ψe 1.0 Coating "Uncoated"=if
1.5 c 3db s 6dbif
1.2 otherwise
otherwise
 ψe 1
ψs 0.8 db 20mmif
1.0 otherwise
 ψs 0.8
λ 1.3 Concrete "Lightweight"=if
1.0 otherwise
 λ 1
Ktr 0 (for a design simplification)
cb 1.5db  max min c
db
2

s db
2







min 2.5db 






30 mm
cb Ktr
db
1.5
Development of tension bar in tension
Page 158
Ld max
fy
1.107MPa
f'c
MPa

ψt ψe ψs λ
cb Ktr
db






 db 300mm










977.055 mm
Ld
db
48.853 Ceil Ld 10mm  980 mm
B. Splice length in tension
Splice class
Lst 1.0 Ld Class "Class A"=if
1.3 Ld otherwise
 Lst 1270.172 mm
Lst
db
63.509
Ceil Lst 10mm  1280 mm
C. Development length of deformed bar in compression
Diameter of development bar db 32mm
Steel yield strength fy 390MPa
Concrete compression strength f'c 25MPa
Development length in compression
Ldc max
fy
4.152MPa
f'c
MPa

db
fy
22.983MPa
db 200mm










601.156 mm
Ldc
db
18.786 Ceil Ldc 10mm  610 mm
Page 159
D. Development length of standard hook in tension
Diameter of development bar db 10mm
Steel yield strength fy 390MPa
Concrete compression strength f'c 25MPa
Reinforcement coating
Type of concrete
Side cover cside 65mm
Cover beyond hook cbeyond 50mm
ψe 1.0 Coating "Uncoated"=if
1.5 c 3db s 6dbif
1.2 otherwise
otherwise
 ψe 1
λ 1.3 Concrete "Lightweight"=if
1.0 otherwise
 λ 1
Page 160
Modified factor α 0.8 cside 65mm  cbeyond 50mm if
0.7 otherwise

α 0.7
Development length of standard hook in tension
Ldh α max
ψe λ fy
4.152MPa
f'c
MPa

db 8db 150mm










 131.503 mm
Ldh
db
13.15 Ceil Ldh 10mm  140 mm
E. Lap Splice Length in Compression
Diameter of splice bar db 25mm
Steel yield strength fy 390MPa
Lap splice length in compression Lsc max
fy
13.79MPa
db 300mm






fy 60ksiif
max
fy
7.661MPa
24






db 300mm






otherwise

Lsc 707.034 mm Ceil Lsc 10mm  710 mm
Lsc
db
28.281
Page 161
Reference
1. Reinforced Concrete / A Fundamental Approch. 5th Edition. Edward G. Nawy. - Pearson
Prentice Hall, 2005.
2. Design of Concrete Structures / Arthur Nilson, David Darwin, Charles W/ Dolan - 13 ed.
McGraw-Hill, 2003.
3. Structural Concrete: Theory and Design / M. Nadim Hassoun, Akthem Al-Manaseer. - 3rd
Edotion. John Wiley and Sons, 2005.
4. Reinforced Concrete: Mechanics and Design / James McGregor, James K. Wight. - 4th Edition.
Pearson Education, 2005.
5. ACI Code 318-05
Page 162

More Related Content

PDF
Jacket
PDF
Design Calculation of 40 MW Francis Turbine Runner
DOCX
proyecto puente de palitos
PDF
14 poteau-1
PDF
Design notes for seismic design of building accordance to Eurocode 8
PDF
Design of portal frame structures
PPT
Pedoman quality control
PPT
DISENO-GEOTECNICO-DE-EXCAVACION-DE-TUNELES-MITTAL-ppt.ppt
Jacket
Design Calculation of 40 MW Francis Turbine Runner
proyecto puente de palitos
14 poteau-1
Design notes for seismic design of building accordance to Eurocode 8
Design of portal frame structures
Pedoman quality control
DISENO-GEOTECNICO-DE-EXCAVACION-DE-TUNELES-MITTAL-ppt.ppt

What's hot (20)

PDF
Contents Reinforced Concrete LimitState-AKJ
PDF
Civil structural engineering - Flat slab design
PDF
Is 1893-part3-2014pdf
PDF
Steel building design worked example
PDF
Design calculations of raft foundation
PDF
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
PDF
ASCE/SEI 7-10
PPT
Lecture 6 7 Rm Shear Walls
PDF
Two Pile Group.pdf
PPTX
Design and Detailing of RC Deep beams as per IS 456-2000
PPTX
Design of pile cap
PDF
6. safe users-guide
PDF
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
PDF
One way slab load calculation
PDF
Calulation of deflection and crack width according to is 456 2000
PDF
Precast pretensioned concrete girders
PPTX
Ensayo de resistencia a la compresión
PDF
PPTX
Seismic Analysis of Elevated Water Tank
Contents Reinforced Concrete LimitState-AKJ
Civil structural engineering - Flat slab design
Is 1893-part3-2014pdf
Steel building design worked example
Design calculations of raft foundation
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ASCE/SEI 7-10
Lecture 6 7 Rm Shear Walls
Two Pile Group.pdf
Design and Detailing of RC Deep beams as per IS 456-2000
Design of pile cap
6. safe users-guide
CSI ETABS & SAFE MANUAL: Slab Analysis and Design to EC2
One way slab load calculation
Calulation of deflection and crack width according to is 456 2000
Precast pretensioned concrete girders
Ensayo de resistencia a la compresión
Seismic Analysis of Elevated Water Tank
Ad

Viewers also liked (20)

PDF
En steel catalogue
PPTX
Carnaval en perú f
PDF
Slide Design Project
PDF
ACS-NANO-2011
PPTX
Aplicacion de la Norma Covenin 3.049-93
PDF
JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)
PPT
Science
PPTX
Estados financieros
PDF
'Training Certs-1
DOC
CV-Tanveer-Geologist
PDF
PP LF Steering Committee Meeting.062416
PPTX
II Guerra Mundial
PDF
Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...
PPTX
Book review
PPT
Componentes de un cursos
PDF
Pedro Martinez-Clark_01-16 CV
PDF
Ellie Arave Final Project
DOC
Saquilá cuá, angel. actividad no. 4
PPTX
Final Portfolio
En steel catalogue
Carnaval en perú f
Slide Design Project
ACS-NANO-2011
Aplicacion de la Norma Covenin 3.049-93
JLS-064-077-MASTANEH-ABNORMAL-PATIENTS(1)
Science
Estados financieros
'Training Certs-1
CV-Tanveer-Geologist
PP LF Steering Committee Meeting.062416
II Guerra Mundial
Transcaval Retrograde Transcatheter Aortic Valve Replacement for Patients Wit...
Book review
Componentes de un cursos
Pedro Martinez-Clark_01-16 CV
Ellie Arave Final Project
Saquilá cuá, angel. actividad no. 4
Final Portfolio
Ad

Similar to Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010) (20)

PDF
Tablice beton
PDF
Mojtaba Hasanlu's Portfolios in Rotor
PDF
Torque-Tension Reference Guide (1).pdf
PDF
Catalogo codiacero
PDF
7 dimension and properties table ipn
PDF
Shawcor_CPS_GPL Brochure_English_December 2015
PDF
V3 astm-a1085 dimensions-section-properties
PDF
Costo referencial de posecion y operacion
PDF
Depositiondata
PDF
AIS Torque Cal, Torque Chart and Bolting Pattern.pdf
PDF
Tabel baja standard
PDF
A_MukherjeePresn roll passdesignA_MukherjeePresn roll passdesign .pdf
PDF
A_MukherjeePresn for engineers good file
PDF
47643562 indian-rolled-sections-756
PDF
Ready rackner for qs
PDF
ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...
PDF
2011 Test Plot Book
PDF
232365141 1-qs-techinical-data
PDF
Ferrostaal Piping Supply - Catalogue
PDF
Ferrostaal Piping Supply - Catalogue
Tablice beton
Mojtaba Hasanlu's Portfolios in Rotor
Torque-Tension Reference Guide (1).pdf
Catalogo codiacero
7 dimension and properties table ipn
Shawcor_CPS_GPL Brochure_English_December 2015
V3 astm-a1085 dimensions-section-properties
Costo referencial de posecion y operacion
Depositiondata
AIS Torque Cal, Torque Chart and Bolting Pattern.pdf
Tabel baja standard
A_MukherjeePresn roll passdesignA_MukherjeePresn roll passdesign .pdf
A_MukherjeePresn for engineers good file
47643562 indian-rolled-sections-756
Ready rackner for qs
ABB POLIM-K High Voltage Surge Arresters AC up to 52 kV - AC Surge Arresters ...
2011 Test Plot Book
232365141 1-qs-techinical-data
Ferrostaal Piping Supply - Catalogue
Ferrostaal Piping Supply - Catalogue

Seun Sambath-ACI 318-05 Mathcad in Concrete Structures (2010)

  • 1. CONSTRUCTION MANAGEMENT Concept-Develop-Execute-Finish __________________________________________________________________________________ Seun Sambath, PhD Concrete Structures (ACI 318-05) in Mathcad Sixth Edition Phnom Penh 2010 ___________________________________________________________________________________ Address: #M41, St.308, Sangkat Tonle Basac, Khan Chamkarmon, Phnom Penh, Cambodia. Tel: 012 659 848.
  • 2. Table of Contents 1. Unit conversion ....................................................................................................... 1 2. Simple calculation ................................................................................................... 4 3. Materials ................................................................................................................ 5 4. Safety provision ....................................................................................................... 10 5. Loads on structures (case of two-way slab) ................................................................ 12 6. Loads on structures (case of one-way slab) ................................................................ 16 7. Loads on staircase .................................................................................................. 20 8. Loads on tile roof ..................................................................................................... 23 9. ASCE wind loads .................................................................................................... 25 10. Design of singly reinforced beams ............................................................................ 28 11. Design of doubly reinforced beams ......................................................................... 39 12. Design of T beams ................................................................................................. 52 13. Shear design ......................................................................................................... 60 14. Column design ...................................................................................................... 68 15. Design of footings .................................................................................................. 99 16. Design of pile caps ............................................................................................... 106 17. Slab design .......................................................................................................... 115 18. Design of staircase ............................................................................................... 142 19. Deflections ........................................................................................................... 148 20. Development lengths ............................................................................................. 158 Reference .................................................................................................................. 162
  • 3. 1. Unit Conversion Length in = inch ft = foot yd = yard mi = mile 1in 25.4 mm 1cm 0.394 in 1ft 0.305 m 1m 3.281 ft 1ft 12 in 1yd 0.914 m 1m 1.094 yd 1yd 3 ft 1mi 1.609 km 1km 0.621 mi 1mi 1760 yd 1mi 5280 ft 1m 100mm 1.1m 1mi 200m 1.124 mi Size of standard concrete cylinder D 6in 15.24 cm H 12in 30.48 cm Force lbf = pound force kip = kilopound force 1lbf 4.448 N 1lbf 0.454 kgf 1kgf 9.807 N 1N 0.225 lbf 1kgf 2.205 lbf 1N 0.102 kgf 1kip 4.448 kN 1kip 0.454 tonnef 1tonf 0.907 tonnef 1kN 0.225 kip 1tonnef 2.205 kip 1tonnef 1.102 tonf 1tonnef 1000 kgf 1tonf 2000 lbf Page 1
  • 4. Stress psi = pound per square inch 1psi 1 lbf in 2  ksi = kilopound per square inch 1ksi 1 kip in 2  psf = pound per square foot 1psf 1 lbf ft 2  1psi 6.895 kPa 1kPa 0.145 psi 1Pa 1 N m 2  1ksi 6.895 MPa 1MPa 0.145 ksi 1kPa 1 kN m 2  1MPa 1 N mm 2  1psf 0.048 kN m 2  1 kN m 2 20.885 psf 1psf 4.882 kgf m 2  1 kgf m 2 0.205 psf Concrete compression strength 3000psi 20.7 MPa 20MPa 2900.8 psi 4000psi 27.6 MPa 25MPa 3625.9 psi 5000psi 34.5 MPa 35MPa 5076.3 psi 8000psi 55.2 MPa 55MPa 7977.1 psi Steel yield strength 60ksi 413.7 MPa 390MPa 56.6 ksi 75ksi 517.1 MPa 490MPa 71.1 ksi Live loads 40psf 1.915 kN m 2  200 kgf m 2 40.963 psf 100psf 4.788 kN m 2  4.80 kN m 2 100.25 psf Page 2
  • 5. Density 1pcf 1 lbf ft 3  125pcf 19.636 kN m 3  145pcf 22.778 kN m 3  Moments 1ft kip 1.356 kN m User setting Riels 1 USD 4165Riels 124USD 516460 Riels 200000Riels 48.019 USD CostSteel 665 USD 1tonnef  670kgf CostSteel 445.55 USD Page 3
  • 6. 2. Simple Calculation 1 3 2 3        3 23.472 a 2 b 4 c 1 Δ b 2 4 a c x1 b Δ 2 a 0.225 x2 b Δ 2 a 2.225 Page 4
  • 7. 3. Materials 1. Concrete Standard concrete cylinder D 6in 15.24 cm D 150mm H 12in 30.48 cm H 300mm Concrete compression strength f'c 3000psi 20.7 MPa f'c 20MPa 2900.8 psi f'c 4000psi 27.6 MPa f'c 25MPa 3625.9 psi f'c 5000psi 34.5 MPa f'c 35MPa 5076.3 psi Concrete ultimate strain εu 0.003 Cubic and cylinder compression strength fcube f'c 0.85 = f'c 20MPa fcube f'c 0.85 23.529 MPa f'c 25MPa fcube f'c 0.85 29.412 MPa f'c 35MPa fcube f'c 0.85 41.176 MPa Modulus of rupture (tensile strength) fr 7.5 f'c= (in psi) Metric coefficient 7.5psi f'c psi  7.5MPa psi MPa  f'c MPa MPa psi = C MPa f'c MPa = C 7.5 psi MPa MPa psi  0.623 fr 0.623 f'c= (in MPa) Page 5
  • 8. Modulus of elasticity Ec 33 wc 1.5  f'c= (in psi) wc is a unit weight of concrete (in pcf) Metric coefficient 33psi kN m 3 pcf         1.5  MPa psi  44.011 MPa Ec 44 wc 1.5  f'c= (in MPa) wc in kN/m3 Example 3.1 Concrete compression strength f'c 25MPa Unit weight of concrete wc 24 kN m 3  145pcf 22.778 kN m 3  Modulus of rupture fr 7.5psi f'c psi  3.114 MPa fr 0.623MPa f'c MPa  3.115 MPa Modulus of elasticity Ec 33psi wc pcf       1.5  f'c psi  2.587 10 4  MPa Ec 44MPa wc kN m 3           1.5  f'c MPa  2.587 10 4  MPa Page 6
  • 9. 2. Steel Reinforcements Steel yield strength of deformed bar (DB) fy 390MPa 56.565 ksi Steel yield strength of round bar (RB) fy 235MPa 34.084 ksi Modulus of elasticity Es 29000000psi 1.999 10 5  MPa Es 2 10 5 MPa Steel yield strength εy fy Es = US Steel Reinforcements Bar No. (#) Bar diameter no 3 4 5 6 7 8 9 10 11 12 13 14                                    D no 8 in D 9.5 12.7 15.9 19 22.2 25.4 28.6 31.8 34.9 38.1 41.3 44.4                                   mm Page 7
  • 10. Steel area A π D 2  4  A 0.71 1.27 1.98 2.85 3.88 5.07 6.41 7.92 9.58 11.4 13.38 15.52                                   cm 2  Weight of steel reinforcements W A 7850 kgf m 3  W 0.559 0.994 1.554 2.237 3.045 3.978 5.034 6.215 7.52 8.95 10.503 12.182                                  kgf m  ORIGIN 1 n 1 9 Area n  A n Page 8
  • 11. 1 2 3 4 5 6 7 8 9 3 9.5 0.71 1.43 2.14 2.85 3.56 4.28 4.99 5.70 6.41 0.559 4 12.7 1.27 2.53 3.80 5.07 6.33 7.60 8.87 10.13 11.40 0.994 5 15.9 1.98 3.96 5.94 7.92 9.90 11.88 13.86 15.83 17.81 1.554 6 19.1 2.85 5.70 8.55 11.40 14.25 17.10 19.95 22.80 25.65 2.237 7 22.2 3.88 7.76 11.64 15.52 19.40 23.28 27.16 31.04 34.92 3.045 8 25.4 5.07 10.13 15.20 20.27 25.34 30.40 35.47 40.54 45.60 3.978 9 28.6 6.41 12.83 19.24 25.65 32.07 38.48 44.89 51.30 57.72 5.034 10 31.8 7.92 15.83 23.75 31.67 39.59 47.50 55.42 63.34 71.26 6.215 11 34.9 9.58 19.16 28.74 38.32 47.90 57.48 67.06 76.64 86.22 7.520 12 38.1 11.40 22.80 34.20 45.60 57.00 68.41 79.81 91.21 102.61 8.950 13 41.3 13.38 26.76 40.14 53.52 66.90 80.28 93.66 107.04 120.42 10.503 14 44.5 15.52 31.04 46.55 62.07 77.59 93.11 108.63 124.14 139.66 12.182 Bar # Diameter (mm) Area of cross section (cm 2 ) for the number of bars is equal to Weight (kgf/m) Metric Steel Reinforcements D 6 8 10 12 14 16 18 20 22 25 28 32 36 40( ) T mm A π D 2  4  W A 7850 kgf m 3  n 1 9 Area n  A n 1 2 3 4 5 6 7 8 9 6 0.28 0.57 0.85 1.13 1.41 1.70 1.98 2.26 2.54 0.222 8 0.50 1.01 1.51 2.01 2.51 3.02 3.52 4.02 4.52 0.395 10 0.79 1.57 2.36 3.14 3.93 4.71 5.50 6.28 7.07 0.617 12 1.13 2.26 3.39 4.52 5.65 6.79 7.92 9.05 10.18 0.888 14 1.54 3.08 4.62 6.16 7.70 9.24 10.78 12.32 13.85 1.208 16 2.01 4.02 6.03 8.04 10.05 12.06 14.07 16.08 18.10 1.578 18 2.54 5.09 7.63 10.18 12.72 15.27 17.81 20.36 22.90 1.998 20 3.14 6.28 9.42 12.57 15.71 18.85 21.99 25.13 28.27 2.466 22 3.80 7.60 11.40 15.21 19.01 22.81 26.61 30.41 34.21 2.984 25 4.91 9.82 14.73 19.63 24.54 29.45 34.36 39.27 44.18 3.853 28 6.16 12.32 18.47 24.63 30.79 36.95 43.10 49.26 55.42 4.834 32 8.04 16.08 24.13 32.17 40.21 48.25 56.30 64.34 72.38 6.313 36 10.18 20.36 30.54 40.72 50.89 61.07 71.25 81.43 91.61 7.990 40 12.57 25.13 37.70 50.27 62.83 75.40 87.96 100.53 113.10 9.865 Diameter (mm) Area of cross section (cm 2 ) for the number of bars is equal to Weight (kgf/m) Page 9
  • 12. 4. Safety Provision Required_Strength Design_Strength U ϕSn where U = required strength (factored loads) ϕSn = design strength Sn = nominal strength ϕ = strength reduction factor a. Load Combinations Basic combination U 1.2 D 1.6 L= Roof combination U 1.2 D 1.6 L 1.0 Lr= Wind combination U 1.2 D 1.6 W 1.0 L 0.5 Lr= where D = dead load L = live load Lr = roof live load W = wind load Page 10
  • 13. b. Strength Reduction Factor Strength Condition Strength reduction factor ϕ Tension-controlled members (εt 0.005 ) ϕ 0.9= Compression-controlled (εt 0.002 ) Spirally reinforced ϕ 0.70= Other ϕ 0.65= Shear and torsion ϕ 0.75= where εt = net tensile strain For spirally reinforced members ϕ 0.9 εt 0.005if 0.70 εt 0.002if 1.7 200 εt 3 otherwise = 0.7 0.9 0.7 0.005 0.002 εt 0.002  0.7 200 3 εt 0.002  1.7 200 εt 3 = For other members ϕ 0.9 εt 0.005if 0.65 εt 0.002if 1.45 250 εt 3 otherwise = Page 11
  • 14. 5. Loads on Structures (Case of Two-Way Slabs) Slab dimension Short side La 4m Long side Lb 6m A. Preliminary Design Thickness of two-way slab Perimeter La Lb  2 tmin Perimeter 180 111.111 mm t 1 30 1 50       La 133.333 80( ) mm t 110mm Section of beam B1 L 6m h 1 10 1 15       L 600 400( ) mm h 500mm b 0.3 0.6( ) h 150 300( ) mm b 250mm For girders h 1 8 1 10       L= For two-way slab beams h 1 10 1 15       L= For floor beams h 1 15 1 20       L= Section of beam B2 L 4m h 1 10 1 15       L 400 266.667( ) mm h 300mm b 0.3 0.6( ) h 90 180( ) mm b 200mm Page 12
  • 15. B. Loads on Slab Floor cover Cover 50mm 22 kN m 3 1.1 kN m 2  RC slab Slab t 25 kN m 3 2.75 kN m 2  Ceiling Ceiling 0.40 kN m 2  M & E Mechanical 0.20 kN m 2  Partition Partition 1.00 kN m 2  Dead load DL Cover Slab Ceiling Mechanical Partition 5.45 kN m 2  Live load for Lab LL 60psf 2.873 kN m 2  Factored load wu 1.2 DL 1.6 LL 11.137 kN m 2  C. Loads of Wall Void 30mm 30 mm 190 mm 4 wbrick.hollow 90mm 90 mm 190 mm Void( ) 20 kN m 3 1.744 kgf wbrick.solid 45mm 90 mm 190 mm 20 kN m 3 1.569 kgf ρbrick.hollow wbrick.hollow 90mm 90 mm 190 mm 11.111 kN m 3  Brickhollow.10 120mm Void 55 1m 2       20 kN m 3 1.648 kN m 2  Brickhollow.20 220mm Void 110 1m 2       20 kN m 3 2.895 kN m 2  Page 13
  • 16. D. Loads on Beam B1 Self weight SW 25cm 50cm 110mm( ) 25 kN m 3 2.438 kN m  Wall wwall Brickhollow.10 3.5m 50cm( ) 4.943 kN m  Slab α 4m 2 6m 0.333 k 1 2 α 2  α 3  0.815 wD.slab DL 4m 2  2 k 17.763 kN m  wL.slab LL 4m 2  2 k 9.363 kN m  Dead load wD SW wwall wD.slab 25.143 kN m  Live load wL wL.slab 9.363 kN m  Factored load wu 1.2 wD 1.6 wL 45.153 kN m  E. Loads on Beam B2 Self weight SW 20cm 30cm 110mm( ) 25 kN m 3 0.95 kN m  Wall wwall Brickhollow.10 3.5m 30cm( ) 5.272 kN m  Slab α 4m 2 4m 0.5 k 1 2 α 2  α 3  0.625 wD.slab DL 4m 2  2 k 13.625 kN m  wL.slab LL 4m 2  2 k 7.182 kN m  Dead load wD SW wwall wD.slab 19.847 kN m  Live load wL wL.slab 7.182 kN m  Factored load wu 1.2 wD 1.6 wL 35.308 kN m  Page 14
  • 17. F. Loads on Column Tributary area B 4m L 6m Slab loads PD.slab DL B L 130.8 kN PL.slab LL B L 68.948 kN Beam loads PB1 25cm 50cm 110mm( ) 25 kN m 3 L 14.625 kN PB2 20cm 30cm 110mm( ) 25 kN m 3 B 3.8 kN Wall loads Pwall.1 Brickhollow.10 3.5m 50cm( ) L 29.657 kN Pwall.2 Brickhollow.10 3.5m 30cm( ) B 21.089 kN SW of column SW 5% 7%( ) PD= Total loads for number of floors n 7 PD PD.slab PB1 PB2 Pwall.1 Pwall.2  1.05 n 1469.787 kN PL PL.slab n 482.633 kN Pu 1.2 PD 1.6 PL 2535.958 kN Pu PD PL 1.299 Control PD PL n B L 11.622 kN m 2  (Ref. 10 kN m 2 18 kN m 2  ) PL PD PL 24.72 % (Ref. 15% 35% ) Page 15
  • 18. 06 . Loads on Structures (Case of One-Way Slabs) A. Preliminary Design Thickness of one-way slab (both ends continue) L 6m 2 3 m tmin L 28 107.143 mm t 1 25 1 35       L 120 85.714( ) mm t 120mm Page 16
  • 19. Section of floor beam B1 L 8m h 1 15 1 20       L 533.333 400( ) mm h 500mm b 0.3 0.6( ) h 150 300( ) mm b 250mm Section of girder B2 L 6m h 1 8 1 10       L 750 600( ) mm h 600mm b 0.3 0.6( ) h 180 360( ) mm b 300mm B. Loads on Slab Cover 50mm 22 kN m 3 1.1 kN m 2  Slab t 25 kN m 3 3 kN m 2  Ceiling 0.40 kN m 2  Mechanical 0.20 kN m 2  Partition 1.00 kN m 2  DL Cover Slab Ceiling Mechanical Partition 5.7 kN m 2  LL 60psf 2.873 kN m 2  wu 1.2 DL 1.6 LL 11.437 kN m 1m  Page 17
  • 20. C. Loads on Beam B1 Void 30mm 30 mm 190 mm 4 Brickhollow.10 120mm Void 55 1m 2       20 kN m 3 1.648 kN m 2  SW 25cm 50cm 120mm( ) 25 kN m 3 2.375 kN m  wwall Brickhollow.10 3.5m 50cm( ) 4.943 kN m  wD.slab DL 3 m 17.1 kN m  wL.slab LL 3 m 8.618 kN m  wD SW wwall wD.slab 24.418 kN m  wL wL.slab 8.618 kN m  wu 1.2 wD 1.6 wL 43.091 kN m  D. Loads on Girder B2 SW 30cm 60cm 120mm( ) 25 kN m 3 3.6 kN m  wwall Brickhollow.10 3.5m 60cm( ) 4.778 kN m  PB1 25cm 50cm 120mm( ) 25 kN m 3 8m 4m 2  14.25 kN Pwall Brickhollow.10 3.5m 50cm( ) 8m 4m 2  29.657 kN PD.slab DL 3 m 8m 4m 2  102.6 kN PL.slab LL 3 m 8m 4m 2  51.711 kN Page 18
  • 21. Factored loads wD SW wwall 8.378 kN m  wL 0 wu 1.2 wD 1.6 wL 10.054 kN m  PD PB1 Pwall PD.slab 146.507 kN PL PL.slab 51.711 kN Pu 1.2 PD 1.6 PL 258.545 kN Page 19
  • 22. 7. Loads on Staircase Run and rise of step G 3.5m 12 291.667 mm H 3.8m 24 158.333 mm G 2 H 60.833 cm Slope angle α atan H G       28.496 deg Loads on Waist Slab Thickness of waist slab t 120mm Step cover Cover 50mm H G( ) 22 kN m 3 1m G 1 m  1.697 kN m 2  Page 20
  • 23. SW of step Step G H 2 24 kN m 3 1m G 1 m  1.9 kN m 2  SW of waist slab Slab t 25 kN m 3 1m 2 1m 2 cos α( )  3.414 kN m 2  Renderring Renderring 0.40 kN m 2 1m 2 1m 2 cos α( )  0.455 kN m 2  Handrail Handrail 0.50 kN m 2  Total dead load DL Cover Step Slab Renderring Handrail DL 7.966 kN m 2  Live load for public staircase LL 100psf 4.788 kN m 2  Factored load wu 1.2 DL 1.6 LL 17.22 kN m 2  Loads on Landing Slab Cover 50mm 22 kN m 3 1.1 kN m 2  Slab 150mm 25 kN m 3 3.75 kN m 2  Renderring 0.40 kN m 2  Handrail 0.50 kN m 2  DL Cover Slab Renderring Handrail 5.75 kN m 2  LL 100psf 4.788 kN m 2  wu 1.2 DL 1.6 LL 14.561 kN m 2  Page 21
  • 24. 8. Loads on Roof Slope angle α atan 3m 10m 2               30.964 deg Srokalinh tile Tile 30mm 20 kN m 3 0.6 kN m 2  Purlins w20x20x1.0 20mm 20 mm 18mm 18 mm( ) 7850 kgf m 3 0.597 kgf 1m  Purlin w20x20x1.0 1m 1m 100 mm cos α( )  0.068 kN m 2  Rafters w40x80x1.6 40mm 80 mm 36.8mm 76.8 mm( ) 7850 kgf m 3  w40x80x1.6 2.934 kgf 1m  Rafter w40x80x1.6 1m 750mm1 m cos α( )  0.045 kN m 2  Page 23
  • 25. Roof beam Beam 20cm 30 cm 25 kN m 3 1m 1m 10m 4   0.6 kN m 2  Roof column Column 20cm 20 cm 3m 2  25 kN m 3 1 10m 4 4 m       0.15 kN m 2  Total dead load wD Tile Purlin Rafter Beam Column 1.463 kN m 2  Live load wL 1.00 kN m 2  Factored load wu 1.2 wD 1.6 wL 3.356 kN m 2  Page 24
  • 26. 9. ASCE Wind Loads Basic wind speed V 120 km hr  V 33.333 m s  V 74.565mph Exposure category Expoure C= Importance factor I 1.15 Topograpic factor Kzt 1.0 Gust factor G 0.85 Wind directionality factor Kd 0.85 Static wind pressure qs 0.613 N m 2 V m s         2  0.681 kN m 2  Velocity pressure coefficients zg 274m α 9.5 (For exposure C) Kz z( ) 2.01 max z 4.6m( ) zg       2 α  Kz 10m( ) 1.001 Velocity wind pressure qz z( ) qs Kz z( ) Kzt I Kd qz 10m( ) 0.667 kN m 2  Design wind pressure pz z Cp  qz z( ) G Cp Dimension of building in plan B 6m 3 18 m L 4m 5 20 m λ L B 1.111 External pressure coefficients Cp.windward 0.8 Page 25
  • 27. Cp.leeward linterp 0 1 2 4 40               0.5 0.5 0.3 0.2 0.2                λ               0.478 Cp.side 0.7 Floor heights H 3.5m 3.5m 3.5m 3.5m 3.5m 3.5m 3.5m                      H reverse H( ) h H  24.5 m ORIGIN 1 n rows H( ) 7 Wind forces i 1 n a i 1 i k H k  H i 2  a n 1 H  reverse a( ) 24.5 22.75 19.25 15.75 12.25 8.75 5.25 1.75                       m Bwindward 6m Bleeward 6m Bside 4m Pwindwardi ai ai 1 zpz z Cp.windward     d Bwindward Pleewardi pz h Cp.leeward  a i 1 a i   Bleeward Psidei pz h Cp.side  a i 1 a i   Bside Page 26
  • 28. reverse augment Pwindward Pleeward Pside   5.70 11.13 10.71 10.21 9.61 8.81 8.10 3.43 6.86 6.86 6.86 6.86 6.86 6.86 3.35 6.71 6.71 6.71 6.71 6.71 6.71                     kN Alternative ways i 1 n b i 1 i k H k   Prectanglei pz b i Cp.windward  a i 1 a i   Bwindward Ptrapeziumi pz a i Cp.windward  pz a i 1 Cp.windward  2 a i 1 a i   Bwindward reverse augment Pwindward Prectangle Ptrapezium   5.70 11.13 10.71 10.21 9.61 8.81 8.10 5.75 11.13 10.71 10.22 9.62 8.83 8.08 5.70 11.12 10.70 10.20 9.59 8.78 8.20                     kN Page 27
  • 29. 10. Design of Singly Reinforced Beams A. Concrete Stress Distribution In actual distribution Resultant C α f'c c b= Location β c In equivalent distribution Location β c a 2 = Resultant C α f'c c b= γ f'c a b= Thus, a 2 β c= β1 c= where β1 2 β= γ α c a = α β1 = f'c 4000psi 5000psi 6000psi 7000psi 8000psi α 0.72 0.68 0.64 0.60 0.56 β 0.425 0.400 0.375 0.350 0.325 β1 2 β= 0.85 0.80 0.75 0.70 0.65 γ α β1 = 0.72 0.85 0.847 0.68 0.80 0.85 0.64 0.75 0.853 0.60 0.70 0.857 0.56 0.65 0.862 Page 28
  • 30. Conclusion: γ 0.85= β1 0.85 f'c 4000psiif 0.65 f'c 8000psiif 0.85 0.05 f'c 4000psi 1000psi  otherwise = 4000psi 27.6 MPa 8000psi 55.2 MPa 1000psi 6.9 MPa B. Strength Analysis Equilibrium in forces X  0= C T= 0.85 f'c a b As fs= (1) Equilibrium in moments M  0= Mn C d a 2       = T d a 2       = Mn 0.85 f'c a b d a 2       = (2.1) Mn As fs d a 2       = (2.2) Conditions of strain compatibility εs εu d c c = εs εu d c c = or εt εu dt c c = (3.1) c d εu εu εs = or c dt εu εu εt = (3.2) Unknowns = 3 a As fs Equations = 2 X  0= M  0= Additional condition fs fy= (From economic criteria) Page 29
  • 31. C. Steel Ratios ρ As b d = As fy b d fy = 0.85 f'c a b b d fy = 0.85 β1 f'c fy  c d = 0.85 β1 f'c fy  c dt  dt d = ρ 0.85 β1 f'c fy  εu εu εs = 0.85 β1 f'c fy  εu εu εt  dt d = Balanced steel ratio fc f'c= fs fy= εs εy= fy Es = ρb 0.85 β1 f'c fy  εu εu εy = 0.85 β1 f'c fy  600MPa 600MPa fy = εu 0.003 Es 2 10 5 MPa εu Es 600 MPa Maximum steel ratio ACI 318-99 ρmax 0.75 ρb= ACI 318-02 and later ρmax 0.85 β1 f'c fy  εu εu εt = with εt 0.004 For fy 390MPa εs fy Es 0.002 For εt 0.004 ρmax ρb εu εy εu 0.004 = 5 7 = 0.714= For εt 0.005 ρmax ρb εu εy εu 0.005 = 5 8 = 0.625= Minimum steel ratio ρmin 3 f'c fy 200 fy = (in psi) ρmin 0.249 f'c fy 1.379 fy = (in MPa) Page 30
  • 32. D. Determination of Flexural Strength Given: b d As f'c fy Find: ϕMn Step 1. Checking for steel ratio ρ As b d = ρ ρmin : Steel reinforcement is not enough ρmin ρ ρmax : the beam is singly reinforced ρ ρmax : the beam is doubly reinforced ρ ρmax= As ρ b d= Step 2. Calculation of flexural strength a As fy 0.85 f'c b = c a β1 = Mn As fy d a 2       = εt εu dt c c = ϕ ϕ εt = The design flexural strength is ϕ Mn Example 10.1 Page 31
  • 33. Concrete dimension b 200mm h 350mm Steel reinforcements As 5 π 16mm( ) 2  4  10.053 cm 2  d h 30mm 6mm 16mm 40mm 2        278 mm dt h 30mm 6mm 16mm 2        306 mm Materials f'c 25MPa fy 390MPa Solution Checking for steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.004  0.02 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 ρ As b d 0.018 Steel_Reinforcement "is Enough" ρ ρminif "is not Enough" otherwise  Steel_Reinforcement "is Enough" As min ρ ρmax  b d 10.053 cm 2  Calculation of flexural strength a As fy 0.85 f'c b 92.252 mm c a β1 108.532 mm Mn As fy d a 2        90.911 kN m Page 32
  • 34. εt εu dt c c  0.00546 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 The design flexural strength is ϕ Mn 81.82 kN m E. Determination of Steel Area Given: Mu b d f'c fy Find: As Relative depth of compression concrete w a d = 0.85 f'c a b 0.85 f'c b d = As fy 0.85 f'c b d = ρ fy 0.85 f'c 1= Flexural resistance factor R Mn b d 2  = As fy d a 2        b d 2  = As b d fy d a 2  d = ρ fy 1 1 2 w      = R ρ fy 1 ρ fy 1.7 f'c        = 0.85 f'c w 1 1 2 w      = Quadratic equation relative w R 0.85 f'c w 1 1 2 w      = w 2 2 w 2 R 0.85 f'c  0= w1 1 1 2 R 0.85 f'c  1= w2 1 1 2 R 0.85 f'c  1= w 1 1 2 R 0.85 f'c = ρ 0.85 f'c fy  w= 0.85 f'c fy  1 1 2 R 0.85 f'c        = Page 33
  • 35. Step 1. Assume ϕ 0.9= Mn Mu ϕ = Step 2. Calculation of steel area R Mn b d 2  = ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = ρ ρmax : the beam is doubly reinforced (concrete is not enough) ρ ρmax : the beam is singly reinforced As max ρ ρmin  b d= (this is a required steel area) Step 3. Checking for flexural strength a As fy 0.85 f'c b = (As is a provided steel area) Mn As fy d a 2       = c a β1 = εt εu dt c c = ϕ ϕ εt = FS Mu ϕ Mn = (usage percentage) FS 1 : the beam is safe FS 1 : the beam is not safe Example 10.2 Required strength Mu 153kN m Concrete section b 200mm h 500mm d h 30mm 8mm 18mm 40mm 2        424 mm Page 34
  • 36. dt h 30mm 8mm 18mm 2        453 mm Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.004  0.02 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Assume ϕ 0.9 Mn Mu ϕ 170 kN m Steel area R Mn b d 2  4.728 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.014 ρmin ρ ρmax 1 As ρ b d 11.783 cm 2  As 6 π 16mm( ) 2  4  12.064 cm 2  Checking for flexural strength a As fy 0.85 f'c b 110.702 mm c a β1 130.238 mm Mn As fy d a 2        173.444 kN m Page 35
  • 37. εt εu dt c c  0.00743 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 FS Mu ϕ Mn 0.98 The_beam "is safe" FS 1if "is not safe" otherwise  The_beam "is safe" F. Determination of Concrete Dimension and Steel Area Given: Mu f'c fy Find: b d As Step 1. Determination of concrete dimension Assume εt 0.004 (Usually εt 0.005 ) ρ 0.85 β1 f'c fy  εu εu εt = R ρ fy 1 ρ fy 1.7 f'c        = ϕ ϕ εt = Mn Mu ϕ = bd 2 Mn R = Option 1: b Mn R d 2 = Option 2: d Mn R b = Option 3: k b d = d 3 Mn R k = b k d= Step 2. Calculation of steel area R Mn b d 2  = Page 36
  • 38. ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = As max ρ ρmin  b d= Step 3. Checking for flexural strength a As fy 0.85 f'c b = c a β1 = Mn As fy d a 2       = εt εu dt c c = ϕ ϕ εt = FS Mu ϕ Mn = Example 10.3 Required strength Mu 700kN m Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.004  0.02 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Assume εt 0.007 ρ 0.85 β1 f'c fy  εu εu εt  0.014 R ρ fy 1 ρ fy 1.7 f'c         4.728 MPa Page 37
  • 39. ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 Mn Mu ϕ 777.778 kN m Concrete dimension k b d = k 400 600  Cover 30mm 10mm 25mm 40mm 2  Cover 85 mm d 3 Mn R k 627.231 mm b k d 418.154 mm h Round d Cover 50mm( ) 700 mm b Round b 50mm( ) 400 mm d h Cover 615 mm b h       400 700       mm Steel area R Mn b d 2  5.141 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.015 As max ρ ρmin  b d 37.741 cm 2  As 8 π 25mm( ) 2  4  39.27 cm 2  dt h 30mm 10mm 25mm 2        dt 647.5 mm Checking for flexural strength a As fy 0.85 f'c b 180.18 mm c a β1 211.976 mm Mn As fy d a 2        803.914 kN m εt εu dt c c  0.00616 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 FS Mu ϕ Mn 96.749 % Page 38
  • 40. 11. Design of Doubly Reinforced Beams ρ ρmax : the beam is singly reinforced (with tensile reinforcements only) ρ ρmax : the beam is doubly reinforced (with tensile and compression reinforcements) A. Strength Analysis Equilibrium in forces X  0= T C Cs= (1) T As fs= As fy= C 0.85 f'c a b= Cs A's f's= Equilibrium in moments M  0= Mn Mn1 Mn2= (2) Mn1 T d d'( )= A's f's d d'( )= Mn2 C d a 2       = 0.85 f'c a b d a 2       = Mn2 T Cs  d a 2       = As fy A's f's  d a 2       = Page 39
  • 41. Conditions of strain compatibility εs εu d c c = (3.1) εs εu d c c = or εt εu dt c c = c d εu εu εs = or c dt εu εu εt = ε's εu c d' c = (3.2) ε's εu c d' c = c d' εu εu ε's = B. Steel Ratios Compression steel ratio ρ' A's b d = Tensile steel ratio ρ As b d = As fy b d fy = 0.85 f'c a b A's f's b d fy = 0.85 β1 f'c fy  c d  ρ' f's fy = Maximum tensile steel ratio ρt.max ρmax ρ' f's fy = ρ ρt.max : concrete is enough ρ ρt.max : concrete is not enough Minimum tensile steel ratio ρ 0.85 β1 f'c fy  c d  ρ' f's fy = 0.85 β1 f'c fy  εu εu ε's  d' d  ρ' f's fy = f's fy= ε's εy= fy Es = Page 40
  • 42. ρcy 0.85 β1 f'c fy  εu εu εy  d' d  ρ'= ρ ρcy : compression steel will yield f's fy= ρ ρcy : compression steel will not yield f's fy C. Determination of Flexural Strength Given: b d dt d' As A's f'c fy Find: ϕMn Step 1. Checking for singly reinforced beam ρ As b d = ρ ρmax : the beam is singly reinforced ρ ρmax : the beam is doubly reinforced ρ' A's b d = ρt.max ρmax ρ'= ρ ρt.max : concrete is enough ρ ρt.max : concrete is not enough ρ ρt.max= As ρ b d= Step 2. Determination of compression parameters 2.1. Assume f's fy= 2.2. Calculate a As fy A's f's 0.85 f'c b = c a β1 = ε's εu c d' c = f's.revised Es ε's fy= If f's.revised f's then f's f's.revised= Goto 2.2 Page 41
  • 43. Direct calculation Case f's fy= a As fy A's fy 0.85 f'c b = Case f's fy As fy 0.85 f'c a b A's f's= 0.85 f'c a b A's Es εu c d' c = As fy 0.85 f'c a b A's Es εu β1 c β1 d' β1 c = 0.85 f'c a b A's f1 a β1 d' a = where f1 Es εu= 600MPa= 0.85 f'c a 2  b A's f1 As fy  a A's f1 β1 d' 0= 0.85 f'c a 2  b A's f1 As fy  a A's f1 β1 d' 0.85 f'c d 2  b 0= a d       2 ρ' f1 ρ fy 0.85 f'c a d  ρ' f1 β1 0.85 f'c d' d  0= w 2 2 p w q 0= p 1 2 ρ' f1 ρ fy 0.85 f'c = q ρ' f1 β1 0.85 f'c d' d = w1 p p 2 q 0= w2 p p 2 q 0= a d p p 2 q = c a β1 = ε's εu c d' c = f's Es ε's fy= Step 3. Calculation of flexural strength Mn1 A's f's d d'( )= Mn2 As fy A's f's  d a 2       = εt εu dt c c = ϕ ϕ εt = ϕMn ϕ Mn1 Mn2 = Page 42
  • 44. Example 11.1 Concrete dimension b 300mm h 550mm Steel reinforcements As 8 π 20mm( ) 2  4  25.133 cm 2  d h 30mm 10mm 16mm 20mm 40mm 2        d 454 mm dt h 30mm 10mm 16mm 20mm 2        484 mm A's 4 π 20mm( ) 2  4  12.566 cm 2  d' 30mm 10mm 20mm 2  50 mm Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.0174 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Checking for singly reinforced beam ρ As b d 0.0185 The_beam "is singly reinforced" ρ ρmaxif "is doubly reinforced" otherwise  The_beam "is doubly reinforced" ρ' A's b d 9.226 10 3  ρt.max ρmax ρ' 0.027 Page 43
  • 45. Concrete "is enough" ρ ρt.maxif "is not enough" otherwise  Concrete "is enough" ρ min ρ ρt.max  0.0185 As ρ b d 25.133 cm 2  Determination of compression parameters Es 2 10 5 MPa f1 Es εu 600 MPa εy fy Es 1.95 10 3  ρcy 0.85 β1 f'c fy  εu εu εy  d' d  ρ' 0.024 Compression_steel "will yield" ρ ρcyif "will not yield" otherwise  Compression_steel "will not yield" a As fy A's fy 0.85 f'c b Compression_steel "will yield"=if p 1 2 ρ' f1 ρ fy 0.85 f'c  q ρ' f1 β1 0.85 f'c d' d  d p p 2 q  otherwise  a 90.825 mm c a β1 106.853 mm f's fy Compression_steel "will yield"=if ε's εu c d' c  min Es ε's fy  otherwise  f's 319.24 MPa Flexural strength Page 44
  • 46. Mn1 A's f's d d'( ) 162.072 kN m Mn2 As fy A's f's  d a 2        236.576 kN m εt εu dt c c  0.011 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 ϕMn ϕ Mn1 Mn2  358.783 kN m D. Design of Doubly Reinforced Beam Given: Mu b d dt d' f'c fs Find: As A's Step 1. Assume εt ρ 0.85 β1 f'c fy  εu εu εt = ϕ ϕ εt = Step 2. Cheching for singly reinforced beam As ρ b d= a As fy 0.85 f'c b = Mn As fy d a 2       = Mu ϕMn : the beam is singly reinforced Mu ϕMn : the beam is doubly reinforced Step 3. Case of doubly reinforced beam Mn2 Mn= Mn1 Mu ϕ Mn2= Page 45
  • 47. c a β1 = f's Es εu c d' c  fy= A's Mn1 f's d d'( ) = ρ' A's b d = ρt.max ρmax ρ'= As 0.85 f'c a b A's f's fy = ρ As b d = ρ ρt.max : concrete is enough ρ ρt.max : concrete is not enough Example 11.2 Required strength Mu 1350kN m Concrete dimension b 400mm h 800mm d h 30mm 12mm 25mm 25mm 40mm 2        d 688 mm dt h 30mm 12mm 25mm 25mm 2        720.5 mm d' 30mm 12mm 25mm 2  54.5 mm Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.0174 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Assume εt 0.0092 ρ 0.85 β1 f'c fy  εu εu εt  0.011 Page 46
  • 48. ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 Checking for singly reinforced beam As ρ b d 31.342 cm 2  a As fy 0.85 f'c b 143.803 mm c a β1 169.18 mm Mn2 As fy d a 2        753.074 kN m The_beam "is singly reinforced" Mu ϕ Mn2if "is doubly reinforced" otherwise  The_beam "is doubly reinforced" Case of doubly reinforced beam Mn1 Mu ϕ Mn2 746.926 kN m f's min Es εu c d' c  fy      390 MPa A's Mn1 f's d d'( ) 30.232 cm 2  ρ' A's b d 0.011 ρt.max ρmax ρ' 0.028 As 0.85 f'c a b A's f's fy 61.574 cm 2  ρ As b d 0.022 Concrete "is enough" ρ ρt.maxif "is not enough" otherwise  Concrete "is enough" Compression steel A's 30.232 cm 2  5 π 28mm( ) 2  4  30.788 cm 2  Tensile steel As 61.574 cm 2  10 π 28mm( ) 2  4  61.575 cm 2  400mm 12mm 30mm( ) 2 28mm 5 4 44 mm Page 47
  • 49. E. Determination of Tensile Steel Area Given: Mu b d dt d' A's f'c fy Find: As Step 1. Calculation of compression parameters 1.1. Assume f's fy= ϕ 0.9= 1.2. Calculate Mn Mu ϕ = Mn1 A's f's d d'( )= Mn2 Mn Mn1= R Mn2 b d 2  = ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = As ρ b d= a As fy 0.85 f'c b = c a β1 = f's.revised Es εu c d' c  fy= εt εu dt c c = ϕ ϕ εt = f's.revised f's : Goto 1.2 Mu ϕ Mn : Goto 1.2 Step 2. Calculation of tensile steel area As 0.85 f'c a b A's f's fy = ρ As b d = ρ' A's b d = ρt.max ρmax ρ'= ρ ρt.max : concrete is enough ρ ρt.max : concrete is not enough Page 48
  • 50. Example 11.3 Required strength Mu 1350kN m Concrete dimension b 400mm h 800mm d h 30mm 12mm 25mm 28mm 40mm 2        d 685 mm dt h 30mm 12mm 25mm 28mm 2        719 mm d' 30mm 12mm 28mm 2  56 mm Compression reinforcements A's 5 π 28mm( ) 2  4  30.788 cm 2  Materials f'c 25MPa fy 390MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.0174 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 Compression parameters Page 49
  • 51. Compression ε( ) f's fy ϕ 0.9 Mn Mu ϕ  Mn1 A's f's d d'( ) Mn2 Mn Mn1 R Mn2 b d 2   ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         As ρ b d a As fy 0.85 f'c b  c a β1  f's.revised min Es εu c d' c  fy       Z i  f's fy ϕ a d f's.revised fy                        εt εu dt c c  ϕ 0.65 max 1.45 250 εt 3       min 0.9        break( ) f's.revised f's f's ε       Mu ϕ Mn if f's f's.revised i 0 99for reverse Z T   Z Compression 0.000001( ) Page 50
  • 52. a Z 0 2 d 142.792 mm c a β1 167.99 mm f's Z 0 0 fy 390 MPa Tensile steel area ρ' A's b d 0.011 ρt.max ρmax ρ' 0.029 As 0.85 f'c a b A's f's fy 61.909 cm 2  ρ As b d 0.023 Concrete "is enough" ρ ρt.maxif "is not enough" otherwise  Concrete "is enough" Tensile steel As 61.909 cm 2  10 π 28mm( ) 2  4  61.575 cm 2  Page 51
  • 53. 12. Design of T Beams 12.1. Effective Flange Width For symmetrical T beam: b L 4  b bw 16hf b s where L = span length of beam s = spacing of beam 12.2. Strength Analysis Design as rectangular section Design as T section a hf a hf or Mu ϕMnf or Mu ϕMnf where Mnf 0.85 f'c hf b d hf 2        = Page 52
  • 54. Equilibrium in forces X  0= T C1 C2= T As fs= As fy= C1 0.85 f'c hf b bw = Asf fy= C2 0.85 f'c a bw= T C1= As fy Asf fy= Equilibrium in moments M  0= Mn Mn1 Mn2= Mn1 C1 d hf 2        = Asf fy d hf 2        = Mn2 C2 d a 2       = 0.85 f'c a bw d a 2       = Mn2 T C1  d a 2       = As fy Asf fy  d a 2       = Condition of strain compatibility εs εu d c c = or εt εs dt c c = εs εu d c c = εt εu dt c c = c d εu εu εs = c dt εu εu εt = 12.3. Steel Ratios ρw As bw d = As fy bw d fy = 0.85 f'c a bw Asf fy bw d fy = ρw 0.85 β1 f'c fy  c d  ρf= where ρf Asf bw d = Page 53
  • 55. Maximum steel ratio ρw.max ρmax ρf= ρw ρw.max : concrete is enough ρw ρw.max : concrete is not enough 12.4. Determination of Moment Capacity Given: bw d b dt hf As f'c fy Find: ϕMn Step 1. Checking for rectangular beam a As fy 0.85 f'c b = a hf : the beam is rectangular a hf : the beam is tee Step 2. Case of T beam Asf 0.85 f'c hf b bw  fy = Mn1 Asf fy d hf 2        = a As fy Asf fy 0.85 f'c bw = c a β1 = Mn2 As fy Asf fy  d a 2       = εt εu dt c c = ϕ ϕ εt = ϕMn ϕ Mn1 Mn2 = Page 54
  • 56. Example 12.1 Concrete dimension b 28in 711.2 mm hf 6in 152.4 mm bw 10in 254 mm h 30in 762 mm d 26in 660.4 mm dt 27.5in 698.5 mm Steel reinforcements As 6 π 10 8 in      2  4  As 7.363 in 2  Materials f'c 3000psi 20.684 MPa fy 60ksi 413.685 MPa Solution Steel ratios β1 0.65 max 0.85 0.05 f'c 4000psi 1000psi        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.014 ρmin max 3psi f'c psi  fy 200psi fy            0.00333 Checking for rectangular beam Page 55
  • 57. a As fy 0.85 f'c b 157.162 mm The_beam "is rectangular" a hfif "is T" otherwise  The_beam "is T" Case of T beam Asf 0.85 f'c hf b bw  fy 29.613 cm 2  ρf Asf bw d 0.018 ρw.max ρmax ρf 0.031 ρw As bw d 0.028 Concrete "is enough" ρw ρw.maxif "is not enough" otherwise  Concrete "is enough" As min ρw ρw.max  bw d As 7.363 in 2  Mn1 Asf fy d hf 2         715.669 kN m a As fy Asf fy 0.85 f'c bw 165.734 mm c a β1 194.981 mm Mn2 As fy Asf fy  d a 2        427.446 kN m εt εu dt c c  0.008 ϕ 0.65 max 1.45 250 εt 3       min 0.9       0.9 ϕMn ϕ Mn1 Mn2  1028.803 kN m Page 56
  • 58. 12.5. Determination of Steel Area Given: Mu bw d dt b hf f'c fy Find: As Step 1. Checking for rectangular beam Mnf 0.85 f'c hf b d hf 2        = ϕ 0.9= Mu ϕMn : the beam is rectangular Mu ϕMn : the beam is tee Step 2. Case of T beam Asf 0.85 f'c hf b bw  fy = ρf Asf bw d = Mn1 Asf fy d hf 2        = Mn2 Mu ϕ Mn1= R Mn2 bw d 2  = ρ 0.85 f'c fy  1 1 2 R 0.85 f'c        = As2 ρ bw d= a As2 fy 0.85 f'c bw = As 0.85 f'c a bw Asf fy fy = ρw As bw d = ρw.max ρmax ρf= ρw ρw.max : concrete is enough ρw ρw.max : concrete is not enough Page 57
  • 59. Example 12.2 Concrete dimension hf 3in 76.2 mm L 24ft 7.315 m s 47in 1.194 m bw 11in 279.4 mm d 20in 508 mm Required strength Mu 6400in kip 723.103 kN m Materials f'c 3000psi 20.684 MPa fy 60ksi 413.685 MPa Solution Effective flange width b min L 4 bw 16 hf s       b 1193.8 mm Steel ratios β1 0.65 max 0.85 0.05 f'c 4000psi 1000psi        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.014 ρmin max 3psi f'c psi  fy 200psi fy            0.00333 Checking for rectangular beam ϕ 0.9 Mnf 0.85 f'c hf b d hf 2         751.538 kN m The_beam "is rectangular" Mu ϕ Mnfif "is tee" otherwise  The_beam "is tee" Case of T beam Page 58
  • 60. Asf 0.85 f'c hf b bw  fy 29.613 cm 2  ρf Asf bw d 0.021 Mn1 Asf fy d hf 2         575.646 kN m Mn2 Mu ϕ Mn1 227.801 kN m R Mn2 bw d 2  3.159 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         8.484 10 3  As2 ρ bw d 12.042 cm 2  a As2 fy 0.85 f'c bw 101.408 mm c a β1 119.304 mm As 0.85 f'c a bw Asf fy fy 41.655 cm 2  ρw As bw d 0.029 ρw.max ρmax ρf 0.034 Concrete "is enough" ρw ρw.maxif "is not enough" otherwise  Concrete "is enough" As.min ρmin bw d As max As As.min  41.655 cm 2  6 π 32mm( ) 2  4  48.255 cm 2  Page 59
  • 61. 13. Shear Design Safety provision Vu ϕVn where Vu = required shear strength Vn = nominal shear strength ϕ 0.75= is a strength reduction factor for shear ϕVn = design shear strength Required shear strength Page 60
  • 62. Nominal shear strength Vn Vc Vs= where Vc = concrete shear strength Vs = steel shear strength Concrete shear strength Vc 2 f'c bw d= (in psi) Vc 0.166 f'c bw d= (in MPa) Steel shear strength Vs Av fy d s = where Av = area of stirrup fy = yield strength of stirrup s = spacing of stirrup No required stirrups Vu ϕVc 2  : no stirrup is required ϕVc 2 Vu ϕVc : stirrup is minimum Vu ϕVc : stirrup is required Minimum stirrups Av.min 0.75 f'c bw s fy  50 bw s fy = (in psi) Av.min 0.062 f'c bw s fy  0.345 bw s fy = (in MPa) Page 61
  • 63. Maximum spacing of stirrup smax Av fy 0.75 f'c bw Av fy 50 bw = (in psi) smax Av fy 0.062 f'c bw Av fy 0.345 bw = (in MPa) Case Vs 2 Vc smax d 2 24in= 600mm= Case 2 Vc Vs 4 Vc smax d 4 12in= 300mm= Case Vs 4 Vc Concrete is not enough Example 13.1 Materials f'c 25MPa fy 390MPa Page 62
  • 64. Live load for garage LL 6.00 kN m 2  Loads on slab Hardener 8mm 24 kN m 3 0.192 kN m 2  Slab 200mm 25 kN m 3 5 kN m 2  Mechanical 0.30 kN m 2  DL Hardener Slab Mechanical 5.492 kN m 2  LL 6 kN m 2  Loads on beam wbeam 30cm 60cm 200mm( ) 25 kN m 3 3 kN m  wD.slab DL 3.5 m 19.222 kN m  wL.slab LL 3.5 m 21 kN m  wD wbeam wD.slab 22.222 kN m  wL wL.slab 21 kN m  wu 1.2 wD 1.6 wL 60.266 kN m  Shear L 8m V0 wu L 2 241.066 kN V x( ) V0 wu x Concrete shear strength bw 300mm d 600mm 40mm 10mm 20mm 2        540 mm Vc 0.166MPa f'c MPa  bw d 134.46 kN ϕ 0.75 Page 63
  • 65. Location of no stirrup zone V0 wu x ϕVc 2 = x V0 ϕ Vc 2  wu 3.163 m Minimum stirrup Av 2 π 10mm( ) 2  4  1.571 cm 2  fy 390MPa smax min Av fy 0.062MPa f'c MPa  bw Av fy 0.345MPa bw            591.894 mm smax Floor smax 50mm  550 mm Vs.min Av fy d smax 60.147 kN Location of minimum stirrup zone V0 wu x ϕ Vc Vs.min = x V0 ϕ Vc Vs.min  wu 1.578 m Required spacing of stirrup Vu V0 wu 400mm 2        229.012 kN Vs Vu ϕ Vc 170.89 kN Concrete "is enough" Vs 4 Vcif "is not enough" otherwise  Concrete "is enough" s Av fy d Vs 193.581 mm smax.1 smax 550 mm smax.2 min d 2 600mm      Vs 2 Vcif min d 4 300mm      otherwise  smax.2 270 mm s Floor min s smax.1 smax.2  50mm  s 150 mm Page 64
  • 66. Example 13.2 Design of shear in support and midspan zones. Stirrups in Support Zone Required shear strength Vu V0 wu 400mm 2  229.012 kN Concrete shear strength Vc 0.166MPa f'c MPa  bw d 134.46 kN ϕ 0.75 Stirrup "is minimum" Vu ϕ Vcif "is required" otherwise  Stirrup "is required" Required steel shear strength Vs Vu ϕ Vc 170.89 kN Concrete "is enough" Vs 4 Vcif "is not enough" otherwise  Concrete "is enough" Spacing of stirrup Av 2 π 10mm( ) 2  4  1.571 cm 2  fy 390MPa s Av fy d Vs 193.581 mm smax.1 min Av fy 0.062MPa f'c MPa  bw Av fy 0.345MPa bw            591.894 mm Page 65
  • 67. smax.2 min d 2 600mm      Vs 2 Vcif min d 4 300mm      otherwise  smax.2 270 mm s Floor min s smax.1 smax.2  50mm  150 mm Stirrups in Midspan Zone Required shear strength Vu V0 wu L 4  120.533 kN Stirrup "is minimum" Vu ϕ Vcif "is required" otherwise  Stirrup "is required" Required steel shear strength Vs Vu ϕ Vc 26.25 kN Concrete "is enough" Vs 4 Vcif "is not enough" otherwise  Concrete "is enough" Spacing of stirrup Av 2 π 10mm( ) 2  4  1.571 cm 2  fy 390MPa s Av fy d Vs 1260.208 mm smax.1 min Av fy 0.062MPa f'c MPa  bw Av fy 0.345MPa bw            591.894 mm smax.2 min d 2 600mm      Vs 2 Vcif min d 4 300mm      otherwise  smax.2 270 mm s Floor min s smax.1 smax.2  50mm  250 mm Page 66
  • 69. 14. Column Design Type of columns (by design method) 1. Axially loaded columns e M P = 0= 2. Eccentric columns e M P = 0 2.1. Short columns (without buckling) Pu Mu 2.2. Long (slender) columns (with buckling) Pu Mu δns 1. Axially Loaded Columns Safety provision Pu ϕPn.max where Pu = axial load on column ϕPn.max = design axial strength For tied columns ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast = with ϕ 0.65= For spirally reinforced columns ϕPn.max 0.85 ϕ 0.85 f'c Ag Ast  fy Ast = with ϕ 0.70= where Ag = area of gross section Ast = area of steel reinforcements Ag Ast Ac= is an area of concrete section Page 68
  • 70. For tied columns Diameter of tie Dv 10mm= for D 32mm Dv 12mm= for D 32mm Spacing of tie s 48Dv s 16D s b For spirally reinforced columns Diameter of spiral Dv 10mm Clear spacing 25mm s 75mm Column steel ratio ρg Ast Ag = 1%= 8% Page 69
  • 71. Determination of Concrete Section Ag Pu 0.80 ϕ 0.85 f'c 1 ρg  fy ρg = Determination of Steel Area Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy = Example 14.1 Tributary area B 4m L 6m Thickness of slab t 120mm Section of beam B1 b 250mm h 500mm Section of beam B2 b 200mm h 350mm Live load for lab LL 3.00 kN m 2  Materials f'c 25MPa fy 390MPa Solution Loads on slab Cover 50mm 22 kN m 3  Slab 120mm 25 kN m 3  Ceiling 0.40 kN m 2  Mechanical 0.20 kN m 2  Partition 1.00 kN m 2  DL Cover Slab Ceiling Mechanical Partition 5.7 kN m 2  LL 3 kN m 2  Page 70
  • 72. Reduction of live load Tributary area AT B L 24 m 2  For interior column KLL 4 Influence area AI KLL AT 96 m 2  Live load reduction factor αLL 0.25 4.572 AI m 2  0.717 Reduced live load LL0 LL αLL 2.15 kN m 2  Loads of wall Void 30mm 30 mm 190 mm 4 Brickhollow.10 120mm Void 55 1m 2       20 kN m 3 1.648 kN m 2  Brickhollow.20 220mm Void 110 1m 2       20 kN m 3 2.895 kN m 2  Loads on column PD.slab DL B L 136.8 kN PL.slab LL B L 72 kN PB1 25cm 50cm 120mm( ) 25 kN m 3 L 14.25 kN PB2 20cm 35cm 120mm( ) 25 kN m 3 B 4.6 kN Pwall.1 Brickhollow.10 3.5m 50cm( ) L 29.657 kN Pwall.2 Brickhollow.10 3.5m 35cm( ) B 20.76 kN Number of floors n 6 PD PD.slab PB1 PB2 Pwall.1 Pwall.2  1.05 n 1298.219 kN PL PL.slab n 432 kN SW 5% 7%( ) PD= PD PL B L n 12.015 kN m 2  PL PD PL 24.968 % Page 71
  • 73. Pu 1.2 PD 1.6 PL 2249.063 kN Determination of column section Assume ρg 0.03 k b h = k 300 500  ϕ 0.65 Ag Pu 0.80 ϕ 0.85 f'c 1 ρg  fy ρg  Ag 1338.529 cm 2  h Ag k 472.322 mm b k h 283.393 mm h Ceil h 50mm( ) 500 mm b Ceil b 50mm( ) 300 mm b h       300 500       mm Ag b h 1500 cm 2  Determination of steel area Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy  Ast 30.851 cm 2  6 π 20mm( ) 2  4  6 π 16mm( ) 2  4  30.913 cm 2  Stirrups Main bars D 20mm Stirrup dia. Dv 10mm Spacing of tie s min 16 D 48 Dv b  300 mm Page 72
  • 74. 2. Short Columns Safety provision Pu ϕPn Mu ϕMn Equilibrium in forces X  0= Pn C Cs T= Pn 0.85 f'c a b A's f's As fs= Equilibrium in moments M  0= Mn Pn e= C h 2 a 2        Cs h 2 d'       T d h 2       = Mn Pn e= 0.85 f'c a b h 2 a 2        A's f's h 2 d'       As fs d h 2       = Conditions of strain compatibility εs εu d c c = εs εu d c c = fs Es εs= Es εu d c c = ε's εu c d' c = ε's εu c d' c = f's Es ε's= Es εu c d' c = Page 73
  • 75. Unknowns = 5 : a As A's fs f's Equations = 4 : X  0= M  0= 2 conditions of strain compatibility Case of symmetrical columns: As A's= Case of unsymmetrical columns: fs fy= A. Interaction Diagram for Column Strength Interaction diagram is a graph of parametric function, where Abscissa : Mn a( ) Ordinate: Pn a( ) B. Determination of Steel Area Given: Mu Pu b h f'c fy Find: As A's= Answer: As AsN a( )= AsM a( )= AsN a( ) Pu ϕ 0.85 f'c a b f's fs = AsM a( ) Mu ϕ 0.85 f'c a b h 2 a 2        f's h 2 d'       fs d h 2        = f's a( ) Es εu c d' c  fy= fs a( ) Es εu d c c  fy= Page 74
  • 76. Example 14.2 Construction of interaction diagram for column strength. Concrete dimension b 500mm h 200mm Steel reinforcements As 5 π 16mm( ) 2  4  10.053 cm 2  A's As 10.053 cm 2  d' 30mm 6mm 16mm 2  44 mm d h d' 156 mm Materials f'c 25MPa fy 390MPa Solution Case of axially loaded column Ag b h Ast As A's ϕ 0.65 ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  1490.536 kN Case of eccentric column β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 c a( ) a β1  Es 2 10 5 MPa εu 0.003 dt d fs a( ) min Es εu d c a( ) c a( )  fy       f's a( ) min Es εu c a( ) d' c a( )  fy       ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.65 max 1.45 250 εt 3       min 0.90         Page 75
  • 77. ϕPn a( ) min ϕ a( ) 0.85 f'c a b A's f's a( ) As fs a( )  ϕPn.max  ϕMn a( ) ϕ a( ) 0.85 f'c a b h 2 a 2        A's f's a( ) h 2 d'       As fs a( ) d h 2              a 0 h 100  h 0 20 40 60 0 250 500 750 1000 1250 1500 Interaction diagram for column strength ϕPn a( ) kN ϕMn a( ) kN m Example 14.3 Determination of steel area. Required strength Pu 1152.27kN Mu 42.64kN m Concrete dimension b 500mm h 200mm Materials f'c 25MPa fy 390MPa Concrete cover to main bars cc 30mm 6mm 16mm 2  Page 76
  • 78. Solution Location of steel re-bars d' cc 44 mm d h cc 156 mm Case of axially loaded column Ag b h ϕ 0.65 ϕ 0.65 Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy 2.465 cm 2  Case of eccentric column β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 c a( ) a β1  Es 2 10 5 MPa εu 0.003 dt d fs a( ) min Es εu d c a( ) c a( )  fy       f's a( ) min Es εu c a( ) d' c a( )  fy       ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.65 max 1.45 250 εt 3       min 0.90         Graphical solution AsN a( ) Pu ϕ a( ) 0.85 f'c a b f's a( ) fs a( )  AsM a( ) Mu ϕ a( ) 0.85 f'c a b h 2 a 2        f's a( ) h 2 d'       fs a( ) d h 2         a1 134.2mm a2 134.25mm a a1 a1 a2 a1 50  a2 Page 77
  • 79. 0.13418 0.1342 0.13422 0.13424 0.13426 8.715 10 4  8.72 10 4  8.725 10 4  8.73 10 4  8.735 10 4  AsN a( ) AsM a( ) a a 134.23mm AsN a( ) 8.722 cm 2  AsM a( ) 8.725 cm 2  As AsN a( ) AsM a( ) 2 8.724 cm 2  5 π 16mm( ) 2  4  10.053 cm 2  Page 78
  • 80. Analytical solution ORIGIN 1 Asteel No( ) k 1 f f's a( ) fs a( ) continue( ) f 0=if AsN Pu ϕ a( ) 0.85 f'c a b f  continue( ) AsN 0if fd f's a( ) h 2 d'       fs a( ) d h 2        continue( ) fd 0=if AsM Mu ϕ a( ) 0.85 f'c a b h 2 a 2        fd  continue( ) AsM 0if Z k  a h AsN Ag AsM Ag AsN AsM Ag                          k k 1 a cc cc h No  hfor csort Z T 4   Z Asteel 5000( ) rows Z( ) 2046 a Z 1 1 h 134.24 mm AsN Z 1 2 Ag 8.719 cm 2  AsM Z 1 3 Ag 8.728 cm 2  As AsN AsM 2 8.723 cm 2  Page 79
  • 81. C. Case of Distributed Reinforcements rUb 3>1> ssrcakp©it EdlmanEdkBRgayeRcInCYr CMuvijmuxkat;ebtug b dn d1 Pne Tn T1 C h a cf 85.0 c u s,1 s,n dn Equilibrium in forces X  0= Pn C 1 n i T i  = 0.85 f'c a b 1 n i A s i f s i    = Equilibrium in moments M  0= Mn Pn e= C h 2 a 2        1 n i T i d i h 2              = Mn 0.85 f'c a b h 2 a 2        1 n i A s i f s i  d i h 2              = Page 80
  • 82. Conditions of strain compatibility ε s i εu d i c c = ε s i εu d i c c = f s i Es ε s i = Es εu d i c c = Example 14.4 Checking for column strength. Required strength Pu 13994.6kN Mu 57.53kN m Materials f'c 35MPa fy 390MPa Solution Determination of Concrete Section Case of axially loaded column ϕ 0.65 Assume ρg 0.04 Ag Pu 0.80 ϕ 0.85 f'c 1 ρg  fy ρg 6094.36 cm 2  Aspect ratio of column section λ b h = λ 1 h Ag λ 780.664 mm b λ h 780.664 mm h Ceil h 50mm( ) b Ceil b 50mm( ) b h       800 800       mm Ag b h 6400 cm 2  Page 81
  • 83. Steel area Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy  Ast 218.534 cm 2  4 7 4( ) π 25mm( ) 2  4  4 5 4( ) π 20mm( ) 2  4  232.478 cm 2  Spacing 800mm 50mm 2 8 87.5 mm Interaction Diagram for Column Strength Distribution of reinforcements Bars 25 25 25 25 25 25 25 25 25 25 20 20 20 20 20 20 20 25 25 20 0 0 0 0 0 20 25 25 20 0 0 0 0 0 20 25 25 20 0 0 0 0 0 20 25 25 20 0 0 0 0 0 20 25 25 20 0 0 0 0 0 20 25 25 20 20 20 20 20 20 20 25 25 25 25 25 25 25 25 25 25                         mm Number of reinforcement rows n cols Bars( ) 9 Steel area As0 π Bars 2  4   i 1 n Asi As0 i   Ast As Ast 232.478 cm 2  Location of reinforcement rows Concrete cover Cover 30mm 10mm 40 mm d 1 Cover Bars 1 n 2  52.5 mm ΔS h d 1 2 n 1 86.875 mm i 2 n d i d i 1 ΔS reverse d( ) T 747.5 660.63 573.75 486.88 400 313.13 226.25 139.38 52.5( ) mm Case of axially loaded column Page 82
  • 84. ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  ϕPn.max 14255.808 kN Case of eccentric column β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.796 c a( ) a β1  fs i a( ) εs εu d i c a( ) c a( )  sign εs  min Es εs fy   dt max d( ) 747.5 mm ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.65 max 1.45 250 εt 3       min 0.9         ϕPn a( ) min ϕ a( ) 0.85 f'c a b 1 n i Asi fs i a( )               ϕPn.max          ϕMn a( ) ϕ a( ) 0.85 f'c a b h 2 a 2        1 n i Asi fs i a( ) d i h 2                        a 0 h 100  h Page 83
  • 85. 0 1000 2000 3000 0 5000 10000 ϕPn a( ) kN Pu kN ϕMn a( ) kN m Mu kN m  Page 84
  • 86. D. Design of Circular Columns Symbols ns = number of re-bars Dc = column diameter Ds = diameter of re-bar circle Location of steel re-bar d i rc rs cos α s i = rc Dc 2 = rs Ds 2 = α s i 2 π ns i 1( )= Page 85
  • 87. Depth of compression concrete α acos rc a rc       = Area and centroid of compression concrete Asector 1 2 Radius Arch= 1 2 rc rc 2 α = rc 2 α= x1 2 3 rc sin α( ) α = Atriangle 1 2 Base Height= 1 2 2 rc sin α( ) rc cos α( )= rc 2 sin α( ) cos α( )= x2 2 3 rc cos α( )= Ac Asegment= Asector Atringle= rc 2 α sin α( ) cos α( )( )= xc Asector x1 Atrinagle x2 Ac = 2 3 rc sin α( ) sin α( ) cos α( ) 2  α sin α( ) cos α( ) = xc 2 rc 3 sin α( ) 3 α sin α( ) cos α( ) = Equilibrium in forces X  0= Pn C 1 ns i T i  = 0.85 f'c Ac 1 ns i A s i f s i    = Equilibrium in moments M  0= Mn Pn e= C xc 1 ns i T i d i Dc 2                = Mn Pn e= 0.85 f'c Ac xc 1 ns i A s i f s i  d i rc    = Conditions of strain compatibility ε s i εu d i c c = f s i Es ε s i = Es ε u  d i c c = with f s i fy Page 86
  • 88. Example 14.5 Required strength Pu 3437.31kN Mu 42.53kN m Materials f'c 20MPa fy 390MPa Solution Determination of concrete dimension ϕ 0.70 Assume ρg 0.02 Ag Pu 0.85 ϕ 0.85 f'c 1 ρg  fy ρg 2361.812 cm 2  Dc Ceil Ag π 4 50mm         550 mm Ag π Dc 2  4 2375.829 cm 2  Determination of steel area Ast Pu 0.85 ϕ 0.85 f'c Ag 0.85 f'c fy 46.597 cm 2  Ds Dc 30mm 10mm 20mm 2       2 450 mm ns ceil π Ds 100mm       15 As0 π 20mm( ) 2  4 3.142 cm 2  Ast ns As0 47.124 cm 2  s π Ds ns 94.248 mm Interaction diagram for column strength ϕPn.max 0.85 ϕ 0.85 f'c Ag Ast  fy Ast  3448.996 kN Page 87
  • 89. β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 Es 2 10 5 MPa εu 0.003 c a( ) a β1  i 1 ns αsi 2 π ns i 1( ) d i Dc 2 Ds 2 cos αsi      dt max d( ) 495.083 mm ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.70 max 1.7 200 εt 3       min 0.9         fs i a( ) εs εu d i c a( ) c a( )  sign εs  min Es εs fy   rc Dc 2  α a( ) acos rc a rc        xc a( ) 2 rc 3 sin α a( )( ) 3 α a( ) sin α a( )( ) cos α a( )( )  Ac a( ) rc 2 α a( ) sin α a( )( ) cos α a( )( )( ) ϕPn a( ) min ϕ a( ) 0.85 f'c Ac a( ) 1 ns i As0 fs i a( )             ϕPn.max          ϕMn a( ) ϕ a( ) 0.85 f'c Ac a( ) xc a( ) 1 ns i As0 fs i a( ) d i rc              a 0 Dc 100  Dc Page 88
  • 90. 0 100 200 300 0 1000 2000 3000 Interaction diagram for column strength ϕPn a( ) kN Pu kN ϕMn a( ) kN m Mu kN m  3. Long (Slender) Columns Stability index Q ΣPu Δ0 Vu Lc = where ΣPu Vu = total vertical force and story shear Δ0 = relative deflection between column ends Lc = center-to-center length of column Q 0.05 : Frame is nonsway (braced) Q 0.05 : Frame is sway (unbraced) Page 89
  • 91. Unbraced Frame Braced Frame ShearWall Braced Frame Brick Wall Ties Slenderness of column The column is short, if In nonsway frame: k Lu r min 34 12 M1 M2  40        In sway frame: k Lu r 22 where M1 min MA MB = M2 max MA MB = = minimum and maximum moments at the ends of column Lu = unsuppported length of column r = radius of gyration r I A = I A = moment of inertia and area of column section k = effective length factor k k ψA ψB = ψA ψB = degree of end restraint (release) Page 90
  • 92. ψ EIc Lc        EIb Lb        = ψ 0= : column is fixed ψ ∞= : column is pinned Moments of inertia For column Ic 0.70Ig= For beam Ib 0.35Ig= Ig = moment of inertia of gross section Determination of effective length factor Way 1. Using graph Way 2. Using equations For braced frames: ψA ψB 4 π k       2  ψA ψB 2 1 π k tan π k                   2 tan π 2 k        π k  1= Page 91
  • 93. For unbraced frames: ψA ψB π k       2  36 6 ψA ψB  π k tan π k       = Way 3. Using approximate relations In nonsway frames: k 0.7 0.05 ψA ψB  1.0= k 0.85 0.05 ψmin 1.0= ψmin min ψA ψB = In sway frames: Case ψm 2 k 20 ψm 20 1 ψm= Case ψm 2 k 0.9 1 ψm= ψm ψA ψB 2 = Case of column is hinged at one end k 2.0 0.3 ψ= ψ is the value in the restrained end. Moment on column Mc M2 δns M2.min δns= where M2.min Pu 15mm 0.03h( )= Moment magnification factor Page 92
  • 94. δns Cm 1 Pu 0.75 Pc  1= Euler's critical load Pc π 2 EI k Lu  2 = EI 0.4 Ec Ig 1 βd = βd 1.2 PD 1.2 PD 1.6 PL = Coefficient Cm 0.6 0.4 M1 M2  0.4= Example 14.6 Required strength Pu 6402.35kN PD PL       4273.41kN 796.25kN        MA 77.75kN m MB 122.68 kN m Length of column Lc 7.8m Upper and lower columns ba ha La           60cm 60cm 3.6m          bb hb Lb           65cm 65cm 1.5m          Upper and lower beams ba1 ha1 La1           30cm 50cm 6m          ba2 ha2 La2           30cm 50cm 6m          bb1 hb1 Lb1           30cm 50cm 6m          bb2 hb2 Lb2           30cm 50cm 6m          Materials f'c 30MPa fy 390MPa Page 93
  • 95. Solution Determination of concrete dimension ϕ 0.65 Assume ρg 0.03 Ag Pu 0.80 ϕ 0.85 f'c 1 ρg  fy ρg 3379.226 cm 2  Proportion of column section k b h = k 60 60  h Ag k 581.311 mm b k h 581.311 mm h Ceil h 50mm( ) 600 mm b Ceil b 50mm( ) 600 mm b h       600 600       mm Determination of steel area Ag b h 3.6 10 3  cm 2  Ast Pu 0.80 ϕ 0.85 f'c Ag 0.85 f'c fy 85.932 cm 2  20 π 25mm( ) 2  4  98.175 cm 2  Bars 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1                 25 mm As0 π Bars 2  4   i 1 cols As0  As1i As0 i   As As1 Ast As Ast 98.175 cm 2  Ast Ag 0.027 ns rows As  ns 6 Cover 40mm 10mm 25mm 2  62.5 mm Page 94
  • 96. d1 1 Cover Δs h Cover 2 ns 1 95 mm i 2 ns d1 i d1 i 1 Δs d d1 d 62.5 157.5 252.5 347.5 442.5 537.5                 mm ϕPn.max 0.80 ϕ 0.85 f'c Ag Ast  fy Ast  6634.405 kN Slenderness of column Stability index Q 0 Radius of gyration r h 12 0.173 m Modulus of elasticity wc 24 kN m 3  Ec 44MPa wc kN m 3           1.5  f'c MPa  2.834 10 4  MPa Degree of end restraint Ia1 0.35 ba1 ha1 3  12  Ia2 0.35 ba2 ha2 3  12  Ib1 0.35 bb1 hb1 3  12  Ib2 0.35 bb2 hb2 3  12  Ica 0.70 ba ha 3  12  Icb 0.70 bb hb 3  12  Ic 0.70 b h 3  12  Σica Ec Ica La Ec Ic Lc  Σicb Ec Icb Lb Ec Ic Lc  Σiba Ec Ia1 La1 Ec Ia2 La2  Σibb Ec Ib1 Lb1 Ec Ib2 Lb2  ψA Σica Σiba 8.418 ψB Σicb Σibb 21.699 Page 95
  • 97. Effective length factor k 0.6 Given ψA ψB 4 π k       2  ψA ψB 2 1 π k tan π k                   2 tan π 2 k        π k  1= k 0.5 k 1.0 k Find k( ) k 0.969 Checking for long column M1 MA MA MBif MB otherwise  M2 MB MA MBif MA otherwise  M1 77.75 kN m M2 122.68 kN m Lu Lc max ha1 ha2  max hb1 hb2  2  7.3m k Lu r 40.834 min 34 12 M1 M2  40       40 The_column "is short" k Lu r min 34 12 M1 M2  40       if "is long" otherwise  The_column "is long" Case of long column βd 1.2 PD 1.2 PD 1.6 PL 0.801 Ig b h 3  12  EI 0.4 Ec Ig 1 βd  Pc π 2 EI k Lu  2 13409.955 kN Cm max 0.6 0.4 M1 M2  0.4       0.4 Page 96
  • 98. δns max Cm 1 Pu 0.75 Pc  1           1.101 M2.min Pu 15mm 0.03 h( ) 211.278 kN m Mc δns max M2 M2.min  The_column "is long"=if max M2 M2.min  otherwise  Interaction diagram for column strength c a( ) a β1  dt max d( ) 537.5 mm ϕ a( ) εt εu dt c a( ) c a( )  ϕ 0.65 max 1.45 250 εt 3       min 0.90         fs i a( ) εs εu d i c a( ) c a( )  sign εs  min Es εs fy   ϕPn a( ) min ϕ a( ) 0.85 f'c a b 1 ns i Asi fs i a( )               ϕPn.max          ϕMn a( ) ϕ a( ) 0.85 f'c a b h 2 a 2        1 ns i Asi fs i a( ) d i h 2                        a 0 h 100  h Page 97
  • 99. 0 200 400 600 800 1000 1200 0 1000 2000 3000 4000 5000 6000 7000 Interaction diagram for column strength ϕPn a( ) kN Pu kN ϕMn a( ) kN m Mc kN m  Page 98
  • 100. 15. Footing Design A. Determination of Footing Dimension Required area of footing Areq PD PL qe = where PD PL = dead and live loads on footing qe = effective bearing capacity of soil qe qa 20 kN m 3 H= qa = allowable bearing capacity of soil with FS 2.5= 3 20 kN m 3 = average density of soil and concrete H = depth of foundation Checking for maximum stress of soil under footing qmax qu qmax P B L 1 6 e L        e L 6 if 4P 3 B L 2 e( ) e L 6 if = where qu = design bearing capacity of soil qu qa 1.2PD 1.6 PL PD PL = P = axial load on footing P 1.2 PD P0  1.6 PL= P0 20 kN m 3 H B L= e = eccentricity of load Page 99
  • 101. e M P = L B = long and width of footing B. Determination of Depth of Footing Checking for Punching Vu ϕVc where Vu = punching shear Vc = punching shear strength ϕ 0.75= is a strength reduction factor for shear Punching shear Vu qu A A0 = A B L= A0 bc d  hc d = Punching shear strength Vc 4 f'c b0 d= (in psi) Page 100
  • 102. Vc 0.332 f'c b0 d= (in MPa) b0 bc d  hc d   2= Checking for Beam Shear Vu1 ϕVc1 Vu2 ϕVc2 where Vu1 Vu2 = beam shears Vc1 Vc2 = beam shear strength Beam shears Vu1 qu B L 2 hc 2  d       = Vu2 qu L B 2 bc 2  d       = Beam shear strength Vc1 0.166 f'c B d= Vc2 0.166 f'c L d= C. Determination of Steel Area Page 101
  • 103. Steel re-bars in long direction Required strength q1 qu B= L1 L 2 hc 2 = Mu1 q1 L1 2  2 = Design section: rectangular singly reinforced beam of B d Steel re-bars in short direction Required strength q2 qu L= L2 B 2 bc 2 = Mu2 q2 L2 2  2 = Design section: rectangular singly reinforced beam of L d Example 15.1 Required strength PD 484.71kN PL 228.56kN PL PD PL 0.32 Mu 5.03kN m Dimension of column stub bc 350mm hc 350mm Depth of foundation H 2.0m Allowable bearing capacity of soil qa 178.33 kN m 2 3 2.5  213.996 kN m 2  Materials f'c 25MPa fy 390MPa Page 102
  • 104. Solution Determination of Dimension of Footing Effective bearing capacity of soil qe qa 20 kN m 3 H 173.996 kN m 2  Required area of footing Areq PD PL qe 4.099 m 2  Footing proportion k B L = k 2 2.1  L Areq k 2.075 m B k L 1.976 m L Ceil L 50mm( ) 2.1m B Ceil B 50mm( ) 2 m B L       2 2.1       m Design bearing capacity of soil qu qa 1.2 PD 1.6 PL PD PL  284.224 kN m 2  Checking for maximum stress of soil Pu 1.2 PD B L H 20 kN m 3        1.6 PL 1148.948 kN e Mu Pu 4.378 mm qmax Pu B L 1 6 e L        e L 6 if 4Pu 3 B L 2 e( ) otherwise  qmax 276.981 kN m 2  qmax qu 0.975 Soil "is safe" qmax quif "is not safe" otherwise  Soil "is safe" Page 103
  • 105. Determination of depth of footing Punching shear A0 d( ) bc d  hc d  A B L Vu d( ) qu A A0 d( )  Vu 320mm( ) 1066.154 kN Punching shear strength b0 d( ) bc d  hc d   2 ϕ 0.75 ϕVc d( ) ϕ 0.332 MPa f'c MPa  b0 d( ) d ϕVc 320mm( ) 1067.712 kN Beam shears Vu1 d( ) qu B L 2 hc 2  d        Vu1 300mm( ) 326.858 kN Vu2 d( ) qu L B 2 bc 2  d        Vu2 300mm( ) 313.357 kN Beam shear strength ϕVc1 d( ) ϕ 0.166 MPa f'c MPa  B d ϕVc1 300mm( ) 373.5 kN ϕVc2 d( ) ϕ 0.166 MPa f'c MPa  L d ϕVc2 300mm( ) 392.175 kN c 50mm 20mm 20mm 2  80 mm dmin 150mm c 70 mm d d dmin d d 50mm Vu d( ) ϕVc d( )  Vu1 d( ) ϕVc1 d( )  Vu2 d( ) ϕVc2 d( ) while d  d 320 mm h d c 400 mm Page 104
  • 106. Steel reinforcements ρshrinkage 0.0020return( ) fy 50ksiif 0.0018return( ) fy 60ksiif max 0.0018 60ksi fy  0.0014      return      otherwise  ρshrinkage 0.0018 Re-bars in long direction b B Ln L 2 hc 2  0.875 m wu qu b Mu wu Ln 2  2 217.609 kN m Mn Mu 0.9  Mu b 108.805 kN m 1m  R Mn b d 2  1.181 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00312 As max ρ b d ρshrinkage b h  19.944 cm 2  s 150mm D 14mm n floor b 75mm 2 D s       1 13 n π D 2  4  20.012 cm 2  Re-bars in short direction b L Ln B 2 bc 2  0.825 m wu qu b Mu wu Ln 2  2 203.123 kN m Mn Mu 0.9  Mu b 96.725 kN m 1m  R Mn b d 2  1.05 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00276 As max ρ b d ρshrinkage b h  18.554 cm 2  s 160mm D 14mm n floor b 75mm 2 D s       1 13 n π D 2  4  20.012 cm 2  Page 105
  • 107. 16. Design of Pile Caps 1. Determination of Pile Cap Number of required piles n PD PL Qe = where PD PL = dead and live loads on pile cap Qe = effective bearing capacity of pile Qe Qa 20 kN m 3 3 D( ) 2  H= 20 kN m 3 = average density of soil and concrete D = pile size H = depth of foundation Distance between piles = 2 D 4 D Distance from face of pile to face of pile cap = D 2 200mm Checking for pile reaction R i P n M y x i  1 n k x k  2    M x y i  1 n k y k  2    Qu= where P = load on pile cap Mx My = moments on pile cap Qu = design bearing capacity of pile Qu Qa 1.2 PD 1.6 PL PD PL = Page 106
  • 108. 2. Depth of Pile Cap Case of punching Vu ϕ Vc where Vu = punching shear Vu Routside= Qu noutside= Vc = punching shear strength Vc 0.332 f'c b0 d= b0 bc d  hc d   2= Case of beam shear Vu1 ϕVc1 Vu2 ϕVc2 where Vu1 Vu2 = beam shears Vc1 Vc2 = beam shear strength Vu1 max Rleft Rright      = Vu2 max Rbottom Rtop      = Vc1 0.166 f'c B d= Vc2 0.166 f'c L d= Page 107
  • 109. 3. Determination of Steel Reinforcements In long direction Required moment: Mu1 max Rleft xleft hc 2         Rright xright hc 2               = Design section: Rectangular singly reinforced of B d In short direction Required moment: Mu2 max Rbottom xbottom bc 2         Rtop xtop bc 2               = Design section: Rectangular singly reinforced of L d Example 16.1 Pile size D 300mm Lp 9m Allowable bearing capacity of pile Qa 351.5kN Loads on pile cap PD 1769.88kN PL 417.11kN My 33.92kN m Mx 56.82kN m Depth of foundation H 1.5m Column stub bc 350mm hc 500mm Materials f'c 25MPa fy 390MPa Diameters of main bar D1 D2       16mm 16mm        Concrete cover c 75mm Depth of concrete crack hshrinkage 200mm Diameter of shrinkage rebar Dshrinkage 12mm Solution Design of pile Required strength of pile concrete Page 108
  • 110. Ag D D f'c.pile Qa 1 4 Ag 15.622 MPa Use f'c.pile 20MPa Steel re-bars Ast 0.005 Ag 4.5 cm 2  4 π 16mm( ) 2  4  8.042 cm 2  Dimension of pile cap Effective bearing capacity of pile Qe Qa 20 kN m 3 3 D( ) 2  H 327.2 kN Number of piles n PD PL Qe 6.684 Required number of piles ceil n( ) 7 Location of pile X 1 m 0 1m 0.5 m 0.5m 1 m 0 1m                        Y 0.8m 0.8m 0.8m 0 0 0.8 m 0.8 m 0.8 m                        Number of piles n rows X( ) n 8 Dimension of pile cap B max Y( ) min Y( ) min D 2 200mm      D 2       2 B 2.2m L max X( ) min X( ) min D 2 200mm      D 2       2 L 2.6m Checking for pile reactions Page 109
  • 111. Qu Qa 1.2 PD 1.6 PL PD PL  448.616 kN P0 20 kN m 3 H B L 171.6 kN Pu 1.2 PD P0  1.6 PL 2997.152 kN i 1 n ORIGIN 1 Rui Pu n My X i  1 n k X k  2    Mx Y i  1 n k Y k  2    Ru Qu 0.845 0.861 0.878 0.827 0.844 0.792 0.809 0.826                        Xcap 1 1 1 1 1               L 2  Ycap 1 1 1 1 1               B 2  i 1 n Xpile i  X i 1 1 1 1 1               D 2  Ypile i  Y i 1 1 1 1 1               D 2  2 1 0 1 2 2 1 1 2 Ycap Ypile Y Xcap Xpile X Page 110
  • 112. Determination of Depth of Pile Cap Punching shear Outside d( ) X hc 2 d 2        Y bc 2 d 2                 Vu d( ) Ru Outside d( ) Vu 700mm( ) 2247.864 kN Punching shear strength ϕ 0.75 b0 d( ) hc d  bc d   2 ϕVc d( ) ϕ 0.332 MPa f'c MPa  b0 d( ) d ϕVc 700mm( ) 3921.75 kN Beam shears Left d( ) X hc 2 d                Right d( ) X hc 2 d                Bottom d( ) Y bc 2 d                Top d( ) Y bc 2 d                Vu1 d( ) max Ru Left d( ) Ru Right d( )  Vu1 700mm( ) 764.364 kN Vu2 d( ) max Ru Bottom d( ) Ru Top d( )  Vu2 700mm( ) 0 N Beam shear strength ϕVc1 d( ) ϕ 0.166 MPa f'c MPa  B d ϕVc1 700mm( ) 958.65 kN ϕVc2 d( ) ϕ 0.166 MPa f'c MPa  L d ϕVc2 700mm( ) 1132.95 kN Depth of pile cap Cover c D1 D2 2  99 mm d d 300mm Cover d d 50mm Vu d( ) ϕVc d( )  Vu1 d( ) ϕVc1 d( )  Vu2 d( ) ϕVc2 d( ) while d  d 651 mm h d Cover 750 mm Page 111
  • 113. Steel Reinforcements ρshrinkage 0.0020return( ) fy 50ksiif 0.0018return( ) fy 60ksiif max 0.0018 60ksi fy  0.0014      return      otherwise  In long direction b B Mu1 Left 0( ) Ru hc 2 X                643.378 kN m Mu2 Right 0( ) Ru X hc 2                 667.876 kN m Mu max Mu1 Mu2  667.876 kN m Mn Mu 0.9  R Mn b d 2  0.796 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00208 As max ρ b d ρshrinkage b h  As 29.797 cm 2  As1 π D1 2  4  n1 ceil As As1       15 s1 Floor b c D1 2        2 n1 1 5mm           145 mm In short direction b L Mu1 Bottom 0( ) Ru bc 2 Y                680.262 kN m Mu2 Top 0( ) Ru Y bc 2                 724.653 kN m Mu max Mu1 Mu2  724.653 kN m Mn Mu 0.9  Page 112
  • 114. R Mn b d 2  0.731 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00191 As max ρ b d ρshrinkage b h  As 35.1 cm 2  As2 π D2 2  4  n2 ceil As As2       18 s2 Floor b c D2 2        2 n2 1 5mm           140 mm Shrinkage reinforcement b 1m hshrinkage h hshrinkage 0=if hshrinkage otherwise  As ρshrinkage b hshrinkage 3.6 cm 2  As0 π Dshrinkage 2  4  n As As0  sshrinkage Floor b n 5mm      310 mm Table L c D1 2        2 m B c D2 2        2 m "N/A" D1 mm D2 mm Dshrinkage mm n1 n2 "N/A" s1 mm s2 mm sshrinkage mm                        Page 113
  • 115. Dimension of pile cap B= 2.20 m L= 2.60 m Depth of pile cap h= 750 mm Direction Length (mm) Dia. (mm) NOS Spacing (mm) Long 2.43 16 15 145 Short 2.03 16 18 140 Top N/A 12 N/A 310 Page 114
  • 116. 17. Slab Design A. Design of One-Way Slabs La = length of short side Lb = length of long side La Lb 0.5 : the slab in one-way La Lb 0.5 : the slab is two-way Thickness of one-way slab Simply supported Ln 20 One end continuous Ln 24 Both ends continuous Ln 28 Cantilever Ln 10 Analysis of one-way slab Design scheme: continuous beam Determination of bending moments: using ACI moment coefficients Design of one-way slab Design section: rectangular section of 1m x h Type section: singly reinforced beam Page 115
  • 117. Example 17.1 Span of slab Ln 2m 20cm 1.8m Live load LL 12 kN m 2  Materials f'c 20MPa fy 390MPa Solution Thickness of one-way slab tmin Ln 28 64.286 mm Use t 100mm Loads on slab Cover 50mm 22 kN m 3 1.1 kN m 2  Slab t 25 kN m 3 2.5 kN m 2  Ceiling 0.40 kN m 2  Mechanical 0.20 kN m 2  Partition 1.00 kN m 2  DL Cover Slab Ceiling Mechanical Partition 5.2 kN m 2  wu 1.2 DL 1.6 LL 25.44 kN m 2  Bending moments Msupport 1 11 wu Ln 2  7.493 kN m 1m  Mmidspan 1 16 wu Ln 2  5.152 kN m 1m  Steel reinforcements Page 116
  • 118. β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.014 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 ρshrinkage 0.0020return( ) fy 50ksiif 0.0018return( ) fy 60ksiif max 0.0018 60ksi fy  0.0014      return      otherwise  ρshrinkage 0.0018 Top rebars b 1m d t 20mm 10mm 2        75 mm Mu Msupport b 7.493 kN m Mn Mu 0.9 8.326 kN m R Mn b d 2  1.48 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.004 ρ ρmax 1 As max ρ b d ρshrinkage b t  2.982 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 3 t 450mm( ) s min Floor b n 10mm      smax      260 mm Bottom rebars Mu Mmidspan b 5.152 kN m Mn Mu 0.9 5.724 kN m Page 117
  • 119. R Mn b d 2  1.018 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.003 ρ ρmax 1 As max ρ b d ρshrinkage b t  2.019 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 3 t 450mm( ) s min Floor b n 10mm      smax      300 mm Link rebars As ρshrinkage b t 1.8 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 5 t 450mm( ) s min Floor b n 10mm      smax      430 mm B. Design of Two-Way Slabs Design methods: - Load distribution method - Moment coefficient method - Direct design method (DDM) - Equivalent frame method - Strip method - Yield line method Page 118
  • 120. (1) Load Distribution Method Principle: Equality of deflection in short and long directions fa fb= αa wa La 4  EI  αb wb Lb 4  EI = Case αa αb= wa wb Lb 4 La 4 = 1 λ 4 = λ La Lb = wa wb wu= From which, wa wu 1 1 λ 4  = wb wu λ 4 1 λ 4  = For λ 1 1 1 λ 4  0.5 λ 4 1 λ 4  0.5 For λ 0.8 1 1 λ 4  0.709 λ 4 1 λ 4  0.291 For λ 0.6 1 1 λ 4  0.885 λ 4 1 λ 4  0.115 For λ 0.5 1 1 λ 4  0.941 λ 4 1 λ 4  0.059 For λ 0.4 1 1 λ 4  0.975 λ 4 1 λ 4  0.025 Page 119
  • 121. Example 17.2 Slab dimension La 4.3m Lb 5.5m Live load LL 2.00 kN m 2  Materials f'c 20MPa fy 390MPa Solution Thickness of two-way slab Perimeter La Lb  2 tmin Perimeter 180 108.889 mm t 1 30 1 50       La 143.333 86( ) mm Use t 120mm Loads on slab SDL 50mm 22 kN m 3 0.40 kN m 2  1.00 kN m 2  2.5 kN m 2  DL SDL t 25 kN m 3  5.5 kN m 2  LL 2 kN m 2  wu 1.2 DL 1.6 LL 9.8 kN m 2  Load distribution λ La Lb 0.782 wa 1 1 λ 4  wu 7.134 kN m 2  wb λ 4 1 λ 4  wu 2.666 kN m 2  Page 120
  • 122. Bending moments Ma.neg 1 11 wa La 2  11.992 kN m 1m  Ma.pos 1 16 wa La 2  8.245 kN m 1m  Mb.neg 1 11 wb Lb 2  7.33 kN m 1m  Mb.pos 1 16 wb Lb 2  5.04 kN m 1m  Steel reinforcements β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.014 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 ρshrinkage 0.0020return( ) fy 50ksiif 0.0018return( ) fy 60ksiif max 0.0018 60ksi fy  0.0014      return      otherwise  ρshrinkage 0.0018 Top rebar in short direction b 1m d t 20mm 10mm 10mm 2        85 mm Mu Ma.neg b 11.992 kN m Mn Mu 0.9 13.325 kN m R Mn b d 2  1.844 MPa Page 121
  • 123. ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.005 ρ ρmax 1 As max ρ b d ρshrinkage b t  4.265 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      180 mm Bottom rebar in short direction Mu Ma.pos b 8.245 kN m Mn Mu 0.9 9.161 kN m R Mn b d 2  1.268 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.003 ρ ρmax 1 As max ρ b d ρshrinkage b t  2.875 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Top rebar in long direction Mu Mb.neg b 7.33 kN m Mn Mu 0.9 8.145 kN m R Mn b d 2  1.127 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.003 ρ ρmax 1 As max ρ b d ρshrinkage b t  2.544 cm 2  Page 122
  • 124. As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Bottom rebar in long direction Mu Mb.pos b 5.04 kN m Mn Mu 0.9 5.599 kN m R Mn b d 2  0.775 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.002 ρ ρmax 1 As max ρ b d ρshrinkage b t  2.16 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Shrinkage rebars b 1m As ρshrinkage b t 2.16 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 5 t 450mm( ) s min Floor b n 10mm      smax      360 mm Page 123
  • 125. (2) Moment Coefficient Method Negative moments Ma.neg Ca.neg wu La 2 = Mb.neg Cb.neg wu Lb 2 = Positive moments Ma.pos Ca.pos.DL wD La 2  Ca.pos.LL wL La 2 = Mb.pos Cb.pos.DL wD Lb 2  Cb.pos.LL wL Lb 2 = where Ca.neg Cb.neg Ca.pos.DL Ca.pos.LL Cb.pos.DL Cb.pos.LL are tabulated moment coefficients wD 1.2 DL= wL 1.6 LL= wu 1.2 1.6 LL= Example 17.3 Slab dimension La 5.0m 25cm 4.75 m Lb 5.5m 20cm 5.3m Live load for office LL 2.40 kN m 2  Materials f'c 20MPa fy 390MPa Boundary conditions in short and long directions Simple Continuous       0 1        Short Continuous Continuous        Long Continuous Continuous        Solution Thickness of two-way slab Perimeter La Lb  2 Page 124
  • 126. tmin Perimeter 180 111.667 mm t 1 30 1 50       La 158.333 95( ) mm Use t 120mm Loads on slab Cover 50mm 22 kN m 3 1.1 kN m 2  Slab t 25 kN m 3 3 kN m 2  Ceiling 0.40 kN m 2  Partition 1.00 kN m 2  SDL Cover Ceiling Partition 2.5 kN m 2  DL SDL Slab 5.5 kN m 2  wD 1.2 DL LL 2.4 kN m 2  wL 1.6 LL wu 1.2 DL 1.6LL 10.44 kN m 2  Moment coefficients Page 125
  • 127. Table 12.3a Coefficients for negative moments in short direction of slab m Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 1.00 0.000 0.045 0.000 0.050 0.075 0.071 0.000 0.033 0.061 0.95 0.000 0.050 0.000 0.055 0.079 0.075 0.000 0.038 0.065 0.90 0.000 0.055 0.000 0.060 0.080 0.079 0.000 0.043 0.068 0.85 0.000 0.060 0.000 0.066 0.082 0.083 0.000 0.049 0.072 0.80 0.000 0.065 0.000 0.071 0.083 0.086 0.000 0.055 0.075 0.75 0.000 0.069 0.000 0.076 0.085 0.088 0.000 0.061 0.078 0.70 0.000 0.074 0.000 0.081 0.086 0.091 0.000 0.068 0.081 0.65 0.000 0.077 0.000 0.085 0.087 0.093 0.000 0.074 0.083 0.60 0.000 0.081 0.000 0.089 0.088 0.095 0.000 0.080 0.085 0.55 0.000 0.084 0.000 0.092 0.089 0.096 0.000 0.085 0.086 0.50 0.000 0.086 0.000 0.094 0.090 0.097 0.000 0.089 0.088 Table 12.3b Coefficients for negative moments in long direction of slab m Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 1.00 0.000 0.045 0.076 0.050 0.000 0.000 0.071 0.061 0.033 0.95 0.000 0.041 0.072 0.045 0.000 0.000 0.067 0.056 0.029 0.90 0.000 0.037 0.070 0.040 0.000 0.000 0.062 0.052 0.025 0.85 0.000 0.031 0.065 0.034 0.000 0.000 0.057 0.046 0.021 0.80 0.000 0.027 0.061 0.029 0.000 0.000 0.051 0.041 0.017 0.75 0.000 0.022 0.056 0.024 0.000 0.000 0.044 0.036 0.014 0.70 0.000 0.017 0.050 0.019 0.000 0.000 0.038 0.029 0.011 0.65 0.000 0.014 0.043 0.015 0.000 0.000 0.031 0.024 0.008 0.60 0.000 0.010 0.035 0.011 0.000 0.000 0.024 0.018 0.006 0.55 0.000 0.007 0.028 0.008 0.000 0.000 0.019 0.014 0.005 0.50 0.000 0.006 0.022 0.006 0.000 0.000 0.014 0.010 0.003 ORIGIN 1 Index 1 2 2 3        I Index Short1 1 Short2 1  3 J Index Long1 1 Long2 1  3 Table 1 6 5 7 4 9 3 8 2          Case Table I J 2 Vλ reverse Vλ( ) Vaneg reverse Taneg Case    Vbneg reverse Tbneg Case    VaposDL reverse TaposDL Case    VbposDL reverse TbposDL Case    VaposLL reverse TaposLL Case    VbposLL reverse TbposLL Case    λ La Lb 0.896 vs1 pspline Vλ Vaneg( ) Ca.neg interp vs1 Vλ Vaneg λ( ) 0.055 Page 126
  • 128. vs2 pspline Vλ Vbneg( ) Cb.neg interp vs2 Vλ Vbneg λ( ) 0.037 vs3 pspline Vλ VaposDL( ) Ca.pos.DL interp vs3 Vλ VaposDL λ( ) 0.022 vs4 pspline Vλ VbposDL( ) Cb.pos.DL interp vs4 Vλ VbposDL λ( ) 0.014 vs5 pspline Vλ VaposLL( ) Ca.pos.LL interp vs5 Vλ VaposLL λ( ) 0.034 vs6 pspline Vλ VbposLL( ) Cb.pos.LL interp vs6 Vλ VbposLL λ( ) 0.022 Bending moments Ma.neg Ca.neg wu La 2  13.043 kN m 1m  Mb.neg Cb.neg wu Lb 2  10.729 kN m 1m  Ma.pos Ca.pos.DL wD La 2  Ca.pos.LL wL La 2  6.266 kN m 1m  Mb.pos Cb.pos.DL wD Lb 2  Cb.pos.LL wL Lb 2  4.911 kN m 1m  Steel reinforcements β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 εu 0.003 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.014 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy            0.00354 ρshrinkage 0.0020return( ) fy 50ksiif 0.0018return( ) fy 60ksiif max 0.0018 60ksi fy  0.0014      return      otherwise  ρshrinkage 0.0018 Top rebars in short direction b 1m d t 20mm 10mm 10mm 2        85 mm Page 127
  • 129. Mu Ma.neg b 13.043 kN m Mn Mu 0.9 14.492 kN m R Mn b d 2  2.006 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.005 ρ ρmax 1 As max ρ b d ρshrinkage b t  4.666 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      160 mm Bottom rebars in short direction Mu Ma.pos b 6.266 kN m Mn Mu 0.9 6.963 kN m R Mn b d 2  0.964 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.003 ρ ρmax 1 As max ρ b d ρshrinkage b t  2.163 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Top rebars in long direction Mu Mb.neg b 10.729 kN m Mn Mu 0.9 11.921 kN m Page 128
  • 130. R Mn b d 2  1.65 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.004 ρ ρmax 1 As max ρ b d ρshrinkage b t  3.79 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      200 mm Bottom rebars in long direction Mu Mb.pos b 4.911 kN m Mn Mu 0.9 5.457 kN m R Mn b d 2  0.755 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.002 ρ ρmax 1 As max ρ b d ρshrinkage b t  2.16 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Shrinkage rebars b 1m As ρshrinkage b t 2.16 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 5 t 450mm( ) s min Floor b n 10mm      smax      360 mm Page 129
  • 131. (3) Direct Design Method (DDM) Total static moment M0 wu L2 Ln 2  8 = Longitudinal distribution of moments Mneg Cneg M0= Mpos Cpos M0= Lateral distribution of moments Mneg.col Cneg.col Mneg= Mneg.mid Cneg.mid Mneg= Mpos.col Cpos.col Mpos= Mpos.mid Cpos.mid Mpos= Page 130
  • 132. Example 17.4 Slab dimension La 4m Lb 6m Live load for hospital LL 3.00 kN m 2  Materials f'c 25MPa fy 390MPa Page 131
  • 133. Solution Section of beam in long direction L Lb 6 m h 1 10 1 15       L 600 400( ) mm h 500mm b 0.3 0.6( ) h 150 300( ) mm b 250mm bb hb       b h        Section of beam in short direction L La 4 m h 1 10 1 15       L 400 266.667( ) mm h 300mm b 0.3 0.6( ) h 90 180( ) mm b 200mm ba ha       b h        Determination of slab thickness Perimeter La Lb  2 tmin Perimeter 180 111.111 mm Assume t 120mm In long direction bw bb h hb hf t hw h hf b min bw 2 hw bw 8 hf  1.01 m A1 bw h x1 h 2  A2 b bw  hf x2 hf 2  xc x1 A1 x2 A2 A1 A2 169.852 mm I1 bw h 3  12 A1 x1 xc  2  I2 b bw  hf 3  12 A2 x2 xc  2  Page 132
  • 134. Ib I1 I2 4.617 10 5  cm 4  Is La hf 3  12  wc 24 kN m 3  Ec 44MPa wc kN m 3           1.5  f'c MPa  2.587 10 4  MPa α Ec Ib Ec Is 8.016 αb α In short direction bw ba h ha hf t hw h hf b min bw 2 hw bw 8 hf  0.56 m A1 bw h x1 h 2  A2 b bw  hf x2 hf 2  xc x1 A1 x2 A2 A1 A2 112.326 mm I1 bw h 3  12 A1 x1 xc 2  I2 b bw  hf 3  12 A2 x2 xc 2  Ib I1 I2 7.053 10 4  cm 4  Iba Ib Is Lb hf 3  12 8.64 10 4  cm 4  α Ec Ib Ec Is 0.816 αa α Required thickness of slab αm αa 2 αb 2 4 4.416 β Lb La 1.5 Ln Lb 20cm 5.8m Page 133
  • 135. hf max Ln 0.8 fy 200ksi         36 5 β αm 0.2  5in           0.2 αm 2.0if max Ln 0.8 fy 200ksi         36 9 β 3.5in         2.0 αm 5.0if "DDM is not applied" otherwise  hf 126.876 mm Loads on slab DL 50mm 22 kN m 3 t 25 kN m 3  0.40 kN m 2  1.00 kN m 2  5.5 kN m 2  LL 3 kN m 2  wu 1.2 DL 1.6 LL 11.4 kN m 2  In long direction L1 Lb 6 m Ln L1 ba 5.8m L2 La 4 m α1 αb 8.016 Total static moment M0 wu L2 Ln 2  8 191.748 kN m Longitudinal distribution of moments Mneg 0.65 M0 124.636 kN m Mpos 0.35 M0 67.112 kN m Lateral distribution of moments k1 L2 L1 0.667 k2 α1 L2 L1  5.344 linterp2 VX VY M x y( ) V j linterp VX M j   x  j 1 rows VY( )for linterp VY V y( )  Page 134
  • 136. Cneg.col linterp2 0 1 10         0.5 1.0 2.0          0.75 0.90 0.90 0.75 0.75 0.75 0.75 0.45 0.45          k2 k1         0.85 Cneg.mid 1 Cneg.col 0.15 Cpos.col linterp2 0 1 10         0.5 1.0 2.0          0.60 0.90 0.90 0.60 0.75 0.75 0.60 0.45 0.45          k2 k1         0.85 Cpos.mid 1 Cpos.col 0.15 Mneg.col Cneg.col Mneg 105.941 kN m Mneg.mid Cneg.mid Mneg 18.695 kN m Mpos.col Cpos.col Mpos 57.045 kN m Mpos.mid Cpos.mid Mpos 10.067 kN m Ccol.beam linterp 0 1 10         0 0.85 0.85          k2         0.85 Ccol.slab 1 Ccol.beam 0.15 Mneg.col.beam Ccol.beam Mneg.col 90.05 kN m Mneg.col.slab Ccol.slab Mneg.col 15.891 kN m Mpos.col.beam Ccol.beam Mpos.col 48.488 kN m Mpos.col.slab Ccol.slab Mpos.col 8.557 kN m bcol min L1 L2  4 2 2 m bmid L2 bcol 2 m Top rebars in column strip b bcol d t 20mm 10mm 10mm 2        85 mm Mu Mneg.col.slab 15.891 kN m Mn Mu 0.9 17.657 kN m Page 135
  • 137. R Mn b d 2  1.222 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.003 ρ ρmax 1 As max ρ b d ρshrinkage b t  5.489 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Bottom rebars in column strip Mu Mpos.col.slab 8.557 kN m Mn Mu 0.9 9.508 kN m R Mn b d 2  0.658 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.002 ρ ρmax 1 As max ρ b d ρshrinkage b t  4.32 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Top rebars in middle strip b bmid Mu Mneg.mid 18.695 kN m Mn Mu 0.9 20.773 kN m R Mn b d 2  1.438 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.004 ρ ρmax 1 Page 136
  • 138. As max ρ b d ρshrinkage b t  6.494 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Bottom rebars in middle strip Mu Mpos.mid 10.067 kN m Mn Mu 0.9 11.185 kN m R Mn b d 2  0.774 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.002 ρ ρmax 1 As max ρ b d ρshrinkage b t  4.32 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm In short direction L1 La 4 m Ln L1 bb 3.75 m L2 Lb 6 m α1 αa 0.816 Total static moment M0 wu L2 Ln 2  8 120.234 kN m Longitudinal distribution of moments Mneg 0.65 M0 78.152 kN m Mpos 0.35 M0 42.082 kN m Lateral distribution of moments Page 137
  • 139. k1 L2 L1 1.5 k2 α1 L2 L1  1.224 Cneg.col linterp2 0 1 10         0.5 1.0 2.0          0.75 0.90 0.90 0.75 0.75 0.75 0.75 0.45 0.45          k2 k1         0.6 Cneg.mid 1 Cneg.col 0.4 Cpos.col linterp2 0 1 10         0.5 1.0 2.0          0.60 0.90 0.90 0.60 0.75 0.75 0.60 0.45 0.45          k2 k1         0.6 Cpos.mid 1 Cpos.col 0.4 Mneg.col Cneg.col Mneg 46.891 kN m Mneg.mid Cneg.mid Mneg 31.261 kN m Mpos.col Cpos.col Mpos 25.249 kN m Mpos.mid Cpos.mid Mpos 16.833 kN m Ccol.beam linterp 0 1 10         0 0.85 0.85          k2         0.85 Ccol.slab 1 Ccol.beam 0.15 Mneg.col.beam Ccol.beam Mneg.col 39.858 kN m Mneg.col.slab Ccol.slab Mneg.col 7.034 kN m Mpos.col.beam Ccol.beam Mpos.col 21.462 kN m Mpos.col.slab Ccol.slab Mpos.col 3.787 kN m bcol min L1 L2  4 2 2 m bmid L2 bcol 4 m Top rebars in column strip b bcol Mu Mneg.col.slab 7.034 kN m Mn Mu 0.9 7.815 kN m Page 138
  • 140. R Mn b d 2  0.541 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.001 ρ ρmax 1 As max ρ b d ρshrinkage b t  4.32 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Bottom rebars in column strip Mu Mpos.col.slab 3.787 kN m Mn Mu 0.9 4.208 kN m R Mn b d 2  0.291 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.001 ρ ρmax 1 As max ρ b d ρshrinkage b t  4.32 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Top rebars in middle strip b bmid Mu Mneg.mid 31.261 kN m Mn Mu 0.9 34.734 kN m R Mn b d 2  1.202 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.003 ρ ρmax 1 Page 139
  • 141. As max ρ b d ρshrinkage b t  10.792 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Bottom rebars in middle strip Mu Mpos.mid 16.833 kN m Mn Mu 0.9 18.703 kN m R Mn b d 2  0.647 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.002 ρ ρmax 1 As max ρ b d ρshrinkage b t  8.64 cm 2  As0 π 10mm( ) 2  4  n As As0  smax min 2 t 450mm( ) s min Floor b n 10mm      smax      240 mm Page 140
  • 143. 18. Design of Staircase Step dimension G 3.1m 11 281.818 mm H 1.8m 11 163.636 mm G 2 H 60.909 cm Reference: G 2 H 60cm= 64cm H 150mm= 190mm Number of steps n 11 Loads on waist slab Slope angle α atan H G       30.141 deg Thickness of waist slab twaist 120mm Step cover Cover 50mm H G( ) 22 kN m 3 1m 1m G  1.739 kN m 2  Concrete step Step G H 2 24 kN m 3 1m 1m G  1.964 kN m 2  RC slab Slab twaist 25 kN m 3 1m 2 1m 2 cos α( )  3.469 kN m 2  Page 142
  • 144. Ceiling Ceiling 0.40 kN m 2 1m 2 1m 2 cos α( )  0.463 kN m 2  Handrail Handrail 0.50 kN m 2  Dead load DL Cover Step Slab Ceiling Handrail DL 8.134 kN m 2  Live load LL 4.80 kN m 2  Factored load wwaist 1.2 DL 1.6 LL 17.441 kN m 2  Loads on landing slab Thickness of landing slab tlanding 150mm Slab cover Cover 50mm 22 kN m 3 1.1 kN m 2  RC slab Slab tlanding 25 kN m 3 3.75 kN m 2  Ceiling Ceiling 0.40 kN m 2  Handrail Handrail 0.50 kN m 2  Dead load DL Cover Slab Ceiling Handrail 5.75 kN m 2  Live load LL 4.80 kN m 2  Factored load wlanding 1.2 DL 1.6 LL 14.58 kN m 2  Analysis of Staircase Concrete modulus of elasticity f'c 25MPa wc 24 kN m 3  Ec 44MPa wc kN m 3           1.5  f'c MPa  2.587 10 4  MPa Page 143
  • 145. Geometry of staicase L0 3.1m L2 1.9m h 1.8m L1 L0 2 h 2  3.585 m t1 twaist 120 mm t2 tlanding 150 mm Flexural stiffness b 1m EI1 Ec b t1 3  12  EI2 Ec b t2 3  12  Loads on staircase w1 wwaist b 17.441 kN m  w2 wlanding b 14.58 kN m  Coefficients r11 4 EI1 L1  3 EI2 L2  R1p w1 L0 2  12 w2 L2 2  8  Angular rotation Z1 R1p r11 4.723 10 4  φB Z1 Bending moments MA 2 EI1 L1  Z1 w1 L0 2  12  14.949 kN m MBA 4 EI1 L1  Z1 w1 L0 2  12  12.004 kN m MBC 3 EI2 L2  Z1 w2 L2 2  8  12.004 kN m MC 0 Shears w0 w1 cos α( ) 2  13.043 kN m  VAB MBA MA L1 w0 L1 2  24.199 kN Page 144
  • 146. VBA VAB w0 L1 22.557 kN VBC MC MBC L2 w2 L2 2  20.169 kN VCB VBC w2 L2 7.533 kN Positive moments x1 VAB w0 1.855 m Mmax.AB MA VAB x1 w0 x1 2  2  7.5 kN m x2 VBC w2 1.383 m Mmax.BC MBC VBC x2 w2 x2 2  2  1.946 kN m Design of Staircase Materials f'c 25MPa fy 390MPa εu 0.003 β1 0.65 max 0.85 0.05 f'c 27.6MPa 6.9MPa        min 0.85       0.85 ρmax 0.85 β1 f'c fy  εu εu 0.005  0.017 ρmin max 0.249MPa f'c MPa  fy 1.379MPa fy             ρshrinkage 0.0020return fy 50ksiif 0.0018return fy 60ksiif max 0.0018 60ksi fy  0.0014      return otherwise  ρshrinkage 0.0018 Top rebars in waist slab Page 145
  • 147. b 1 m d twaist 30mm 16mm 2        82 mm Mu max MA MBA  14.949 kN m Mn Mu 0.9  R Mn b d 2  2.47 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00675 As max ρ b d ρshrinkage b twaist  5.537 cm 2  b 200mm π 14mm( ) 2  4  7.697 cm 2  Top rebars in landing slab b 1 m d tlanding 30mm 16mm 2        112 mm Mu max MBC MC  12.004 kN m Mn Mu 0.9  R Mn b d 2  1.063 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.0028 As max ρ b d ρshrinkage b twaist  3.134 cm 2  b 200mm π 10mm( ) 2  4  3.927 cm 2  Bottom rebars in waist slab b 1 m d twaist 30mm 16mm 2        82 mm Mu Mmax.AB 7.5 kN m Mn Mu 0.9  R Mn b d 2  1.239 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00328 As max ρ b d ρshrinkage b twaist  2.687 cm 2  Page 146
  • 148. b 200mm π 10mm( ) 2  4  3.927 cm 2  Bottom rebars in landing slab b 1 m d tlanding 30mm 16mm 2        112 mm Mu Mmax.BC 1.946 kN m Mn Mu 0.9  R Mn b d 2  0.172 MPa ρ 0.85 f'c fy  1 1 2 R 0.85 f'c         0.00044 As max ρ b d ρshrinkage b twaist  2.16 cm 2  b 200mm π 10mm( ) 2  4  3.927 cm 2  Link rebars b 1m t max twaist tlanding  150 mm As ρshrinkage b t 2.7 cm 2  b 250mm π 10mm( ) 2  4  3.142 cm 2  Page 147
  • 149. 19. Deflection A. Immediate (Initial) Deflection Initial or short-term deflection in midspan of continuous beam Δi K 5 Ma Ln 2  48 Ec Ie = where Ma = support moment for cantilever or midspan moment for simple or cotinuous beam Ln = span length of beam Ec = concrete modulus of elasticity Ie = effective moment of inertia of cracked section K = deflection coefficient for uniform distributed load w 1. Cantilever K 2.40= 2. Simple beam K 1.0= 3. Continuous beam K 1.2 0.2 M0 Ma = 4. Fixed-hinged beam Midspan deflection K 0.8= Max. deflection using max. moment K 0.74= 5. Fixed-fixed beam K 0.60= where M0 w Ln 2  8 = Effective moment of inertia of cracked section Ie Icr Mcr Ma       3 Ig Icr  Ig= where Icr = moment of inertia of cracked transformed section Ig = moment of inertia of gross section Mcr = cracking moment Page 148
  • 150. Case of continuous beams According ACI Code 9.5.2 for continuous span Ie 0.50 Im 0.25 Ie1 Ie2 = Beams with both ends continuous Ie 0.70 Im 0.15 Ie1 Ie2 = Beams with one end continuous Ie 0.85 Im 0.15 Icont.end= where Im = midspan section Ie Ie1 Ie2 = Ie for the respective beam ends Icont.end = Ie of continuous end Transformed Section εc fc Ec = εs= fs Es = From which fs Es Ec fc= n fc= where n Es Ec = is a modulus ratio Axial force P Ac fc As fs= Ac n As  fc= At fc= where At Ac n As= Ag n 1( ) As= is a transformed section Ag = area of gross section Cracking Moment Mcr Iut fr yt = (exact expression) Page 149
  • 151. Mcr Ig fr yt = (simplied expression) where Iut = moment of inertia of uncracked transformed section At Ig = moment of inertia of gross section Ag fr = modulus of rupture fr 7.5psi f'c psi = 0.623MPa f'c MPa = yt = distance from neutral axis to the tension face Moment of inertia of cracked section Condition of strain compatibity εs εu d x x = εs εu d x x = Equilibrium in forces C T= fc x 2 b As fs= Ec εu b x 2 As Es εs= As Es εu d x x = b x 2  2 n As d x( )= Page 150
  • 152. b x 2  b d 2  2 n As d x( ) b d 2  = x d       2 2 n ρ 1 x d       = x d       2 2 n ρ x d  2 n ρ 0= x d n ρ n ρ( ) 2 2 n ρ= Moment of inertia of cracked section Icr b x 3  3 n As d x( ) 2 = B. Long-Term Deflection Long-term deflection due to combined effect of creep and shrinkage Δt λ Δi= λ ξ 1 50 ρ' = where ρ' A's b d = ξ = time-dependent coefficient Sustained load duration Value ξ ________________________________________________ 5 year and more 2.0 12 months 1.4 6 months 1.2 3 months 1.0 Page 151
  • 153. C. Minimum Depth-Span Ratio D. Permisible Deflection Page 152
  • 154. Example Span length Ln 9.8m 60cm 9.2m Beam section b 300mm h 750mm Bending moments MD.neg 419.34kN m MD.pos 319.33kN m ML.neg 223.09kN m ML.pos 176.58kN m Steel re-bars As.sup 6 π 25mm( ) 2  4  29.452 cm 2  A's.sup 3 π 25mm( ) 2  4  14.726 cm 2  As.mid 5 π 25mm( ) 2  4  24.544 cm 2  A's.mid 3 π 25mm( ) 2  4  14.726 cm 2  Materials f'c 25MPa fy 390MPa Solution Modulus of rupture fr 0.623MPa f'c MPa  3.115 MPa Modulus ratio Es 2 10 5 MPa wc 24 kN m 3  Ec 44MPa wc kN m 3          1.5  f'c MPa  2.587 10 4  MPa n Es Ec 7.732 Support section Centroid of uncracked section A1 b h y1 h 2  As As.sup d h 30mm 10mm 20mm 25mm 40mm 2        645 mm Page 153
  • 155. A2 n As y2 d yc A1 y1 A2 y2 A1 A2 399.815 mm Moment of inertia of gross section I1 b h 3  12  Ig I1 A1 y1 yc  2  A2 y2 yc  2  1.205 10 6  cm 4  Cracking moment yt h yc 350.185 mm Mcr fr Ig yt  107.228 kN m Location of neutral axis of cracked section C T= fc x 2 b As fs= Ec εu x b 2 As Es εs= εu x b 2 As Es Eu  εu d x x = b x 2  2 As n d x( )= x d       2 2 ρ n 1 x d       = ρ As b d 0.015 x d       2 2 ρ n x d  2 ρ n 0= x d ρ n ρ n( ) 2 2 ρ n     246.092 mm Moment of inertia of cracked section Icr b x 3  3 A2 d x( ) 2  5.114 10 5  cm 4  Effective moment of inertia of cracked section Mneg MD.neg ML.neg 642.43 kN m Ma Mneg Ie1 min Icr Mcr Ma       3 Ig Icr  Ig         5.146 10 5  cm 4  Page 154
  • 156. Ie2 Ie1 Midspan section Centroid of uncracked section A1 b h y1 h 2  As As.mid d h 30mm 10mm 25mm 40mm 2        665 mm A2 n As y2 d yc A1 y1 A2 y2 A1 A2 397.557 mm Moment of inertia of gross section I1 b h 3  12  Ig I1 A1 y1 yc 2  A2 y2 yc 2  1.202 10 6  cm 4  Cracking moment yt h yc 352.443 mm Mcr fr Ig yt  106.225 kN m Location of neutral axis of cracked section C T= fc x 2 b As fs= Ec εu x b 2 As Es εs= εu x b 2 As Es Eu  εu d x x = b x 2  2 As n d x( )= x d       2 2 ρ n 1 x d       = ρ As b d 0.012 x d       2 2 ρ n x d  2 ρ n 0= x d ρ n ρ n( ) 2 2 ρ n     233.616 mm Page 155
  • 157. Moment of inertia of cracked section Icr b x 3  3 A2 d x( ) 2  4.806 10 5  cm 4  Effective moment of inertia of cracked section Mpos MD.pos ML.pos 495.91 kN m Ma Mpos Im min Icr Mcr Ma       3 Ig Icr  Ig         4.877 10 5  cm 4  Calculation of deflection Effective moment of inertia Ie 0.70 Im 0.15 Ie1 Ie2  4.958 10 5  cm 4  Initial deflection due to dead and live loads Ma 495.91 kN m M0 Mneg Mpos 1138.34 kN m K 1.2 0.2 M0 Ma  0.741 ΔD+L K 5 Ma Ln 2  48 Ec Ie  25.259 mm Long-term deflection due to dead load ξ 2 A's A's.mid ρ' A's b d  λ ξ 1 50 ρ' 1.461 ΔD λ ΔD+L MD.pos Mpos  23.761 mm Long-term deflection due to sustained live load Δ0.20L ΔD+L 0.20 ML.pos Mpos  1.799 mm Short-term deflection due to live load Page 156
  • 158. Δ0.80L ΔD+L 0.80 ML.pos Mpos  7.195 mm Total deflection Δ ΔD Δ0.20L Δ0.80L 32.755 mm Permisible deflection Ln 480 19.167 mm Ln 360 25.556 mm Page 157
  • 159. 20. Development Lengths A. Development length of deformed bar in tension Diameter of deformed bar db 20mm Steel yield strength fy 390MPa Concrete compression strength f'c 25MPa Depth of concrete below development length H 350mm Reinforcement coating Type of concrete Concrete cover c 1 db Clear spacing of re-bars s 2 db ψt 1.3 H 300mmif 1.0 otherwise  ψt 1.3 ψe 1.0 Coating "Uncoated"=if 1.5 c 3db s 6dbif 1.2 otherwise otherwise  ψe 1 ψs 0.8 db 20mmif 1.0 otherwise  ψs 0.8 λ 1.3 Concrete "Lightweight"=if 1.0 otherwise  λ 1 Ktr 0 (for a design simplification) cb 1.5db  max min c db 2  s db 2        min 2.5db        30 mm cb Ktr db 1.5 Development of tension bar in tension Page 158
  • 160. Ld max fy 1.107MPa f'c MPa  ψt ψe ψs λ cb Ktr db        db 300mm           977.055 mm Ld db 48.853 Ceil Ld 10mm  980 mm B. Splice length in tension Splice class Lst 1.0 Ld Class "Class A"=if 1.3 Ld otherwise  Lst 1270.172 mm Lst db 63.509 Ceil Lst 10mm  1280 mm C. Development length of deformed bar in compression Diameter of development bar db 32mm Steel yield strength fy 390MPa Concrete compression strength f'c 25MPa Development length in compression Ldc max fy 4.152MPa f'c MPa  db fy 22.983MPa db 200mm           601.156 mm Ldc db 18.786 Ceil Ldc 10mm  610 mm Page 159
  • 161. D. Development length of standard hook in tension Diameter of development bar db 10mm Steel yield strength fy 390MPa Concrete compression strength f'c 25MPa Reinforcement coating Type of concrete Side cover cside 65mm Cover beyond hook cbeyond 50mm ψe 1.0 Coating "Uncoated"=if 1.5 c 3db s 6dbif 1.2 otherwise otherwise  ψe 1 λ 1.3 Concrete "Lightweight"=if 1.0 otherwise  λ 1 Page 160
  • 162. Modified factor α 0.8 cside 65mm  cbeyond 50mm if 0.7 otherwise  α 0.7 Development length of standard hook in tension Ldh α max ψe λ fy 4.152MPa f'c MPa  db 8db 150mm            131.503 mm Ldh db 13.15 Ceil Ldh 10mm  140 mm E. Lap Splice Length in Compression Diameter of splice bar db 25mm Steel yield strength fy 390MPa Lap splice length in compression Lsc max fy 13.79MPa db 300mm       fy 60ksiif max fy 7.661MPa 24       db 300mm       otherwise  Lsc 707.034 mm Ceil Lsc 10mm  710 mm Lsc db 28.281 Page 161
  • 163. Reference 1. Reinforced Concrete / A Fundamental Approch. 5th Edition. Edward G. Nawy. - Pearson Prentice Hall, 2005. 2. Design of Concrete Structures / Arthur Nilson, David Darwin, Charles W/ Dolan - 13 ed. McGraw-Hill, 2003. 3. Structural Concrete: Theory and Design / M. Nadim Hassoun, Akthem Al-Manaseer. - 3rd Edotion. John Wiley and Sons, 2005. 4. Reinforced Concrete: Mechanics and Design / James McGregor, James K. Wight. - 4th Edition. Pearson Education, 2005. 5. ACI Code 318-05 Page 162