SlideShare a Scribd company logo
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 137
Smith Chart
The Smith chart is one of the most useful graphical tools for high
frequency circuit applications. The chart provides a clever way to
visualize complex functions and it continues to endure popularity
decades after its original conception.
From a mathematical point of view, the Smith chart is simply a
representation of all possible complex impedances with respect to
coordinates defined by the reflection coefficient.
The domain of definition of the
reflection coefficient is a circle of
radius 1 in the complex plane. This
is also the domain of the Smith chart.
Im(Γ )
Re(Γ )
1
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 138
The goal of the Smith chart is to identify all possible impedances on
the domain of existence of the reflection coefficient. To do so, we
start from the general definition of line impedance (which is equally
applicable to the load impedance)
( )
( )
( )
( )0
1
( )
1
V d d
Z d Z
I d d
+ Γ
= =
− Γ
This provides the complex function ( ) ( ){ }( ) Re , ImZ d f= Γ Γ that
we want to graph. It is obvious that the result would be applicable
only to lines with exactly characteristic impedance Z0.
In order to obtain universal curves, we introduce the concept of
normalized impedance
( ) ( )
( )0
1
( )
1
Z d d
z d
Z d
+ Γ
= =
− Γ
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 139
The normalized impedance is represented on the Smith chart by
using families of curves that identify the normalized resistance r
(real part) and the normalized reactance x (imaginary part)
( ) ( ) ( )Re Imz d z j z r jx= + = +
Let’s represent the reflection coefficient in terms of its coordinates
( ) ( ) ( )Re Imd jΓ = Γ + Γ
Now we can write
( ) ( )
( ) ( )
( ) ( ) ( )
( )( ) ( )
2 2
2 2
1 Re Im
1 Re Im
1 Re Im 2Im
1 Re Im
j
r jx
j
j
+ Γ + Γ
+ =
− Γ − Γ
− Γ − Γ + Γ
=
− Γ + Γ
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 140
The real part gives
( ) ( )
( )( ) ( )
( )( ) ( )( ) ( ) ( )
( )( ) ( )( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( )
( ) ( ) ( )
2 2
2 2
2 2 2 2
2 2 2
2
2 2
2
2 2
2
1 Re Im
1 Re Im
1 1
Re 1 Re 1 Im Im 0
1 1
1 1
Re 1 Re 1 1 Im
1 1
1
1 Re 2 Re 1 Im
1 11
1
Re Im
1 1
r
r r
r r
r r
r r
r r
r r
r rr
r
r r
− Γ − Γ
=
− Γ + Γ
Γ − + Γ − + Γ + Γ + − =
+ +
Γ − + Γ − + + + Γ =
+ +
+ Γ − Γ + + + Γ =
+ ++
⇒ Γ − + Γ =
+ +
 
  
 
 
 
 
  
= 0
Add a quantity equal to zero
Equation of a circle
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 141
The imaginary part gives
( )
( )( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )
( )( ) ( )
2 2
22 2
2 2
2 2
2 2
2 2
2
2
2
2 Im
1 Re Im
1 Re Im 2 Im 1 1 0
2 1 1
1 Re Im Im
2 1 1
1 Re Im Im
1 1
Re 1 Im
x
x x
x x x
x x x
x x
Γ
=
− Γ + Γ
− Γ + Γ − Γ + − =
− Γ + Γ − Γ + =
− Γ + Γ − Γ + =
⇒ Γ − + Γ − =
 
 
 
 
 
  
 
  
= 0
Multiply by x and add a
quantity equal to zero
Equation of a circle
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 142
The result for the real part indicates that on the complex plane with
coordinates (Re(Γ), Im(Γ)) all the possible impedances with a given
normalized resistance r are found on a circle with
{ } 1
, 0
1 1
r
r r+ +
Center = Radius =
As the normalized resistance r varies from 0 to ∞ , we obtain a
family of circles completely contained inside the domain of the
reflection coefficient | Γ | ≤ 1 .
Im(Γ )
Re(Γ )
r = 0
r →∞
r = 1
r = 0.5
r = 5
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 143
The result for the imaginary part indicates that on the complex
plane with coordinates (Re(Γ), Im(Γ)) all the possible impedances
with a given normalized reactance x are found on a circle with
{ }1 1
1 ,
x x
Center = Radius =
As the normalized reactance x varies from -∞ to ∞ , we obtain a
family of arcs contained inside the domain of the reflection
coefficient | Γ | ≤ 1 .
Im(Γ )
Re(Γ )
x = 0
x →±∞
x = 1
x = 0.5
x = -1
x = - 0.5
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 144
Basic Smith Chart techniques for loss-less transmission lines
 Given Z(d) ⇒ Find Γ(d)
Given Γ(d) ⇒ Find Z(d)
 Given ΓR and ZR ⇒ Find Γ(d) and Z(d)
Given Γ(d) and Z(d) ⇒ Find ΓR and ZR
 Find dmax and dmin (maximum and minimum locations for the
voltage standing wave pattern)
 Find the Voltage Standing Wave Ratio (VSWR)
 Given Z(d) ⇒ Find Y(d)
Given Y(d) ⇒ Find Z(d)
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 145
Given Z(d) ⇒ Find Γ(d)
1. Normalize the impedance
( )
( )
0 0 0
d
d
Z R X
z j r j x
Z Z Z
= = + = +
2. Find the circle of constant normalized resistance r
3. Find the arc of constant normalized reactance x
4. The intersection of the two curves indicates the reflection
coefficient in the complex plane. The chart provides
directly the magnitude and the phase angle of Γ(d)
Example: Find Γ(d), given
( ) 0d 25 100 with 50Z j Z= + Ω = Ω
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 146
1
-1
0 0.2 0.5 5
0.2
-0.2
21
-0 5
0 5
-3
3
2
-2
1. Normalization
z (d) = (25 + j 100)/50
= 0.5 + j 2.0
2. Find normalized
resistance circle
r = 0.5
3. Find normalized
reactance arc
x = 2.0
4. This vector represents
the reflection coefficient
Γ (d) = 0.52 + j0.64
|Γ (d)| = 0.8246
∠∠ Γ (d) = 0.8885 rad
= 50.906 °
50.906 °
1.
0.8246
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 147
Given Γ(d) ⇒ Find Z(d)
1. Determine the complex point representing the given
reflection coefficient Γ(d) on the chart.
2. Read the values of the normalized resistance r and of the
normalized reactance x that correspond to the reflection
coefficient point.
3. The normalized impedance is
( )dz r j x= +
and the actual impedance is
( ) ( )0 0 0 0(d) dZ Z z Z r j x Z r j Z x= = + = +
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 148
Given ΓR and ZR ⇐⇒ Find Γ(d) and Z(d)
NOTE: the magnitude of the reflection coefficient is constant along
a loss-less transmission line terminated by a specified load, since
( ) ( )d exp 2 dR RjΓ = Γ − β = Γ
Therefore, on the complex plane, a circle with center at the origin
and radius | ΓR | represents all possible reflection coefficients
found along the transmission line. When the circle of constant
magnitude of the reflection coefficient is drawn on the Smith chart,
one can determine the values of the line impedance at any location.
The graphical step-by-step procedure is:
1. Identify the load reflection coefficient ΓR and the
normalized load impedance ZR on the Smith chart.
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 149
2. Draw the circle of constant reflection coefficient
amplitude |Γ(d)| =|ΓR|.
3. Starting from the point representing the load, travel on
the circle in the clockwise direction, by an angle
2
2 d 2 d
π
θ = β =
λ
4. The new location on the chart corresponds to location d
on the transmission line. Here, the values of Γ(d) and
Z(d) can be read from the chart as before.
Example: Given
025 100 50RZ j Z= + Ω = Ωwith
find
( ) ( ) 0.18Z d d dΓ = λand for
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 150
θ
1
-1
0 0.2 0.5 5
0.2
-0.2
21
-0 5
0 5
-3
3
2
-2
ΓR
zR
∠ ΓR
θθ = 2 β d
= 2 (2π/λ) 0.18 λ
= 2.262 rad
= 129.6°
z(d)
Γ (d)Γ(d) = 0.8246 ∠-78.7°
= 0.161 – j 0.809 z(d) = 0.236 – j1.192
Z(d) = z(d) × Z0 = 11.79 – j59.6 Ω
Circle with constant | Γ |
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 151
Given ΓR and ZR ⇒ Find dmax and dmin
1. Identify on the Smith chart the load reflection coefficient
ΓR or the normalized load impedance ZR .
2. Draw the circle of constant reflection coefficient
amplitude |Γ(d)| =|ΓR|. The circle intersects the real axis
of the reflection coefficient at two points which identify
dmax (when Γ(d) = Real positive) and dmin (when Γ(d) =
Real negative)
3. A commercial Smith chart provides an outer graduation
where the distances normalized to the wavelength can be
read directly. The angles, between the vector ΓR and the
real axis, also provide a way to compute dmax and dmin .
Example: Find dmax and dmin for
025 100 ; 25 100 ( 50 )R RZ j Z j Z= + Ω = − Ω = Ω
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 152
1
-1
0 0.2 0.5 5
0.2
-0.2
21
-0 5
0 5
-3
3
2
-2
ΓR
ZR
∠ ΓR
2β dmin = 230.9°
dmin = 0.3207λ
2β dmax = 50.9°
dmax = 0.0707λ
Im(ZR)  0
Z j ZR   25 100 500 ( )
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 153
1
-1
0 0.2 0.5 5
0.2
-0.2
21
-0 5
0 5
-3
3
2
-2
ΓR
ZR
∠ ΓR
2β dmin = 129.1°
dmin = 0.1793 λ
2β dmax = 309.1°
dmax = 0.4293 λ
Im(ZR)  0
Z j ZR   25 100 500 ( )
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 154
Given ΓR and ZR ⇒ Find the Voltage Standing Wave Ratio (VSWR)
The Voltage standing Wave Ratio or VSWR is defined as
max
min
1
1
R
R
V
VSWR
V
+ Γ
= =
− Γ
The normalized impedance at a maximum location of the standing
wave pattern is given by
( )
( )
( )
max
max
max
1 1
!!!
1 1
R
R
d
z d VSWR
d
+ Γ + Γ
= = =
− Γ − Γ
This quantity is always real and ≥ 1. The VSWR is simply obtained
on the Smith chart, by reading the value of the (real) normalized
impedance, at the location dmax where Γ is real and positive.
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 155
The graphical step-by-step procedure is:
1. Identify the load reflection coefficient ΓR and the
normalized load impedance ZR on the Smith chart.
2. Draw the circle of constant reflection coefficient
amplitude |Γ(d)| =|ΓR|.
3. Find the intersection of this circle with the real positive
axis for the reflection coefficient (corresponding to the
transmission line location dmax).
4. A circle of constant normalized resistance will also
intersect this point. Read or interpolate the value of the
normalized resistance to determine the VSWR.
Example: Find the VSWR for
1 2 025 100 ; 25 100 ( 50 )R RZ j Z j Z= + Ω = − Ω = Ω
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 156
1
-1
0 0.2 0.5 5
0.2
-0.2
21
-0 5
0 5
-3
3
2
-2
ΓR1
zR1
zR2
ΓR2
Circle with constant | Γ |
z(dmax )=10.4
For both loads
VSWR = 10.4
Circle of constant
conductance r = 10.4
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 157
Given Z(d) ⇐⇒ Find Y(d)
Note: The normalized impedance and admittance are defined as
( )
( )
( )
( )
1 1
( ) ( )
1 1
d d
z d y d
d d
+ Γ − Γ
= =
− Γ + Γ
Since
( )
( )
( )
( )
4
1
14
4 1
1
4
d d
d
d
z d y d
d
d
λ 
Γ + = −Γ 
 
λ 
+ Γ +  − Γλ   ⇒ + = = =  λ + Γ   − Γ + 
 
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 158
Keep in mind that the equality
( )
4
z d y d
λ 
+ = 
 
is only valid for normalized impedance and admittance. The actual
values are given by
0
0
0
4 4
( )
( ) ( )
Z d Z z d
y d
Y d Y y d
Z
λ λ   
+ = ⋅ +   
   
= ⋅ =
where Y0=1 /Z0 is the characteristic admittance of the transmission
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 159
line.
The graphical step-by-step procedure is:
1. Identify the load reflection coefficient ΓR and the
normalized load impedance ZR on the Smith chart.
2. Draw the circle of constant reflection coefficient
amplitude |Γ(d)| =|ΓR|.
3. The normalized admittance is located at a point on the
circle of constant |Γ| which is diametrically opposite to the
normalized impedance.
Example: Given
025 100 with 50RZ j Z= + Ω = Ω
find YR .
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 160
1
-1
0 0.2 0.5 5
0.2
-0.2
21
-0 5
0 5
-3
3
2
-2
z(d) = 0.5 + j 2.0
Z(d) = 25 + j100 [ Ω ]
y(d) = 0.11765 – j 0.4706
Y(d) = 0.002353 – j 0.009412 [ S ]
z(d+λ/4) = 0.11765 – j 0.4706
Z(d+λ/4) = 5.8824 – j 23.5294 [ Ω ]
Circle with constant | Γ |
θ = 180°
= 2β⋅λ/4
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 161
The Smith chart can be used for line admittances, by shifting the
space reference to the admittance location. After that, one can
move on the chart just reading the numerical values as
representing admittances.
Let’s review the impedance-admittance terminology:
Impedance = Resistance + j Reactance
Z R jX= +
Admittance = Conductance + j Susceptance
Y G jB= +
On the impedance chart, the correct reflection coefficient is always
represented by the vector corresponding to the normalized
impedance. Charts specifically prepared for admittances are
modified to give the correct reflection coefficient in correspondence
of admittance.
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 162
Smith Chart for
Admittances
00.20.55
-0.2
0.2
2 1
0 5
-0 5
3
-3
-2
2
-1
1
Positive
(capacitive)
susceptance
Negative
(inductive)
susceptanceΓ
y(d) = 0.11765 – j 0.4706
z(d) = 0.5 + 2.0
Transmission Lines
© Amanogawa, 2000 - Digital Maestro Series 163
Since related impedance and admittance are on opposite sides of
the same Smith chart, the imaginary parts always have different
sign.
Therefore, a positive (inductive) reactance corresponds to a
negative (inductive) susceptance, while a negative (capacitive)
reactance corresponds to a positive (capacitive) susceptance.
Numerically, we have
( )( ) 2 2
2 2 2 2
1
z r j x y g j b
r j x
r j x r jx
y
r j x r j x r x
r x
g b
r x r x
= + = + =
+
− −
= =
+ − +
⇒ = = −
+ +

More Related Content

PDF
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
PPT
S parameters
PPTX
Microstrip TL 1st 3
PPTX
Smith Chart by YEASIN NEWAJ
PPSX
Chapter 2 signals and spectra,
PPT
Chapter 4
PPTX
Network analysis of rf and microwave circuits
BASIC CONCEPTS OF TRANSMISSION LINES & WAVEGUIDES ForC 18 DECE unit 1, SBTET
S parameters
Microstrip TL 1st 3
Smith Chart by YEASIN NEWAJ
Chapter 2 signals and spectra,
Chapter 4
Network analysis of rf and microwave circuits

What's hot (20)

PDF
EC6602-Antenna fundamentals new
PPTX
Adaptive delta modulation
PPTX
Antenna
PPTX
Low pass filters
PPTX
M ary psk and m ary qam ppt
PPTX
FET AMPLIFIER
PPT
Foc ppt
PPTX
Travelling Wave Tube
PPTX
Unit 3- OPTICAL SOURCES AND DETECTORS
PPTX
Traveling Wave Antenna
PPTX
Pulse Modulation ppt
PPTX
OPTICAL FIBER COMMUNICATION UNIT-1
PPTX
Optical Detector PIN photodiode
PPTX
Antenna slide
PPT
Antennas wave and propagation
PPTX
Pulse width modulation
PPTX
Amplitude modulation
PPTX
Optical Fiber communication
EC6602-Antenna fundamentals new
Adaptive delta modulation
Antenna
Low pass filters
M ary psk and m ary qam ppt
FET AMPLIFIER
Foc ppt
Travelling Wave Tube
Unit 3- OPTICAL SOURCES AND DETECTORS
Traveling Wave Antenna
Pulse Modulation ppt
OPTICAL FIBER COMMUNICATION UNIT-1
Optical Detector PIN photodiode
Antenna slide
Antennas wave and propagation
Pulse width modulation
Amplitude modulation
Optical Fiber communication
Ad

Viewers also liked (6)

PPT
smith chart By Engr Mimkhan
PPT
Vrajesh parikh handoff_presentation1
PPTX
proactive and reactive routing comparisons
PDF
3 handoff management
PPT
Smith Chart
PDF
RF Circuit Design - [Ch2-2] Smith Chart
smith chart By Engr Mimkhan
Vrajesh parikh handoff_presentation1
proactive and reactive routing comparisons
3 handoff management
Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
Ad

Similar to Smith chart basics (20)

PPTX
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
PDF
Chapter 2.pdf Smith Chart and Impedance Matching
PDF
An innovative way for computerized smith chart generation and transmission li...
PPT
Smith chart:A graphical representation.
PDF
Lect 03 Smith charts.pdf
PPTX
UNIT VI TL ii.pptxElectromagnetic waves and Transmission Lines Unit VI
PDF
Transmissionline
PDF
Microwave Engineering Lecture Notes
PPT
Chp1 Transmission line theory with examples-part2
PDF
D-tutorial.pdf
PPT
519 transmission line theory
PDF
Chap2 s11b
PPTX
Notes 2 - Smith charts.pptx for electrical engineers
PDF
Smith Chart msc.pdf
PDF
matlab program for Smith chart
PPT
Smith chart
PDF
PPT
Smith_Chart.ppt
PPT
519_transmission line theory by vishnu.ppt
PPT
519_transmission line theory by vishnu.ppt
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Chapter 2.pdf Smith Chart and Impedance Matching
An innovative way for computerized smith chart generation and transmission li...
Smith chart:A graphical representation.
Lect 03 Smith charts.pdf
UNIT VI TL ii.pptxElectromagnetic waves and Transmission Lines Unit VI
Transmissionline
Microwave Engineering Lecture Notes
Chp1 Transmission line theory with examples-part2
D-tutorial.pdf
519 transmission line theory
Chap2 s11b
Notes 2 - Smith charts.pptx for electrical engineers
Smith Chart msc.pdf
matlab program for Smith chart
Smith chart
Smith_Chart.ppt
519_transmission line theory by vishnu.ppt
519_transmission line theory by vishnu.ppt

Recently uploaded (20)

PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPT
Project quality management in manufacturing
PDF
Well-logging-methods_new................
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PPTX
Construction Project Organization Group 2.pptx
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
Strings in CPP - Strings in C++ are sequences of characters used to store and...
PPTX
web development for engineering and engineering
PPT
Mechanical Engineering MATERIALS Selection
PDF
PPT on Performance Review to get promotions
PPTX
additive manufacturing of ss316l using mig welding
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Structs to JSON How Go Powers REST APIs.pdf
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Welding lecture in detail for understanding
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Foundation to blockchain - A guide to Blockchain Tech
Project quality management in manufacturing
Well-logging-methods_new................
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Construction Project Organization Group 2.pptx
Lecture Notes Electrical Wiring System Components
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Strings in CPP - Strings in C++ are sequences of characters used to store and...
web development for engineering and engineering
Mechanical Engineering MATERIALS Selection
PPT on Performance Review to get promotions
additive manufacturing of ss316l using mig welding
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Structs to JSON How Go Powers REST APIs.pdf
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Welding lecture in detail for understanding
UNIT-1 - COAL BASED THERMAL POWER PLANTS
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf

Smith chart basics

  • 1. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 137 Smith Chart The Smith chart is one of the most useful graphical tools for high frequency circuit applications. The chart provides a clever way to visualize complex functions and it continues to endure popularity decades after its original conception. From a mathematical point of view, the Smith chart is simply a representation of all possible complex impedances with respect to coordinates defined by the reflection coefficient. The domain of definition of the reflection coefficient is a circle of radius 1 in the complex plane. This is also the domain of the Smith chart. Im(Γ ) Re(Γ ) 1
  • 2. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 138 The goal of the Smith chart is to identify all possible impedances on the domain of existence of the reflection coefficient. To do so, we start from the general definition of line impedance (which is equally applicable to the load impedance) ( ) ( ) ( ) ( )0 1 ( ) 1 V d d Z d Z I d d + Γ = = − Γ This provides the complex function ( ) ( ){ }( ) Re , ImZ d f= Γ Γ that we want to graph. It is obvious that the result would be applicable only to lines with exactly characteristic impedance Z0. In order to obtain universal curves, we introduce the concept of normalized impedance ( ) ( ) ( )0 1 ( ) 1 Z d d z d Z d + Γ = = − Γ
  • 3. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 139 The normalized impedance is represented on the Smith chart by using families of curves that identify the normalized resistance r (real part) and the normalized reactance x (imaginary part) ( ) ( ) ( )Re Imz d z j z r jx= + = + Let’s represent the reflection coefficient in terms of its coordinates ( ) ( ) ( )Re Imd jΓ = Γ + Γ Now we can write ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 2 2 2 2 1 Re Im 1 Re Im 1 Re Im 2Im 1 Re Im j r jx j j + Γ + Γ + = − Γ − Γ − Γ − Γ + Γ = − Γ + Γ
  • 4. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 140 The real part gives ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 Re Im 1 Re Im 1 1 Re 1 Re 1 Im Im 0 1 1 1 1 Re 1 Re 1 1 Im 1 1 1 1 Re 2 Re 1 Im 1 11 1 Re Im 1 1 r r r r r r r r r r r r r r rr r r r − Γ − Γ = − Γ + Γ Γ − + Γ − + Γ + Γ + − = + + Γ − + Γ − + + + Γ = + + + Γ − Γ + + + Γ = + ++ ⇒ Γ − + Γ = + +                 = 0 Add a quantity equal to zero Equation of a circle
  • 5. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 141 The imaginary part gives ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 Im 1 Re Im 1 Re Im 2 Im 1 1 0 2 1 1 1 Re Im Im 2 1 1 1 Re Im Im 1 1 Re 1 Im x x x x x x x x x x x Γ = − Γ + Γ − Γ + Γ − Γ + − = − Γ + Γ − Γ + = − Γ + Γ − Γ + = ⇒ Γ − + Γ − =                   = 0 Multiply by x and add a quantity equal to zero Equation of a circle
  • 6. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 142 The result for the real part indicates that on the complex plane with coordinates (Re(Γ), Im(Γ)) all the possible impedances with a given normalized resistance r are found on a circle with { } 1 , 0 1 1 r r r+ + Center = Radius = As the normalized resistance r varies from 0 to ∞ , we obtain a family of circles completely contained inside the domain of the reflection coefficient | Γ | ≤ 1 . Im(Γ ) Re(Γ ) r = 0 r →∞ r = 1 r = 0.5 r = 5
  • 7. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 143 The result for the imaginary part indicates that on the complex plane with coordinates (Re(Γ), Im(Γ)) all the possible impedances with a given normalized reactance x are found on a circle with { }1 1 1 , x x Center = Radius = As the normalized reactance x varies from -∞ to ∞ , we obtain a family of arcs contained inside the domain of the reflection coefficient | Γ | ≤ 1 . Im(Γ ) Re(Γ ) x = 0 x →±∞ x = 1 x = 0.5 x = -1 x = - 0.5
  • 8. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 144 Basic Smith Chart techniques for loss-less transmission lines Given Z(d) ⇒ Find Γ(d) Given Γ(d) ⇒ Find Z(d) Given ΓR and ZR ⇒ Find Γ(d) and Z(d) Given Γ(d) and Z(d) ⇒ Find ΓR and ZR Find dmax and dmin (maximum and minimum locations for the voltage standing wave pattern) Find the Voltage Standing Wave Ratio (VSWR) Given Z(d) ⇒ Find Y(d) Given Y(d) ⇒ Find Z(d)
  • 9. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 145 Given Z(d) ⇒ Find Γ(d) 1. Normalize the impedance ( ) ( ) 0 0 0 d d Z R X z j r j x Z Z Z = = + = + 2. Find the circle of constant normalized resistance r 3. Find the arc of constant normalized reactance x 4. The intersection of the two curves indicates the reflection coefficient in the complex plane. The chart provides directly the magnitude and the phase angle of Γ(d) Example: Find Γ(d), given ( ) 0d 25 100 with 50Z j Z= + Ω = Ω
  • 10. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 146 1 -1 0 0.2 0.5 5 0.2 -0.2 21 -0 5 0 5 -3 3 2 -2 1. Normalization z (d) = (25 + j 100)/50 = 0.5 + j 2.0 2. Find normalized resistance circle r = 0.5 3. Find normalized reactance arc x = 2.0 4. This vector represents the reflection coefficient Γ (d) = 0.52 + j0.64 |Γ (d)| = 0.8246 ∠∠ Γ (d) = 0.8885 rad = 50.906 ° 50.906 ° 1. 0.8246
  • 11. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 147 Given Γ(d) ⇒ Find Z(d) 1. Determine the complex point representing the given reflection coefficient Γ(d) on the chart. 2. Read the values of the normalized resistance r and of the normalized reactance x that correspond to the reflection coefficient point. 3. The normalized impedance is ( )dz r j x= + and the actual impedance is ( ) ( )0 0 0 0(d) dZ Z z Z r j x Z r j Z x= = + = +
  • 12. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 148 Given ΓR and ZR ⇐⇒ Find Γ(d) and Z(d) NOTE: the magnitude of the reflection coefficient is constant along a loss-less transmission line terminated by a specified load, since ( ) ( )d exp 2 dR RjΓ = Γ − β = Γ Therefore, on the complex plane, a circle with center at the origin and radius | ΓR | represents all possible reflection coefficients found along the transmission line. When the circle of constant magnitude of the reflection coefficient is drawn on the Smith chart, one can determine the values of the line impedance at any location. The graphical step-by-step procedure is: 1. Identify the load reflection coefficient ΓR and the normalized load impedance ZR on the Smith chart.
  • 13. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 149 2. Draw the circle of constant reflection coefficient amplitude |Γ(d)| =|ΓR|. 3. Starting from the point representing the load, travel on the circle in the clockwise direction, by an angle 2 2 d 2 d π θ = β = λ 4. The new location on the chart corresponds to location d on the transmission line. Here, the values of Γ(d) and Z(d) can be read from the chart as before. Example: Given 025 100 50RZ j Z= + Ω = Ωwith find ( ) ( ) 0.18Z d d dΓ = λand for
  • 14. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 150 θ 1 -1 0 0.2 0.5 5 0.2 -0.2 21 -0 5 0 5 -3 3 2 -2 ΓR zR ∠ ΓR θθ = 2 β d = 2 (2π/λ) 0.18 λ = 2.262 rad = 129.6° z(d) Γ (d)Γ(d) = 0.8246 ∠-78.7° = 0.161 – j 0.809 z(d) = 0.236 – j1.192 Z(d) = z(d) × Z0 = 11.79 – j59.6 Ω Circle with constant | Γ |
  • 15. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 151 Given ΓR and ZR ⇒ Find dmax and dmin 1. Identify on the Smith chart the load reflection coefficient ΓR or the normalized load impedance ZR . 2. Draw the circle of constant reflection coefficient amplitude |Γ(d)| =|ΓR|. The circle intersects the real axis of the reflection coefficient at two points which identify dmax (when Γ(d) = Real positive) and dmin (when Γ(d) = Real negative) 3. A commercial Smith chart provides an outer graduation where the distances normalized to the wavelength can be read directly. The angles, between the vector ΓR and the real axis, also provide a way to compute dmax and dmin . Example: Find dmax and dmin for 025 100 ; 25 100 ( 50 )R RZ j Z j Z= + Ω = − Ω = Ω
  • 16. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 152 1 -1 0 0.2 0.5 5 0.2 -0.2 21 -0 5 0 5 -3 3 2 -2 ΓR ZR ∠ ΓR 2β dmin = 230.9° dmin = 0.3207λ 2β dmax = 50.9° dmax = 0.0707λ Im(ZR) 0 Z j ZR 25 100 500 ( )
  • 17. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 153 1 -1 0 0.2 0.5 5 0.2 -0.2 21 -0 5 0 5 -3 3 2 -2 ΓR ZR ∠ ΓR 2β dmin = 129.1° dmin = 0.1793 λ 2β dmax = 309.1° dmax = 0.4293 λ Im(ZR) 0 Z j ZR 25 100 500 ( )
  • 18. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 154 Given ΓR and ZR ⇒ Find the Voltage Standing Wave Ratio (VSWR) The Voltage standing Wave Ratio or VSWR is defined as max min 1 1 R R V VSWR V + Γ = = − Γ The normalized impedance at a maximum location of the standing wave pattern is given by ( ) ( ) ( ) max max max 1 1 !!! 1 1 R R d z d VSWR d + Γ + Γ = = = − Γ − Γ This quantity is always real and ≥ 1. The VSWR is simply obtained on the Smith chart, by reading the value of the (real) normalized impedance, at the location dmax where Γ is real and positive.
  • 19. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 155 The graphical step-by-step procedure is: 1. Identify the load reflection coefficient ΓR and the normalized load impedance ZR on the Smith chart. 2. Draw the circle of constant reflection coefficient amplitude |Γ(d)| =|ΓR|. 3. Find the intersection of this circle with the real positive axis for the reflection coefficient (corresponding to the transmission line location dmax). 4. A circle of constant normalized resistance will also intersect this point. Read or interpolate the value of the normalized resistance to determine the VSWR. Example: Find the VSWR for 1 2 025 100 ; 25 100 ( 50 )R RZ j Z j Z= + Ω = − Ω = Ω
  • 20. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 156 1 -1 0 0.2 0.5 5 0.2 -0.2 21 -0 5 0 5 -3 3 2 -2 ΓR1 zR1 zR2 ΓR2 Circle with constant | Γ | z(dmax )=10.4 For both loads VSWR = 10.4 Circle of constant conductance r = 10.4
  • 21. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 157 Given Z(d) ⇐⇒ Find Y(d) Note: The normalized impedance and admittance are defined as ( ) ( ) ( ) ( ) 1 1 ( ) ( ) 1 1 d d z d y d d d + Γ − Γ = = − Γ + Γ Since ( ) ( ) ( ) ( ) 4 1 14 4 1 1 4 d d d d z d y d d d λ  Γ + = −Γ    λ  + Γ +  − Γλ   ⇒ + = = =  λ + Γ   − Γ +   
  • 22. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 158 Keep in mind that the equality ( ) 4 z d y d λ  + =    is only valid for normalized impedance and admittance. The actual values are given by 0 0 0 4 4 ( ) ( ) ( ) Z d Z z d y d Y d Y y d Z λ λ    + = ⋅ +        = ⋅ = where Y0=1 /Z0 is the characteristic admittance of the transmission
  • 23. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 159 line. The graphical step-by-step procedure is: 1. Identify the load reflection coefficient ΓR and the normalized load impedance ZR on the Smith chart. 2. Draw the circle of constant reflection coefficient amplitude |Γ(d)| =|ΓR|. 3. The normalized admittance is located at a point on the circle of constant |Γ| which is diametrically opposite to the normalized impedance. Example: Given 025 100 with 50RZ j Z= + Ω = Ω find YR .
  • 24. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 160 1 -1 0 0.2 0.5 5 0.2 -0.2 21 -0 5 0 5 -3 3 2 -2 z(d) = 0.5 + j 2.0 Z(d) = 25 + j100 [ Ω ] y(d) = 0.11765 – j 0.4706 Y(d) = 0.002353 – j 0.009412 [ S ] z(d+λ/4) = 0.11765 – j 0.4706 Z(d+λ/4) = 5.8824 – j 23.5294 [ Ω ] Circle with constant | Γ | θ = 180° = 2β⋅λ/4
  • 25. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 161 The Smith chart can be used for line admittances, by shifting the space reference to the admittance location. After that, one can move on the chart just reading the numerical values as representing admittances. Let’s review the impedance-admittance terminology: Impedance = Resistance + j Reactance Z R jX= + Admittance = Conductance + j Susceptance Y G jB= + On the impedance chart, the correct reflection coefficient is always represented by the vector corresponding to the normalized impedance. Charts specifically prepared for admittances are modified to give the correct reflection coefficient in correspondence of admittance.
  • 26. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 162 Smith Chart for Admittances 00.20.55 -0.2 0.2 2 1 0 5 -0 5 3 -3 -2 2 -1 1 Positive (capacitive) susceptance Negative (inductive) susceptanceΓ y(d) = 0.11765 – j 0.4706 z(d) = 0.5 + 2.0
  • 27. Transmission Lines © Amanogawa, 2000 - Digital Maestro Series 163 Since related impedance and admittance are on opposite sides of the same Smith chart, the imaginary parts always have different sign. Therefore, a positive (inductive) reactance corresponds to a negative (inductive) susceptance, while a negative (capacitive) reactance corresponds to a positive (capacitive) susceptance. Numerically, we have ( )( ) 2 2 2 2 2 2 1 z r j x y g j b r j x r j x r jx y r j x r j x r x r x g b r x r x = + = + = + − − = = + − + ⇒ = = − + +