This document provides an overview of signal flow graphs and Mason's rule for calculating transfer functions from such graphs. It begins with definitions of key signal flow graph concepts like nodes, branches, paths, and loops. It then gives examples of constructing signal flow graphs from sets of simultaneous equations and converting block diagrams. Mason's rule is explained as providing the transfer function from a single formula involving the forward path gains and graph determinants, avoiding successive block diagram reductions. Finally, the document works through two examples applying Mason's rule to calculate transfer functions from given signal flow graphs.