SlideShare a Scribd company logo
Signals and System-II
Sarun Soman
Assistant Professor
Manipal Institute of Technology
Manipal
Properties of System
• Stability
• Memory
• Causality
• Invertibility
• Time invariance
• Linearity
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Stabililty
A system is said to be bounded input, bounded output(BIBO)
stable iff every bounded input results in a bounded output.
Operator H is BIBO stable if the o/p signal satisfies the condition
‫)ݐ(ݕ‬ ≤ ‫ܯ‬௬ ≤ ∞ for all ‘t’
Whenever input signal x(t) satisfies the condition
‫)ݐ(ݔ‬ ≤ ‫ܯ‬௫ ≤ ∞ for all ‘t’
‫ܯ‬௬ and ‫ܯ‬௫ finite positive numbers
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Example of unstable system
• Tacoma Narrows suspension bridge
• Collapsed on November 7, 1940.
• Collapsed due to wind induced vibrations
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Prof: Sarun Soman, M.I.T, Manipal
Example1
Consider the moving average system with input output relation
‫ݕ‬ ݊ =
ଵ
ଷ
‫ݔ‬ ݊ + ‫ݔ‬ ݊ − 1 + ‫ݔ‬ ݊ − 2
Show that the system is BIBO stable.
Ans:
Assume that ‫]݊[ݔ‬ < ‫ܯ‬௫ < ∞ for all ‘n’
‫]݊[ݕ‬ =
ଵ
ଷ
‫ݔ‬ ݊ + ‫ݔ‬ ݊ − 1 + ‫ݔ‬ ݊ − 2
=
ଵ
ଷ
(‫ܯ‬௫ + ‫ܯ‬௫ + ‫ܯ‬௫)
= ‫ܯ‬௫
Bounded input results in bounded o/p
Prof: Sarun Soman, M.I.T, Manipal
Example2
Consider a DT system whose i/p-o/p relation is defined by
‫ݕ‬ ݊ = ‫ݎ‬௡
‫]݊[ݔ‬
Where ‫ݎ‬ > 1. Show that the system is unstable.
Ans:
Assume that the input signal x[n] satisfies the condition
‫]݊[ݔ‬ ≤ ‫ܯ‬௫ ≤ ∞
‫]݊[ݕ‬ = ‫ݎ‬௡‫]݊[ݔ‬
= ‫ݎ‬௡ ‫]݊[ݔ‬
‫ݎ‬௡ diverges as ‘n’ increases.
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Memory
A system is said to posses memory if its o/p signal depends on past or
future values of the input signal.
A system is said to be memoryless if its output signal depends only on
present value of input signal.
Eg.
Resistor
݅ ‫ݐ‬ =
ଵ
ோ
‫)ݐ(ݒ‬ memoryless
Inductor
݅ ‫ݐ‬ =
ଵ
௅
‫׬‬ ‫ݒ‬ ߬ ݀߬
௧
ିஶ
memory
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
‫ݕ‬ ݊ = ‫ݔ‬ଶ
݊ memoryless
‫ݕ‬ ݊ =
1
3
‫ݔ‬ ݊ + ‫ݔ‬ ݊ − 1 + ‫ݔ‬ ݊ − 2
Memory
‫ݕ‬ 0 =
1
3
‫ݔ‬ 0 + ‫ݔ‬ −1 + ‫ݔ‬ −2
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Causality
A system is said to be causal if its present value of the o/p signal depends only
on the present or past values of the input signal.
A system is said to be non causal if its output signal depends on one or more
future values of the input signal.
Eg. Moving average system
‫ݕ‬ ݊ =
ଵ
ଷ
(‫ݔ‬ ݊ + ‫ݔ‬ ݊ − 1 + ‫݊[ݔ‬ − 2])
Moving average system
‫ݕ‬ ݊ =
ଵ
ଷ
(‫ݔ‬ ݊ + ‫ݔ‬ ݊ + 1 + ‫݊[ݔ‬ − 2])
‫ݕ‬ 0 =
ଵ
ଷ
(‫ݔ‬ 0 + ‫ݔ‬ 1 + ‫)]2−[ݔ‬
causal
Non causal
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Invertibility
A system is said to be invertible if the input of the system can be
recovered from the o/p.
Note: necessary condition for invertibility distinct i/p must
produce distinct o/p
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Show that a square law system described by the input-output
relation ‫ݕ‬ ‫ݐ‬ = ‫ݔ‬ଶ
(‫)ݐ‬ is not invertible.
Ans:
Distinct inputs x(t) and x(-t) produce the same output
Time invariance
A system is said to be time invariant if a delay or time advance
of the input signal lead to an identical time shift in the output
signal.
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Eg. Thermistor
Input output relation of thermistor
‫ݕ‬ଵ ‫ݐ‬ =
௫భ(௧)
ோ(௧)
Response ‫ݕ‬ଶ ‫ݐ‬ of the thermistor to input ‫ݐ(ݔ‬ − ‫ݐ‬଴)
‫ݕ‬ଶ ‫ݐ‬ =
௫భ(௧ି௧బ)
ோ(௧)
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Shifting the output ‫ݕ‬ଵ ‫ݐ‬
‫ݕ‬ଵ ‫ݐ‬ − ‫ݐ‬଴ =
௫భ(௧ି௧బ)
ோ(௧ି௧బ)
For a thermistor ܴ(‫ݐ‬ − ‫ݐ‬଴) ≠ ܴ(‫)ݐ‬ for ‫ݐ‬ ≠ 0
‫ݕ‬ଵ(‫ݐ‬ − ‫ݐ‬଴) ≠ ‫ݕ‬ଶ(‫)ݐ‬ for ‫ݐ‬ ≠ 0
Thermistor is time variant
Linearity
A system is linear in terms of the system input x(t) and the
system output y(t) if it satisfies two properties.
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
ܽଵ‫ݔ‬ଵ ‫ݐ‬ + ܽଶ‫ݔ‬ଶ ‫ݐ‬ = ܽଵ‫ݕ‬ଵ ‫ݐ‬ + ܽଶ‫ݕ‬ଶ(‫)ݐ‬
Prof: Sarun Soman, M.I.T, Manipal
Properties of Systems
Consider a discrete time system described by the input-output
relation ‫ݕ‬ ݊ = ݊‫.]݊[ݔ‬ Show that the system is linear.
Ans:
Let the input signal x[n] be expressed as the weighted sum
‫ݔ‬ ݊ = ∑ ܽ௜‫ݔ‬௜[݊]ே
௜ୀଵ
Output of the system
= ݊ ∑ ܽ௜
ே
௜ୀଵ ‫ݔ‬௜[݊]
= ∑ ܽ௜݊ே
௜ୀଵ ‫ݔ‬௜[݊]
= ∑ ܽ௜
ே
௜ୀଵ ‫ݕ‬௜[݊]
The system is linear
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
‫ݕ‬ ݊ = 2‫ݔ‬ ݊ + 3 check for linearity
Ans:
‫ݕ‬ଵ ݊ = 2‫ݔ‬ଵ ݊ + 3
‫ݕ‬ଶ ݊ = 2‫ݔ‬ଶ ݊ + 3
Let ‫ݔ‬ଷ ݊ = ‫ݔ‬ଵ[݊] + ‫ݔ‬ଶ[݊]
‫ݕ‬ଷ ݊ = 2 ‫ݔ‬ଵ ݊ + ‫ݔ‬ଶ ݊ + 3
= 2‫ݔ‬ଵ ݊ + 2‫ݔ‬ଶ ݊ + 3
≠ ܽ‫ݕ‬ଵ ݊ + ܾ‫ݕ‬ଶ[݊]
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
‫ݕ‬ ‫ݐ‬ = ‫ݔ‬
‫ݐ‬
2
Memory or memoryless system?
Ans:	‫ݕ‬ 1 = ‫)5.0(ݔ‬
Output depends on past value of i/p
Memory system
‫ݕ‬ ‫ݐ‬ = cos ‫ݔ‬ ‫ݐ‬ invertible or non-invertible?
Ans: Distinct i/p must give distinct o/p.
‫ݔ‬ ‫ݐ‬ ܽ݊݀	‫)ݐ(ݔ‬ + 2ߨ) gives same o/p.
Non-invertible
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
‫ݕ‬ ݊ = ‫]݊−[ݔ‬ time invariant or time variant?
Ans:
Delay in input ‫݊[ݔ‬ − ݉]
Corresponding output	‫ݕ‬ଵ ݊ = ‫݊−[ݔ‬ − ݉]
Delay the output
‫ݕ‬ଶ ݊ = ‫ݕ‬ ݊ − ݉ = ‫݊(−[ݔ‬ − ݉)]
= ‫݊−[ݔ‬ + ݉]
‫ݕ‬ଶ[݊] ≠ ‫ݕ‬ଵ ݊
Time variant
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
‫ݕ‬ ‫ݐ‬ = ‫ݔ‬
‫ݐ‬
2
Linearity, time invariance, memory, causality, stability?
Ans:
Memory system
Linearity
‫ݔ‬ଵ ‫ݐ‬ → ‫ݕ‬ଵ ‫ݐ‬ = ‫ݔ‬ଵ
௧
ଶ
‫ݔ‬ଶ ‫ݐ‬ → ‫ݕ‬ଶ ‫ݐ‬ = ‫ݔ‬ଶ
௧
ଶ
Let ‫ݔ‬ଷ ‫ݐ‬ = ܽ‫ݔ‬ଵ ‫ݐ‬ + ܾ‫ݔ‬ଶ ‫ݐ‬
‫ݕ‬ଷ ‫ݐ‬ = ܽ‫ݔ‬ଵ
௧
ଶ
+ ܾ‫ݔ‬ଶ
௧
ଶ
= ܽ‫ݕ‬ଵ ‫ݐ‬ + ܾ‫ݕ‬ଶ ‫ݐ‬
Linear as it satisfies principle superposition and homogeneity
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
Causality
‫ݕ‬ −1 = ‫ݔ‬ −0.5
o/p depends on future value of input
Non-causal
Stability
Let ‫)ݐ(ݔ‬ ≤ ‫ܤ‬௫ ≤ ∞
Then ‫)ݐ(ݕ‬ = ‫ݔ‬
௧
ଶ
≤ ‫ܤ‬௬ ≤ ∞
The system is stable.
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
‫ݕ‬ ‫ݐ‬ = ‫)ݐ(ݔݐ‬ stable or unstable?
Let ‫)ݐ(ݔ‬ be bounded.
‫ݕ‬ ‫ݐ‬ will be unbounded , ‘t’ is unbounded
Unstable system
‫ݕ‬ ‫ݐ‬ = ݁௫(௧)
Check for linearity, Stability, Time Invariance, Memory.
‫ݔ‬ଵ ‫ݐ‬ → ‫ݕ‬ଵ ‫ݐ‬ = ݁௫భ(௧)
‫ݔ‬ଶ ‫ݐ‬ → ‫ݕ‬ଶ ‫ݐ‬ = ݁௫మ(௧)
Let ‫ݔ‬ଷ ‫ݐ‬ = ܽ‫ݔ‬ଵ ‫ݐ‬ + ܾ‫ݔ‬ଶ ‫ݐ‬
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
‫ݕ‬ଷ ‫ݐ‬ = ݁௔௫భ ௧ ା௕௫మ ௧
≠ ܽ‫ݕ‬ଵ ‫ݐ‬ + ܾ‫ݕ‬ଶ ‫ݐ‬
The system is Non-linear
Time Invariance
delay i/p ‫ݐ(ݔ‬ − ‫ݐ‬଴)
‫ݕ‬ଵ ‫ݐ‬ = ݁௫(௧ି௧బ) (1)
Delay o/p
‫ݕ‬ଶ ‫ݐ‬ − ‫ݐ‬଴ = ݁௫(௧ି௧బ) (2)
(1)=(2) system is time invariant
The system is memoryless.
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
The i/p and o/p of the system
is shown. Determine if the
system could be memoryless &
causal.
Memory, Causal
Non-Causal
Memory
1 20 t
y(t)
1
10 t
x(t)
1
10 t
y(t)
1
-1
10 t
x(t)
1
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
‫ݕ‬ ‫ݐ‬ = [sin 6‫)ݐ(ݔ]ݐ‬ Check for Memory, Time invariance,
Linearity, Stability and Causality.
Ans:
Present value of i/p depends on present value of o/p
Memoryless System
Delay in i/p ‫ݐ(ݔ‬ − ‫ݐ‬଴)
‫ݕ‬ଵ ‫ݐ‬ = [sin 6‫ݐ(ݔ]ݐ‬ − ‫ݐ‬଴)
Delay o/p
‫ݕ‬ଶ ‫ݐ‬ − ‫ݐ‬଴ = [sin 6(‫ݐ‬ − ‫ݐ‬଴]‫ݐ(ݔ‬ − ‫ݐ‬଴)
‫ݕ‬ଵ ‫ݐ‬ ≠ ‫ݕ‬ଶ ‫ݐ‬
Time variant system
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
‫ݔ‬ଵ ‫ݐ‬ → ‫ݕ‬ଵ ‫ݐ‬ = sin 6‫ݐ‬ ‫ݔ‬ଵ ‫ݐ‬
‫ݔ‬ଶ ‫ݐ‬ → ‫ݕ‬ଶ ‫ݐ‬ = sin 6‫ݐ‬ ‫ݔ‬ଶ ‫ݐ‬
Let ‫ݔ‬ଷ ‫ݐ‬ = ܽ‫ݔ‬ଵ ‫ݐ‬ + ܾ‫ݔ‬ଶ ‫ݐ‬
‫ݕ‬ଷ ‫ݐ‬ = [sin 6‫ݔ]ݐ‬ଷ(‫)ݐ‬
= ܽ sin 6‫ݐ‬ ‫ݔ‬ଵ ‫ݐ‬ + ܾ sin 6‫ݐ‬ ‫ݔ‬ଶ ‫ݐ‬
= ܽ‫ݕ‬ଵ ‫ݐ‬ + ܾ‫ݕ‬ଶ(‫)ݐ‬
Linear System
Causal – o/p doesn't depend on future value of i/p.
Prof: Sarun Soman, M.I.T, Manipal
Tutorial
Let ‫)ݐ(ݔ‬ ≤ ‫ܤ‬௫ ≤ ∞
‫)ݐ(ݕ‬ = sin 6‫ݐ‬ ‫)ݐ(ݔ‬
sin 6‫ݐ‬ ≤ 1
‫)ݐ(ݕ‬ is bounded , system is stable.
Check for linearity, causality, time-invariance, stability
1.‫ݕ‬ ݊ = ݊ଶ‫]݊[ݔ‬
Linear , timevariant, causal, unstable
2. ‫ݕ‬ ݊ = ‫]݊2[ݔ‬
Linear, time-variant, non-causal
Prof: Sarun Soman, M.I.T, Manipal
Sketch the waveform
‫ݕ‬ ‫ݐ‬ = ‫ݎ‬ ‫ݐ‬ + 1 − ‫ݎ‬ ‫ݐ‬ + ‫ݐ(ݎ‬ + 2)
0-1 1 2 t
r(t+1)
0 1 2 t
-r(t)
0 1 2
t
r(t-2)
-1 0 1 2
y(t)
t
Prof: Sarun Soman, M.I.T, Manipal
LTI Systems
• Linear Time Invariant Systems
• Tools for analyzing and predicting the behavior of LTI systems.
• Characterizing an LTI system
– Impulse Response
– Linear constant-coefficient differential equation or difference equation
• Gives insight into system’s behavior.
• Useful in analyzing and implementing the system
i/p o/p
System
Prof: Sarun Soman, M.I.T, Manipal
Impulse Response
Impulse response is defined as the o/p of an LTI
system due to a unit impulse signal input applied at
time t=0 or n=0.
Symbol ℎ ‫ݐ‬ , ℎ[݊]
Impulse response completely characterizes the
behavior of any LTI system.
Given the impulse response, output can be
determined for any arbitrary input signal.
Convolution Sum – DT LTI systems
Convolution Integral – CT LTI systems
Prof: Sarun Soman, M.I.T, Manipal
Convolution Sum
Consider an LTI system
ߜ ݊ → ℎ ݊
Apply time invariance property
ߜ[݊ − ݇] → ℎ ݊ − ݇
Apply principle of Homogeneity
‫݊[ߜ]݇[ݔ‬ − ݇] → ‫]݇[ݔ‬ℎ ݊ − ݇
Apply principle of superposition
∑ ‫݊[ߜ]݇[ݔ‬ − ݇]ஶ
௞ୀିஶ 		→
Input is weighted superposition of time shifted impulse
Output is weighted super position of time shifted impulse
responses.
෍ ‫ݔ‬ ݇ ℎ[݊ − ݇]
ஶ
௞ୀିஶ
Prof: Sarun Soman, M.I.T, Manipal
Convolution Sum
‫ݕ‬ ݊ = ∑ ‫]݇[ݔ‬ℎ ݊ − ݇ஶ
௞ୀିஶ - Convolution Sum
‫ݕ‬ ݊ = ‫ݔ‬ ݊ ∗ ℎ[݊]
Prof: Sarun Soman, M.I.T, Manipal
Example
‫ݔ‬ ݊ = −1,0, 1, 2, 3
ℎ ݊ = 1, −0.5
Change of variable ݊ → ݇
Starting index of o/p (-1+0=-1)
‫ݕ‬ −1 = ෍ ‫]݇[ݔ‬ℎ −1 − ݇
ஶ
௞ୀିஶ
	
= −1
‫ݕ‬ 0 = ෍ ‫]݇[ݔ‬ℎ −݇
ஶ
௞ୀିஶ
	
= 0.5
-3 -2 -1 0 1 2 3 k
0 0 -1 0 1 2 3 x[k]
0 0 0 1 -0.5 0 0 h[k]
0 0 -0.5 1 0 0 0 h[-k]
0 -0.5 1 0 0 0 0 h[-1-k]
0 0 0 -0.5 1 0 0 h[1-k]
0 0 0 0 -0.5 1 0 h[2-k]
0 0 0 0 0 -0.5 1 h[3-k]
0 0 0 0 0 0 -0.5 h[4-k]
-3
‫ݕ‬ 1 = 1, ‫ݕ‬ 2 = 1.5, ‫ݕ‬ 3 = 2,	
‫ݕ‬ 4 = −1.5
‫ݕ‬ ݊ = {−1, 0.5, 1, 1.5, 2, −1.5}
Prof: Sarun Soman, M.I.T, Manipal
Example
Assuming that the impulse response of an LTI system is given by
ℎ ݊ = 0.5௡‫.]݊[ݑ‬ Determine the o/p response y[n] to the i/p
sequence.‫ݔ‬ ݊ = 0.8௡‫ݑ‬ ݊ .
Ans:
Change of variable x[k] and h[k]
‫ݕ‬ ݊ = ∑ ‫]݇[ݔ‬ℎ ݊ − ݇ஶ
௞ୀିஶ
= ∑ 0.8௞‫ݑ‬ ݇ 0.5௡ି௞‫ݑ‬ ݊ − ݇ஶ
௞ୀିஶ
= 0.5௡ ∑ (
଴.଼
଴.ହ
)௞‫ݑ‬ ݇ ‫݊[ݑ‬ − ݇]ஶ
௞ୀିஶ
Prof: Sarun Soman, M.I.T, Manipal
Example
For ݊ < 0
‫ݑ‬ ݇ ‫ݑ‬ ݊ − ݇ = 0
‫ݕ‬ ݊ = 0
For ݊ ≥ 0
‫ݕ‬ ݊ = 0.5௡
෍(
0.8
0.5
)௞
௡
௞ୀ଴
GP series
∑ ‫ݎ‬௡ =
ଵି௥ಿశభ
ଵି௥
ே
௡ୀ଴
‫ݕ‬ ݊ = 0.5௡
1 − (
0.8
0.5
)௡ାଵ
1 −
0.8
0.5
1
●●●
0 2 4-1
u[k]
k
_ _ _ _
1
● ● ●
-2 0 n-4
u[-k+n]
k
_ _ _ _
Prof: Sarun Soman, M.I.T, Manipal
Example
= 0.5௡
0.5
0.5௡ାଵ
1
0.3
0.8௡ାଵ − 0.5௡ାଵ
=
10
3
[0.8௡ାଵ − 0.5௡ାଵ]
‫ݕ‬ ݊ = ൝
0, 																								݊ < 0
10
3
[0.8௡ାଵ
− 0.5௡ାଵ
],	n ≥ 0
Prof: Sarun Soman, M.I.T, Manipal
Example
‫ݕ‬ ݊ = ‫ݑ‬ ݊ ∗ ‫݊[ݑ‬ − 3]
Ans:
Change of variable
‫ݔ‬ ݇ = ‫ݑ‬ ݇ , ℎ ݇ = ‫݇[ݑ‬ − 3]
‫ݕ‬ ݊ = ෍ ‫]݇[ݔ‬ℎ ݊ − ݇
ஶ
௞ୀିஶ
‫ݕ‬ ݊ = ෍ ‫ݑ‬ ݇ ‫ݑ‬ ݊ − ݇ − 3
ஶ
௞ୀିஶ
For ݊ − 3 < 0
݊ < 3
‫ݕ‬ ݊ = 0
1
●●●
0 2 4-1
u[k]
k
_ _ _ _
1
● ● ●
-2 0 n-3-4
u[-k+n-3]
k
_ _ _ _
Prof: Sarun Soman, M.I.T, Manipal
Example
For ݊ − 3 ≥ 0
݊ ≥ 3
‫ݕ‬ ݊ = ෍ 1
௡ିଷ
௞ୀ଴
‫ݕ‬ ݊ = ݊ − 3 + 1
= ݊ − 2
‫ݕ‬ ݊ = ൜
0, ݊ < 3
݊ − 2, ݊ ≥ 3
Prof: Sarun Soman, M.I.T, Manipal
Example
‫ݕ‬ ݊ = (
1
2
)௡‫ݑ‬ ݊ − 2 ∗ ‫]݊[ݑ‬
Ans:
Change of variable
‫ݔ‬ ݇ = (
ଵ
ଶ
)௞‫ݑ‬ ݇ − 2
ℎ ݇ = ‫]݇[ݑ‬
‫ݕ‬ ݊ = ෍ ‫]݇[ݔ‬ℎ ݊ − ݇
ஶ
௞ୀିஶ
‫ݕ‬ ݊ = ෍ (
1
2
)௞‫ݑ‬ ݇ − 2 ‫ݑ‬ ݊ − ݇
ஶ
௞ୀିஶ
For ݊ < 2
‫ݕ‬ ݊ = 0
1
4
●●●
2 4 60
x[k]
k
_ _ _ _
1
8 1
16
1
● ● ●
-2 0 n-4
h[-k+n]
k
_ _ _ _
Prof: Sarun Soman, M.I.T, Manipal
Example
For ݊ ≥ 2
‫ݕ‬ ݊ = ෍(
1
2
)௞
௡
௞ୀଶ
GP series
∑ ‫ݎ‬௡
=
ଵି௥ಿశభ
ଵି௥
ே
௡ୀ଴
Let k-2=m
‫ݕ‬ ݊ = ෍ (
1
2
)௠ାଶ
௡ିଶ
௠ୀ଴
‫ݕ‬ ݊ = (
1
2
)ଶ ෍ (
1
2
)௠
௡ିଶ
௠ୀ଴
‫ݕ‬ ݊ = (
ଵ
ଶ
)ଶ
ଵି(
భ
మ
)೙షభ
ଵି
భ
మ
‫ݕ‬ ݊ =
ଵ
ଶ
− (
ଵ
ଶ
)௡
‫ݕ‬ ݊ = ቊ
0, 								݊ < 2
ଵ
ଶ
− (
ଵ
ଶ
)௡, ݊ ≥ 2
Prof: Sarun Soman, M.I.T, Manipal
Example
‫ݔ‬ ݊ = 2௡‫ݑ‬ −݊ , ℎ ݊ = ‫.]݊[ݑ‬
Find the convolution sum.
Ans:
Change of variable
‫ݔ‬ ݇ = 2௞
‫ݑ‬ −݇ , ℎ ݇ = ‫]݇[ݑ‬
‫ݕ‬ ݊ = ෍ 2௞‫ݑ‬ −݇
ஶ
௞ୀିஶ
‫݊[ݑ‬ − ݇]
For ݊ < 0
‫ݕ‬ ݊ = ෍ 2௞
௡
௞ୀିஶ
1
2
●●●
-2 20
x[k]
k
_ _ _ _
1
41
8
-4
1
1
● ● ●
-2 0 n-4
u[-k+n]
k
_ _ _ _
GP series
∑ ‫ݎ‬௡
=
ଵି௥ಿశభ
ଵି௥
ே
௡ୀ଴
Prof: Sarun Soman, M.I.T, Manipal
Example
Let ݈ = −݇
‫ݕ‬ ݊ = ෍ 2ି௟
ି௡
௟ୀஶ
Let ݈ + ݊ = ݉
‫ݕ‬ ݊ = ෍ 2ି(௠ି௡)
଴
௠ୀஶ
‫ݕ‬ ݊ = ෍ 2௡ି௠
ஶ
௠ୀ଴
‫ݕ‬ ݊ = 2௡ ෍ (
1
2
)௠
ஶ
௠ୀ଴
	
Infinite sum
෍ ܽ௞
ஶ
௞ୀ଴
=
1
1 − ܽ
, ܽ < 1
‫ݕ‬ ݊ = 2௡
1
1 −
1
2
= 2௡ାଵ
For ݊ ≥ 0
‫ݕ‬ ݊ = ෍ 2௞
଴
௞ୀିஶ
Prof: Sarun Soman, M.I.T, Manipal
Example
Let ݈ = −݇
‫ݕ‬ ݊ = ෍ 2ି௟
ஶ
௟ୀ଴
‫ݕ‬ ݊ = ෍(
1
2
)௟
ஶ
௟ୀ଴
‫ݕ‬ ݊ =
1
1 −
1
2
= 2
‫ݕ‬ ݊ = ൜
2௡ାଵ, ݊ < 0
2, ݊ ≥ 0
Prof: Sarun Soman, M.I.T, Manipal
Example
‫ݕ‬ ݊ = (‫ݑ‬ ݊ + 10 − 2‫ݑ‬ ݊
+ ‫ݑ‬ ݊ − 4 ) ∗ ‫݊[ݑ‬ − 2]
Ans:
ℎ ݇ = ‫݇[ݑ‬ − 2]
ℎ −݇ = ‫ݑ‬ −݇ − 2
ℎ ݊ − ݇ = ‫݇−[ݑ‬ − 2 + ݊]
= ‫݇−[ݑ‬ + ݊ − 2]
-2
2 40
-2u[k]
k
_ _ _ _
1
●●● 6 84
u[k-4]
k
_ _ _ _
●
20
-4 0
1
-8 -6-10
u[k+10]
k
_ _ _ _
-2
● 42
4
-4
0
1
-8 -6-10
x[k]
k-2
●
2
● ●
-1
-4 0
1
-6
h[-k+n]
k-2 n-2
● ●
_ _ _ _
Prof: Sarun Soman, M.I.T, Manipal
Example
Let k+10=m
‫ݕ‬ ݊ = ∑ 1௡ା଼
௠ୀ଴ = ݊ + 9
For 0 ≤ ݊ − 2 < 4, 						2 ≤ ݊ < 6
‫ݕ‬ ݊ = ෍ 1
ିଵ
௞ୀିଵ଴
+ ෍ −1
௡ିଶ
௞ୀ଴
= ෍ 1
ଽ
௠ୀ଴
+ ෍ −1
௡ିଶ
௞ୀ଴
= 10 − ݊ − 1 = 11 − ݊
For ݊ − 2 ≥ 4, 								݊ ≥ 6
‫ݕ‬ ݊ = ෍ 1
ିଵ
௞ୀିଵ଴
+ ෍ −1
ଷ
௞ୀ଴
= 10 + −4 = 6
For ݊ − 2 < −10	, 		݊ < −8
‫ݕ‬ ݊ = 0
For −10 ≤ ݊ − 2 < 0, 		 −8 ≤ ݊ < 2
‫ݕ‬ ݊ = ෍ 1
௡ିଶ
௞ୀିଵ଴
4
-4
0
1
-8 -6-10
x[k]
k-2
●
2
● ●
-1
-4 0
k-2 n-2
● ●
_ _ _ _
0
k-2 n-2
● ●
_ _ _ _
-4 0-6
k-2 n-2
● ●
_ _ _
Prof: Sarun Soman, M.I.T, Manipal
Example
Find the convolution sum of
two sequences.
‫ݔ‬ ݊ = 1, 2, 3 					ℎ ݊ = 2, 1, 4
‫ݕ‬ ݊ = {2, 5, 12, 11, 12}
x[n]
h[n]
1 2 3
2 2 4 6
1 1 2 3
4 4 8 12
Prof: Sarun Soman, M.I.T, Manipal
Additional example
For the two signals shown in
Fig.Q5. obtain the expression for
(a)y(t) in terms of x(t)
(a) ‫ݕ‬ ‫ݐ‬ = ‫ݔ‬ ܽ‫ݐ‬ − ܾ (1)
a and b are the two unknowns
From Fig.
‫ݕ‬
ଷ
ଶ
= ‫ݔ‬ −
ଵ଼
ହ
Using eq.(1)
ଷ
ଶ
= −ܽ
ଵ଼
ହ
− ܾ (2)
Similarly ‫ݕ‬ 2 = ‫−(ݔ‬
ଵ଺
ହ
)
2 = −ܽ
ଵ଺
ହ
− ܾ (3)
Solve (2)& (3)
ܽ =
5
4
, ܾ = −6
‫ݕ‬ ‫ݐ‬ = ‫ݔ‬
5
4
‫ݐ‬ + 6
Prof: Sarun Soman, M.I.T, Manipal
Additional Example
The o/p y[n] of an LTI system is given
as
Where x[n] is the i/p and ݃ ݊ =
‫ݑ‬ ݊ − ‫݊[ݑ‬ − 3]. Determine y[n]
when ‫ݔ‬ ݊ = ߜ[݊ − 2].
Ans:
Change of variable ‫ݔ‬ ݇ = ߜ[݇ − 2]
ߜ ݇ − 2 exist only at k=2
‫ݕ‬ ݊ = ݃[݊ + 4]
݃ ݊ + 4 = ‫ݑ‬ ݊ + 4 − ‫݊[ݑ‬ + 1]
‫ݕ‬ ݊ = ෍ ‫]݇[ݔ‬
ஶ
௞ୀିஶ
݃[݊ + 2݇]
‫ݕ‬ ݊ = ෍ ߜ[݇ − 2]
ஶ
௞ୀିஶ
݃[݊ + 2݇]
Prof: Sarun Soman, M.I.T, Manipal
Convolution Integral
Consider an LTI system with impulse response ℎ(‫)ݐ‬
ߜ ‫ݐ‬ → ℎ(‫)ݐ‬
ߜ ‫ݐ‬ − ߬ → ℎ(‫ݐ‬ − ߬) time invariance
‫ߜ)߬(ݔ‬ ‫ݐ‬ − ߬ → ‫)߬(ݔ‬ℎ(‫ݐ‬ − ߬) homogeneity
super position
Convolution integral
න ‫ߜ)߬(ݔ‬ ‫ݐ‬ − ߬ ݀
ஶ
ିஶ
߬ → න ‫)߬(ݔ‬ℎ(‫ݐ‬ − ߬)
ஶ
ିஶ
݀߬
‫ݕ‬ ‫ݐ‬ = න ‫)߬(ݔ‬ℎ(‫ݐ‬ − ߬)
ஶ
ିஶ
݀߬
Prof: Sarun Soman, M.I.T, Manipal
Example
‫ݕ‬ ‫ݐ‬ = ‫ݑ‬ ‫ݐ‬ + 1 ∗ ‫ݐ(ݑ‬ − 2)
Ans:
Change of variable
‫ݔ‬ ߬ = ‫ݑ‬ ߬ + 1 , ℎ ߬ = ‫߬(ݑ‬ − 2)
ℎ −߬ = ‫߬−(ݑ‬ − 2)
ℎ ‫ݐ‬ − ߬ = ‫ݑ‬ −߬ + ‫ݐ‬ − 2
For ‫ݐ‬ − 2 < −1, 							‫ݐ‬ < 1
‫ݕ‬ ‫ݐ‬ = 0
For ‫ݐ‬ − 2 ≥ −1, 									‫ݐ‬ ≥ 1 = ‫ݐ‬ − 2 + 1
= ‫ݐ‬ − 1
‫ݕ‬ ‫ݐ‬ = ൜
0, ‫ݐ‬ < 1
‫ݐ‬ − 1, ‫ݐ‬ ≥ 1
10 ߬
x(߬)
1
-1
10 ߬
h(t-߬)
1
-1
‫ݐ‬ − 2
‫ݕ‬ ‫ݐ‬ = න ‫)߬(ݔ‬ℎ(‫ݐ‬ − ߬)
ஶ
ିஶ
݀߬
‫ݕ‬ ‫ݐ‬ = න 1
௧ିଶ
ିଵ
݀߬
Prof: Sarun Soman, M.I.T, Manipal
Example
‫ݕ‬ ‫ݐ‬ = ‫ݑ‬ ‫ݐ‬ + 2 − ‫ݑ‬ ‫ݐ‬ − 1
∗ ‫ݐ−(ݑ‬ + 2)
Ans:
Change of variable
‫ݔ‬ ߬ = ‫ݑ‬ ߬ + 2 − ‫߬(ݑ‬ − 1)
ℎ ߬ = ‫߬−(ݑ‬ + 2)
ℎ −߬ = ‫߬(ݑ‬ + 2)
ℎ ‫ݐ‬ − ߬ = ‫߬(ݑ‬ + ‫ݐ‬ + 2)
For ‫ݐ‬ + 2 < −2	, ‫ݐ‬ < −4
‫ݕ‬ ‫ݐ‬ = 3
For−2 ≤ ‫ݐ‬ + 2 < 1, −4 ≤ ‫ݐ‬ < −1
= 1 − (‫ݐ‬ + 2)
= −‫ݐ‬ − 1
For ‫ݐ‬ + 2 ≥ 1, 			‫ݐ‬ ≥ −1
‫ݕ‬ ‫ݐ‬ = 0
10 ߬
x(߬)
1
-1-2
10 ߬
h(t-߬)
1
t+2
‫ݕ‬ ‫ݐ‬ = න 1݀߬
ଵ
௧ାଶ
‫ݕ‬ ‫ݐ‬ = න 1݀
ଵ
ିଶ
߬
Prof: Sarun Soman, M.I.T, Manipal
Example
Exponential Function
‫ݔ‬ ‫ݐ‬ = ݁ି௧‫)ݐ(ݑ‬
‫ݔ‬ ‫ݐ‬ − 1 = ݁ି ௧ିଵ ‫ݐ(ݑ‬ − 1)
= ݁ି௧ାଵ‫ݐ(ݑ‬ − 1)
ℎ ߬ = ݁ିఛ‫)߬(ݑ‬
Plot ℎ(‫ݐ‬ − ߬)
Ans:
ℎ ‫ݐ‬ − ߬ = ݁ି ௧ିఛ ‫ݐ(ݑ‬ − ߬)
	= ݁ఛି௧‫߬−(ݑ‬ + ‫)ݐ‬
10 ‫ݐ‬
x(t)
1
10 ‫ݐ‬
x(t-1)
1
10 ߬
h(-߬)
1
t0 ߬
h(t-߬)
1
Prof: Sarun Soman, M.I.T, Manipal
Example
‫ݔ‬ ‫ݐ‬ = ݁ିଷ௧[‫ݑ‬ ‫ݐ‬ − ‫ݐ(ݑ‬ − 2)]
ℎ ‫ݐ‬ = ݁ି௧‫)ݐ(ݑ‬
Ans:
Change of variable
For‫ݐ‬ < 0, ‫ݕ‬ ‫ݐ‬ = 0
For 0≤ ‫ݐ‬ < 2
= −݁ି௧
݁ିଶ௧ − 1
−2
=
݁ି௧ − ݁ିଷ௧
2
For ‫ݐ‬ > 2
210 ߬
x(߬)
1
t0 ߬
h(t-߬)
1
‫ݕ‬ ‫ݐ‬ = න ݁ିଷఛ
݁ି(௧ିఛ)
݀߬
௧
଴
= ݁ି௧ න ݁ିଶఛ
݀߬
௧
଴
‫ݕ‬ ‫ݐ‬ = ݁ି௧
න ݁ିଶఛ
݀߬
ଶ
଴
=
௘ష೟
ଶ
1 − ݁ିସ
Prof: Sarun Soman, M.I.T, Manipal
Example
The input signal ‫ݔ‬ ‫ݐ‬ = ݁ି௧
‫ݑ‬ ‫ݐ‬ to
an LTI system whose impulse
response is given by
ℎ ‫ݐ‬ = ൜
1 − ‫,ݐ‬ 0 ≤ ‫ݐ‬ ≤ 1
0, ‫ݐ݋‬ℎ݁‫݁ݏ݅ݓݎ‬
Calculate the o/p.
Ans:
0 ߬
x(߬)
1
0 ߬
h(߬)
1
1
0 ߬
h(−߬)
-1
1
t ߬
h(−߬+t)
t-1
1
0
Prof: Sarun Soman, M.I.T, Manipal
Example
For ‫ݐ‬ < 0	
‫ݕ‬ ‫ݐ‬ = 0
For ‫ݐ‬ ≥ 0 and ‫ݐ‬ − 1 ≤ 0
0 ≤ ‫ݐ‬ ≤ 1
‫ݕ‬ ‫ݐ‬ = න ‫ݔ‬ ߬ ℎ ‫ݐ‬ − ߬ ݀߬
௧
଴
= න ݁ିఛ
‫߬()߬(ݑ‬ + 1 − ‫߬݀)ݐ‬
௧
଴
= න ߬݁ିఛ
݀߬ + (1 − ‫)ݐ‬ න ݁ିఛ
݀߬
௧
଴
௧
଴
Indefinite	integral
න ‫݁ݐ‬௔௧݀‫ݐ‬ =
݁௔௧
ܽଶ
(ܽ‫ݐ‬ − 1)
= −߬݁ିఛ
− ݁ିఛ
| + 1 − ‫ݐ‬ −݁ିఛ
|
= 1 − ‫݁ݐ‬ି௧
− ݁ି௧
+ 1 − ‫ݐ‬ −݁ି௧
‫ݕ‬ ‫ݐ‬ = 2 − ‫ݐ‬ − 2݁ି௧
0 ߬
x(߬)
1
t-1 t
Prof: Sarun Soman, M.I.T, Manipal
Example
For ‫ݐ‬ − 1 > 0
‫ݐ‬ > 1
‫ݕ‬ ‫ݐ‬ = න ‫ݔ‬ ߬ ℎ ‫ݐ‬ − ߬ ݀߬
௧
௧ିଵ
= න ݁ିఛ
(߬ + 1 − ‫߬݀)ݐ‬
௧
௧ିଵ
= න ߬݁ିఛ
݀߬ + (1 − ‫)ݐ‬ න ݁ିఛ
݀߬
௧
௧ିଵ
௧
௧ିଵ
= −߬݁ିఛ − ݁ିఛ | + 1 − ‫ݐ‬ −݁ିఛ |
‫ݕ‬ ‫ݐ‬ = ݁ି(௧ିଵ) − 2݁ି௧
0 ߬
x(߬)
1
t-1 t
Prof: Sarun Soman, M.I.T, Manipal
Example
Calculate the o/p for the following
i/p signal & impulse
‫ݔ‬ ‫ݐ‬ = ൜
1.5, −2 ≤ ‫ݐ‬ ≤ 3
0, ‫ݐ݋‬ℎ݁‫݁ݏ݅ݓݎ‬
ℎ ‫ݐ‬ = ൜
2, −1 ≤ ‫ݐ‬ ≤ 2
0, ‫ݐ݋‬ℎ݁‫݁ݏ݅ݓݎ‬
Ans:
10 ߬
x(߬)
1.5
-1-2 3
10 ߬
h(߬)
2
-1-2 2
0-1 ߬
h(−߬)
2
-2 1
0 ߬
h(−߬+t)
2
-2+t 1+t
Prof: Sarun Soman, M.I.T, Manipal
Example
For 1 + ‫ݐ‬ > −2
‫ݐ‬ < −3
‫ݕ‬ ‫ݐ‬ = 0
For ‫ݐ‬ + 1 ≥ −2	&	‫ݐ‬ + 1 < 0
−3 ≤ ‫ݐ‬ < −1
For ‫ݐ‬ + 1 ≥ 0	&	− 2 + ‫ݐ‬ < 0
−1 ≤ ‫ݐ‬ < 2
t+1 0 ߬
1.5
t-2 -2 3
‫ݕ‬ ‫ݐ‬ = න ‫ݔ‬ ߬ ℎ ‫ݐ‬ − ߬ ݀߬
௧ାଵ
ିଶ
= න 3݀߬
௧ାଵ
ିଶ
= 3(‫ݐ‬ + 3)
‫)ݐ(ݕ‬ = න 3݀߬
௧ାଵ
௧ିଶ
= 9
t+10 ߬
1.5
t-2-2 3
Prof: Sarun Soman, M.I.T, Manipal
Example
For‫ݐ‬ + 1 ≥ 3 and ‫ݐ‬ − 2 ≤ 3
2 ≤ ‫ݐ‬ ≤ 5
for‫ݐ‬ ≥ 5
‫ݕ‬ ‫ݐ‬ = 0
‫)ݐ(ݕ‬ = න 3݀߬
ଷ
௧ିଶ
= 3(5 − ‫)ݐ‬ t+10 ߬
1.5
t-2-2 3
Prof: Sarun Soman, M.I.T, Manipal

More Related Content

PDF
Signals and systems-4
PDF
Signals and systems-5
PDF
Signals and systems-1
PDF
Signals and systems-3
PPT
Signal & systems
PPTX
Causal & Non-Causal Systems |Solved problems|
PPTX
Unit 1 Operation on signals
PPTX
Unit 1 -Introduction to signals and standard signals
Signals and systems-4
Signals and systems-5
Signals and systems-1
Signals and systems-3
Signal & systems
Causal & Non-Causal Systems |Solved problems|
Unit 1 Operation on signals
Unit 1 -Introduction to signals and standard signals

What's hot (20)

DOCX
UNIT-IV .FINITE STATE MACHINES
PPT
Introduction to signals and systems
PDF
Lecture 4: Classification of system
PPTX
Types of Sampling in Analog Communication
PDF
Laplace Transform Problems
PPTX
IMPLEMENTATION OF UPSAMPLING & DOWNSAMPLING
PPTX
Classification of systems : Part 2
PDF
fir-filter-design.pdfmmmmmmmmmmmmmmmmmmm
PPTX
Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 1-3)
PDF
Signals and systems
PPTX
Unit-1 Classification of Signals
PDF
Signal Processing Introduction using Fourier Transforms
PDF
Signals and systems ch1
PPTX
Fourier transforms
PPTX
Z Transform
PDF
Lecture123
PPTX
Double SideBand Suppressed Carrier (DSB-SC)
PDF
Baseband transmission
PDF
Lti system
PPTX
Mathematical Modelling of Control Systems
UNIT-IV .FINITE STATE MACHINES
Introduction to signals and systems
Lecture 4: Classification of system
Types of Sampling in Analog Communication
Laplace Transform Problems
IMPLEMENTATION OF UPSAMPLING & DOWNSAMPLING
Classification of systems : Part 2
fir-filter-design.pdfmmmmmmmmmmmmmmmmmmm
Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 1-3)
Signals and systems
Unit-1 Classification of Signals
Signal Processing Introduction using Fourier Transforms
Signals and systems ch1
Fourier transforms
Z Transform
Lecture123
Double SideBand Suppressed Carrier (DSB-SC)
Baseband transmission
Lti system
Mathematical Modelling of Control Systems
Ad

Similar to Signals and systems-2 (20)

PPT
Basic System Properties.ppt
PPTX
Signals & Systems PPT
PDF
ssppt-170414031953.pdf
PDF
Signal & System Assignment
PPTX
PPT Chapter-2-V2.pptx__26715_1_1539251776000.pptx.pptx
PPTX
signals and systems
PDF
Digital signal System
PPTX
Chapter-I Classification of Signals and Systems.pptx
PPT
PDF
Lect2-SignalProcessing (1).pdf
PDF
Lecture 4 Signals & Systems.pdf
PDF
Lec-1.pdf
PPTX
Types of system
PPTX
05-Classification_of_DT_System-1. information technologypptx
PPTX
Signals and System
PPT
signal and systems basics for engineering
PPT
Intro to control system and introduction to block diagram used in it
PPTX
ssppt-170414031953.pptx
PDF
2 general properties
Basic System Properties.ppt
Signals & Systems PPT
ssppt-170414031953.pdf
Signal & System Assignment
PPT Chapter-2-V2.pptx__26715_1_1539251776000.pptx.pptx
signals and systems
Digital signal System
Chapter-I Classification of Signals and Systems.pptx
Lect2-SignalProcessing (1).pdf
Lecture 4 Signals & Systems.pdf
Lec-1.pdf
Types of system
05-Classification_of_DT_System-1. information technologypptx
Signals and System
signal and systems basics for engineering
Intro to control system and introduction to block diagram used in it
ssppt-170414031953.pptx
2 general properties
Ad

Recently uploaded (20)

PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
Construction Project Organization Group 2.pptx
PPTX
Lecture Notes Electrical Wiring System Components
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Sustainable Sites - Green Building Construction
PPTX
Internet of Things (IOT) - A guide to understanding
PPT
Project quality management in manufacturing
PDF
Digital Logic Computer Design lecture notes
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPTX
web development for engineering and engineering
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Construction Project Organization Group 2.pptx
Lecture Notes Electrical Wiring System Components
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
bas. eng. economics group 4 presentation 1.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Embodied AI: Ushering in the Next Era of Intelligent Systems
Sustainable Sites - Green Building Construction
Internet of Things (IOT) - A guide to understanding
Project quality management in manufacturing
Digital Logic Computer Design lecture notes
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
web development for engineering and engineering
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...

Signals and systems-2

  • 1. Signals and System-II Sarun Soman Assistant Professor Manipal Institute of Technology Manipal
  • 2. Properties of System • Stability • Memory • Causality • Invertibility • Time invariance • Linearity Prof: Sarun Soman, M.I.T, Manipal
  • 3. Properties of Systems Stabililty A system is said to be bounded input, bounded output(BIBO) stable iff every bounded input results in a bounded output. Operator H is BIBO stable if the o/p signal satisfies the condition ‫)ݐ(ݕ‬ ≤ ‫ܯ‬௬ ≤ ∞ for all ‘t’ Whenever input signal x(t) satisfies the condition ‫)ݐ(ݔ‬ ≤ ‫ܯ‬௫ ≤ ∞ for all ‘t’ ‫ܯ‬௬ and ‫ܯ‬௫ finite positive numbers Prof: Sarun Soman, M.I.T, Manipal
  • 4. Properties of Systems Example of unstable system • Tacoma Narrows suspension bridge • Collapsed on November 7, 1940. • Collapsed due to wind induced vibrations Prof: Sarun Soman, M.I.T, Manipal
  • 5. Properties of Systems Prof: Sarun Soman, M.I.T, Manipal
  • 6. Example1 Consider the moving average system with input output relation ‫ݕ‬ ݊ = ଵ ଷ ‫ݔ‬ ݊ + ‫ݔ‬ ݊ − 1 + ‫ݔ‬ ݊ − 2 Show that the system is BIBO stable. Ans: Assume that ‫]݊[ݔ‬ < ‫ܯ‬௫ < ∞ for all ‘n’ ‫]݊[ݕ‬ = ଵ ଷ ‫ݔ‬ ݊ + ‫ݔ‬ ݊ − 1 + ‫ݔ‬ ݊ − 2 = ଵ ଷ (‫ܯ‬௫ + ‫ܯ‬௫ + ‫ܯ‬௫) = ‫ܯ‬௫ Bounded input results in bounded o/p Prof: Sarun Soman, M.I.T, Manipal
  • 7. Example2 Consider a DT system whose i/p-o/p relation is defined by ‫ݕ‬ ݊ = ‫ݎ‬௡ ‫]݊[ݔ‬ Where ‫ݎ‬ > 1. Show that the system is unstable. Ans: Assume that the input signal x[n] satisfies the condition ‫]݊[ݔ‬ ≤ ‫ܯ‬௫ ≤ ∞ ‫]݊[ݕ‬ = ‫ݎ‬௡‫]݊[ݔ‬ = ‫ݎ‬௡ ‫]݊[ݔ‬ ‫ݎ‬௡ diverges as ‘n’ increases. Prof: Sarun Soman, M.I.T, Manipal
  • 8. Properties of Systems Memory A system is said to posses memory if its o/p signal depends on past or future values of the input signal. A system is said to be memoryless if its output signal depends only on present value of input signal. Eg. Resistor ݅ ‫ݐ‬ = ଵ ோ ‫)ݐ(ݒ‬ memoryless Inductor ݅ ‫ݐ‬ = ଵ ௅ ‫׬‬ ‫ݒ‬ ߬ ݀߬ ௧ ିஶ memory Prof: Sarun Soman, M.I.T, Manipal
  • 9. Properties of Systems ‫ݕ‬ ݊ = ‫ݔ‬ଶ ݊ memoryless ‫ݕ‬ ݊ = 1 3 ‫ݔ‬ ݊ + ‫ݔ‬ ݊ − 1 + ‫ݔ‬ ݊ − 2 Memory ‫ݕ‬ 0 = 1 3 ‫ݔ‬ 0 + ‫ݔ‬ −1 + ‫ݔ‬ −2 Prof: Sarun Soman, M.I.T, Manipal
  • 10. Properties of Systems Causality A system is said to be causal if its present value of the o/p signal depends only on the present or past values of the input signal. A system is said to be non causal if its output signal depends on one or more future values of the input signal. Eg. Moving average system ‫ݕ‬ ݊ = ଵ ଷ (‫ݔ‬ ݊ + ‫ݔ‬ ݊ − 1 + ‫݊[ݔ‬ − 2]) Moving average system ‫ݕ‬ ݊ = ଵ ଷ (‫ݔ‬ ݊ + ‫ݔ‬ ݊ + 1 + ‫݊[ݔ‬ − 2]) ‫ݕ‬ 0 = ଵ ଷ (‫ݔ‬ 0 + ‫ݔ‬ 1 + ‫)]2−[ݔ‬ causal Non causal Prof: Sarun Soman, M.I.T, Manipal
  • 11. Properties of Systems Invertibility A system is said to be invertible if the input of the system can be recovered from the o/p. Note: necessary condition for invertibility distinct i/p must produce distinct o/p Prof: Sarun Soman, M.I.T, Manipal
  • 12. Properties of Systems Show that a square law system described by the input-output relation ‫ݕ‬ ‫ݐ‬ = ‫ݔ‬ଶ (‫)ݐ‬ is not invertible. Ans: Distinct inputs x(t) and x(-t) produce the same output Time invariance A system is said to be time invariant if a delay or time advance of the input signal lead to an identical time shift in the output signal. Prof: Sarun Soman, M.I.T, Manipal
  • 13. Properties of Systems Eg. Thermistor Input output relation of thermistor ‫ݕ‬ଵ ‫ݐ‬ = ௫భ(௧) ோ(௧) Response ‫ݕ‬ଶ ‫ݐ‬ of the thermistor to input ‫ݐ(ݔ‬ − ‫ݐ‬଴) ‫ݕ‬ଶ ‫ݐ‬ = ௫భ(௧ି௧బ) ோ(௧) Prof: Sarun Soman, M.I.T, Manipal
  • 14. Properties of Systems Shifting the output ‫ݕ‬ଵ ‫ݐ‬ ‫ݕ‬ଵ ‫ݐ‬ − ‫ݐ‬଴ = ௫భ(௧ି௧బ) ோ(௧ି௧బ) For a thermistor ܴ(‫ݐ‬ − ‫ݐ‬଴) ≠ ܴ(‫)ݐ‬ for ‫ݐ‬ ≠ 0 ‫ݕ‬ଵ(‫ݐ‬ − ‫ݐ‬଴) ≠ ‫ݕ‬ଶ(‫)ݐ‬ for ‫ݐ‬ ≠ 0 Thermistor is time variant Linearity A system is linear in terms of the system input x(t) and the system output y(t) if it satisfies two properties. Prof: Sarun Soman, M.I.T, Manipal
  • 15. Properties of Systems ܽଵ‫ݔ‬ଵ ‫ݐ‬ + ܽଶ‫ݔ‬ଶ ‫ݐ‬ = ܽଵ‫ݕ‬ଵ ‫ݐ‬ + ܽଶ‫ݕ‬ଶ(‫)ݐ‬ Prof: Sarun Soman, M.I.T, Manipal
  • 16. Properties of Systems Consider a discrete time system described by the input-output relation ‫ݕ‬ ݊ = ݊‫.]݊[ݔ‬ Show that the system is linear. Ans: Let the input signal x[n] be expressed as the weighted sum ‫ݔ‬ ݊ = ∑ ܽ௜‫ݔ‬௜[݊]ே ௜ୀଵ Output of the system = ݊ ∑ ܽ௜ ே ௜ୀଵ ‫ݔ‬௜[݊] = ∑ ܽ௜݊ே ௜ୀଵ ‫ݔ‬௜[݊] = ∑ ܽ௜ ே ௜ୀଵ ‫ݕ‬௜[݊] The system is linear Prof: Sarun Soman, M.I.T, Manipal
  • 17. Tutorial ‫ݕ‬ ݊ = 2‫ݔ‬ ݊ + 3 check for linearity Ans: ‫ݕ‬ଵ ݊ = 2‫ݔ‬ଵ ݊ + 3 ‫ݕ‬ଶ ݊ = 2‫ݔ‬ଶ ݊ + 3 Let ‫ݔ‬ଷ ݊ = ‫ݔ‬ଵ[݊] + ‫ݔ‬ଶ[݊] ‫ݕ‬ଷ ݊ = 2 ‫ݔ‬ଵ ݊ + ‫ݔ‬ଶ ݊ + 3 = 2‫ݔ‬ଵ ݊ + 2‫ݔ‬ଶ ݊ + 3 ≠ ܽ‫ݕ‬ଵ ݊ + ܾ‫ݕ‬ଶ[݊] Prof: Sarun Soman, M.I.T, Manipal
  • 18. Tutorial ‫ݕ‬ ‫ݐ‬ = ‫ݔ‬ ‫ݐ‬ 2 Memory or memoryless system? Ans: ‫ݕ‬ 1 = ‫)5.0(ݔ‬ Output depends on past value of i/p Memory system ‫ݕ‬ ‫ݐ‬ = cos ‫ݔ‬ ‫ݐ‬ invertible or non-invertible? Ans: Distinct i/p must give distinct o/p. ‫ݔ‬ ‫ݐ‬ ܽ݊݀ ‫)ݐ(ݔ‬ + 2ߨ) gives same o/p. Non-invertible Prof: Sarun Soman, M.I.T, Manipal
  • 19. Tutorial ‫ݕ‬ ݊ = ‫]݊−[ݔ‬ time invariant or time variant? Ans: Delay in input ‫݊[ݔ‬ − ݉] Corresponding output ‫ݕ‬ଵ ݊ = ‫݊−[ݔ‬ − ݉] Delay the output ‫ݕ‬ଶ ݊ = ‫ݕ‬ ݊ − ݉ = ‫݊(−[ݔ‬ − ݉)] = ‫݊−[ݔ‬ + ݉] ‫ݕ‬ଶ[݊] ≠ ‫ݕ‬ଵ ݊ Time variant Prof: Sarun Soman, M.I.T, Manipal
  • 20. Tutorial ‫ݕ‬ ‫ݐ‬ = ‫ݔ‬ ‫ݐ‬ 2 Linearity, time invariance, memory, causality, stability? Ans: Memory system Linearity ‫ݔ‬ଵ ‫ݐ‬ → ‫ݕ‬ଵ ‫ݐ‬ = ‫ݔ‬ଵ ௧ ଶ ‫ݔ‬ଶ ‫ݐ‬ → ‫ݕ‬ଶ ‫ݐ‬ = ‫ݔ‬ଶ ௧ ଶ Let ‫ݔ‬ଷ ‫ݐ‬ = ܽ‫ݔ‬ଵ ‫ݐ‬ + ܾ‫ݔ‬ଶ ‫ݐ‬ ‫ݕ‬ଷ ‫ݐ‬ = ܽ‫ݔ‬ଵ ௧ ଶ + ܾ‫ݔ‬ଶ ௧ ଶ = ܽ‫ݕ‬ଵ ‫ݐ‬ + ܾ‫ݕ‬ଶ ‫ݐ‬ Linear as it satisfies principle superposition and homogeneity Prof: Sarun Soman, M.I.T, Manipal
  • 21. Tutorial Causality ‫ݕ‬ −1 = ‫ݔ‬ −0.5 o/p depends on future value of input Non-causal Stability Let ‫)ݐ(ݔ‬ ≤ ‫ܤ‬௫ ≤ ∞ Then ‫)ݐ(ݕ‬ = ‫ݔ‬ ௧ ଶ ≤ ‫ܤ‬௬ ≤ ∞ The system is stable. Prof: Sarun Soman, M.I.T, Manipal
  • 22. Tutorial ‫ݕ‬ ‫ݐ‬ = ‫)ݐ(ݔݐ‬ stable or unstable? Let ‫)ݐ(ݔ‬ be bounded. ‫ݕ‬ ‫ݐ‬ will be unbounded , ‘t’ is unbounded Unstable system ‫ݕ‬ ‫ݐ‬ = ݁௫(௧) Check for linearity, Stability, Time Invariance, Memory. ‫ݔ‬ଵ ‫ݐ‬ → ‫ݕ‬ଵ ‫ݐ‬ = ݁௫భ(௧) ‫ݔ‬ଶ ‫ݐ‬ → ‫ݕ‬ଶ ‫ݐ‬ = ݁௫మ(௧) Let ‫ݔ‬ଷ ‫ݐ‬ = ܽ‫ݔ‬ଵ ‫ݐ‬ + ܾ‫ݔ‬ଶ ‫ݐ‬ Prof: Sarun Soman, M.I.T, Manipal
  • 23. Tutorial ‫ݕ‬ଷ ‫ݐ‬ = ݁௔௫భ ௧ ା௕௫మ ௧ ≠ ܽ‫ݕ‬ଵ ‫ݐ‬ + ܾ‫ݕ‬ଶ ‫ݐ‬ The system is Non-linear Time Invariance delay i/p ‫ݐ(ݔ‬ − ‫ݐ‬଴) ‫ݕ‬ଵ ‫ݐ‬ = ݁௫(௧ି௧బ) (1) Delay o/p ‫ݕ‬ଶ ‫ݐ‬ − ‫ݐ‬଴ = ݁௫(௧ି௧బ) (2) (1)=(2) system is time invariant The system is memoryless. Prof: Sarun Soman, M.I.T, Manipal
  • 24. Tutorial The i/p and o/p of the system is shown. Determine if the system could be memoryless & causal. Memory, Causal Non-Causal Memory 1 20 t y(t) 1 10 t x(t) 1 10 t y(t) 1 -1 10 t x(t) 1 Prof: Sarun Soman, M.I.T, Manipal
  • 25. Tutorial ‫ݕ‬ ‫ݐ‬ = [sin 6‫)ݐ(ݔ]ݐ‬ Check for Memory, Time invariance, Linearity, Stability and Causality. Ans: Present value of i/p depends on present value of o/p Memoryless System Delay in i/p ‫ݐ(ݔ‬ − ‫ݐ‬଴) ‫ݕ‬ଵ ‫ݐ‬ = [sin 6‫ݐ(ݔ]ݐ‬ − ‫ݐ‬଴) Delay o/p ‫ݕ‬ଶ ‫ݐ‬ − ‫ݐ‬଴ = [sin 6(‫ݐ‬ − ‫ݐ‬଴]‫ݐ(ݔ‬ − ‫ݐ‬଴) ‫ݕ‬ଵ ‫ݐ‬ ≠ ‫ݕ‬ଶ ‫ݐ‬ Time variant system Prof: Sarun Soman, M.I.T, Manipal
  • 26. Tutorial ‫ݔ‬ଵ ‫ݐ‬ → ‫ݕ‬ଵ ‫ݐ‬ = sin 6‫ݐ‬ ‫ݔ‬ଵ ‫ݐ‬ ‫ݔ‬ଶ ‫ݐ‬ → ‫ݕ‬ଶ ‫ݐ‬ = sin 6‫ݐ‬ ‫ݔ‬ଶ ‫ݐ‬ Let ‫ݔ‬ଷ ‫ݐ‬ = ܽ‫ݔ‬ଵ ‫ݐ‬ + ܾ‫ݔ‬ଶ ‫ݐ‬ ‫ݕ‬ଷ ‫ݐ‬ = [sin 6‫ݔ]ݐ‬ଷ(‫)ݐ‬ = ܽ sin 6‫ݐ‬ ‫ݔ‬ଵ ‫ݐ‬ + ܾ sin 6‫ݐ‬ ‫ݔ‬ଶ ‫ݐ‬ = ܽ‫ݕ‬ଵ ‫ݐ‬ + ܾ‫ݕ‬ଶ(‫)ݐ‬ Linear System Causal – o/p doesn't depend on future value of i/p. Prof: Sarun Soman, M.I.T, Manipal
  • 27. Tutorial Let ‫)ݐ(ݔ‬ ≤ ‫ܤ‬௫ ≤ ∞ ‫)ݐ(ݕ‬ = sin 6‫ݐ‬ ‫)ݐ(ݔ‬ sin 6‫ݐ‬ ≤ 1 ‫)ݐ(ݕ‬ is bounded , system is stable. Check for linearity, causality, time-invariance, stability 1.‫ݕ‬ ݊ = ݊ଶ‫]݊[ݔ‬ Linear , timevariant, causal, unstable 2. ‫ݕ‬ ݊ = ‫]݊2[ݔ‬ Linear, time-variant, non-causal Prof: Sarun Soman, M.I.T, Manipal
  • 28. Sketch the waveform ‫ݕ‬ ‫ݐ‬ = ‫ݎ‬ ‫ݐ‬ + 1 − ‫ݎ‬ ‫ݐ‬ + ‫ݐ(ݎ‬ + 2) 0-1 1 2 t r(t+1) 0 1 2 t -r(t) 0 1 2 t r(t-2) -1 0 1 2 y(t) t Prof: Sarun Soman, M.I.T, Manipal
  • 29. LTI Systems • Linear Time Invariant Systems • Tools for analyzing and predicting the behavior of LTI systems. • Characterizing an LTI system – Impulse Response – Linear constant-coefficient differential equation or difference equation • Gives insight into system’s behavior. • Useful in analyzing and implementing the system i/p o/p System Prof: Sarun Soman, M.I.T, Manipal
  • 30. Impulse Response Impulse response is defined as the o/p of an LTI system due to a unit impulse signal input applied at time t=0 or n=0. Symbol ℎ ‫ݐ‬ , ℎ[݊] Impulse response completely characterizes the behavior of any LTI system. Given the impulse response, output can be determined for any arbitrary input signal. Convolution Sum – DT LTI systems Convolution Integral – CT LTI systems Prof: Sarun Soman, M.I.T, Manipal
  • 31. Convolution Sum Consider an LTI system ߜ ݊ → ℎ ݊ Apply time invariance property ߜ[݊ − ݇] → ℎ ݊ − ݇ Apply principle of Homogeneity ‫݊[ߜ]݇[ݔ‬ − ݇] → ‫]݇[ݔ‬ℎ ݊ − ݇ Apply principle of superposition ∑ ‫݊[ߜ]݇[ݔ‬ − ݇]ஶ ௞ୀିஶ → Input is weighted superposition of time shifted impulse Output is weighted super position of time shifted impulse responses. ෍ ‫ݔ‬ ݇ ℎ[݊ − ݇] ஶ ௞ୀିஶ Prof: Sarun Soman, M.I.T, Manipal
  • 32. Convolution Sum ‫ݕ‬ ݊ = ∑ ‫]݇[ݔ‬ℎ ݊ − ݇ஶ ௞ୀିஶ - Convolution Sum ‫ݕ‬ ݊ = ‫ݔ‬ ݊ ∗ ℎ[݊] Prof: Sarun Soman, M.I.T, Manipal
  • 33. Example ‫ݔ‬ ݊ = −1,0, 1, 2, 3 ℎ ݊ = 1, −0.5 Change of variable ݊ → ݇ Starting index of o/p (-1+0=-1) ‫ݕ‬ −1 = ෍ ‫]݇[ݔ‬ℎ −1 − ݇ ஶ ௞ୀିஶ = −1 ‫ݕ‬ 0 = ෍ ‫]݇[ݔ‬ℎ −݇ ஶ ௞ୀିஶ = 0.5 -3 -2 -1 0 1 2 3 k 0 0 -1 0 1 2 3 x[k] 0 0 0 1 -0.5 0 0 h[k] 0 0 -0.5 1 0 0 0 h[-k] 0 -0.5 1 0 0 0 0 h[-1-k] 0 0 0 -0.5 1 0 0 h[1-k] 0 0 0 0 -0.5 1 0 h[2-k] 0 0 0 0 0 -0.5 1 h[3-k] 0 0 0 0 0 0 -0.5 h[4-k] -3 ‫ݕ‬ 1 = 1, ‫ݕ‬ 2 = 1.5, ‫ݕ‬ 3 = 2, ‫ݕ‬ 4 = −1.5 ‫ݕ‬ ݊ = {−1, 0.5, 1, 1.5, 2, −1.5} Prof: Sarun Soman, M.I.T, Manipal
  • 34. Example Assuming that the impulse response of an LTI system is given by ℎ ݊ = 0.5௡‫.]݊[ݑ‬ Determine the o/p response y[n] to the i/p sequence.‫ݔ‬ ݊ = 0.8௡‫ݑ‬ ݊ . Ans: Change of variable x[k] and h[k] ‫ݕ‬ ݊ = ∑ ‫]݇[ݔ‬ℎ ݊ − ݇ஶ ௞ୀିஶ = ∑ 0.8௞‫ݑ‬ ݇ 0.5௡ି௞‫ݑ‬ ݊ − ݇ஶ ௞ୀିஶ = 0.5௡ ∑ ( ଴.଼ ଴.ହ )௞‫ݑ‬ ݇ ‫݊[ݑ‬ − ݇]ஶ ௞ୀିஶ Prof: Sarun Soman, M.I.T, Manipal
  • 35. Example For ݊ < 0 ‫ݑ‬ ݇ ‫ݑ‬ ݊ − ݇ = 0 ‫ݕ‬ ݊ = 0 For ݊ ≥ 0 ‫ݕ‬ ݊ = 0.5௡ ෍( 0.8 0.5 )௞ ௡ ௞ୀ଴ GP series ∑ ‫ݎ‬௡ = ଵି௥ಿశభ ଵି௥ ே ௡ୀ଴ ‫ݕ‬ ݊ = 0.5௡ 1 − ( 0.8 0.5 )௡ାଵ 1 − 0.8 0.5 1 ●●● 0 2 4-1 u[k] k _ _ _ _ 1 ● ● ● -2 0 n-4 u[-k+n] k _ _ _ _ Prof: Sarun Soman, M.I.T, Manipal
  • 36. Example = 0.5௡ 0.5 0.5௡ାଵ 1 0.3 0.8௡ାଵ − 0.5௡ାଵ = 10 3 [0.8௡ାଵ − 0.5௡ାଵ] ‫ݕ‬ ݊ = ൝ 0, ݊ < 0 10 3 [0.8௡ାଵ − 0.5௡ାଵ ], n ≥ 0 Prof: Sarun Soman, M.I.T, Manipal
  • 37. Example ‫ݕ‬ ݊ = ‫ݑ‬ ݊ ∗ ‫݊[ݑ‬ − 3] Ans: Change of variable ‫ݔ‬ ݇ = ‫ݑ‬ ݇ , ℎ ݇ = ‫݇[ݑ‬ − 3] ‫ݕ‬ ݊ = ෍ ‫]݇[ݔ‬ℎ ݊ − ݇ ஶ ௞ୀିஶ ‫ݕ‬ ݊ = ෍ ‫ݑ‬ ݇ ‫ݑ‬ ݊ − ݇ − 3 ஶ ௞ୀିஶ For ݊ − 3 < 0 ݊ < 3 ‫ݕ‬ ݊ = 0 1 ●●● 0 2 4-1 u[k] k _ _ _ _ 1 ● ● ● -2 0 n-3-4 u[-k+n-3] k _ _ _ _ Prof: Sarun Soman, M.I.T, Manipal
  • 38. Example For ݊ − 3 ≥ 0 ݊ ≥ 3 ‫ݕ‬ ݊ = ෍ 1 ௡ିଷ ௞ୀ଴ ‫ݕ‬ ݊ = ݊ − 3 + 1 = ݊ − 2 ‫ݕ‬ ݊ = ൜ 0, ݊ < 3 ݊ − 2, ݊ ≥ 3 Prof: Sarun Soman, M.I.T, Manipal
  • 39. Example ‫ݕ‬ ݊ = ( 1 2 )௡‫ݑ‬ ݊ − 2 ∗ ‫]݊[ݑ‬ Ans: Change of variable ‫ݔ‬ ݇ = ( ଵ ଶ )௞‫ݑ‬ ݇ − 2 ℎ ݇ = ‫]݇[ݑ‬ ‫ݕ‬ ݊ = ෍ ‫]݇[ݔ‬ℎ ݊ − ݇ ஶ ௞ୀିஶ ‫ݕ‬ ݊ = ෍ ( 1 2 )௞‫ݑ‬ ݇ − 2 ‫ݑ‬ ݊ − ݇ ஶ ௞ୀିஶ For ݊ < 2 ‫ݕ‬ ݊ = 0 1 4 ●●● 2 4 60 x[k] k _ _ _ _ 1 8 1 16 1 ● ● ● -2 0 n-4 h[-k+n] k _ _ _ _ Prof: Sarun Soman, M.I.T, Manipal
  • 40. Example For ݊ ≥ 2 ‫ݕ‬ ݊ = ෍( 1 2 )௞ ௡ ௞ୀଶ GP series ∑ ‫ݎ‬௡ = ଵି௥ಿశభ ଵି௥ ே ௡ୀ଴ Let k-2=m ‫ݕ‬ ݊ = ෍ ( 1 2 )௠ାଶ ௡ିଶ ௠ୀ଴ ‫ݕ‬ ݊ = ( 1 2 )ଶ ෍ ( 1 2 )௠ ௡ିଶ ௠ୀ଴ ‫ݕ‬ ݊ = ( ଵ ଶ )ଶ ଵି( భ మ )೙షభ ଵି భ మ ‫ݕ‬ ݊ = ଵ ଶ − ( ଵ ଶ )௡ ‫ݕ‬ ݊ = ቊ 0, ݊ < 2 ଵ ଶ − ( ଵ ଶ )௡, ݊ ≥ 2 Prof: Sarun Soman, M.I.T, Manipal
  • 41. Example ‫ݔ‬ ݊ = 2௡‫ݑ‬ −݊ , ℎ ݊ = ‫.]݊[ݑ‬ Find the convolution sum. Ans: Change of variable ‫ݔ‬ ݇ = 2௞ ‫ݑ‬ −݇ , ℎ ݇ = ‫]݇[ݑ‬ ‫ݕ‬ ݊ = ෍ 2௞‫ݑ‬ −݇ ஶ ௞ୀିஶ ‫݊[ݑ‬ − ݇] For ݊ < 0 ‫ݕ‬ ݊ = ෍ 2௞ ௡ ௞ୀିஶ 1 2 ●●● -2 20 x[k] k _ _ _ _ 1 41 8 -4 1 1 ● ● ● -2 0 n-4 u[-k+n] k _ _ _ _ GP series ∑ ‫ݎ‬௡ = ଵି௥ಿశభ ଵି௥ ே ௡ୀ଴ Prof: Sarun Soman, M.I.T, Manipal
  • 42. Example Let ݈ = −݇ ‫ݕ‬ ݊ = ෍ 2ି௟ ି௡ ௟ୀஶ Let ݈ + ݊ = ݉ ‫ݕ‬ ݊ = ෍ 2ି(௠ି௡) ଴ ௠ୀஶ ‫ݕ‬ ݊ = ෍ 2௡ି௠ ஶ ௠ୀ଴ ‫ݕ‬ ݊ = 2௡ ෍ ( 1 2 )௠ ஶ ௠ୀ଴ Infinite sum ෍ ܽ௞ ஶ ௞ୀ଴ = 1 1 − ܽ , ܽ < 1 ‫ݕ‬ ݊ = 2௡ 1 1 − 1 2 = 2௡ାଵ For ݊ ≥ 0 ‫ݕ‬ ݊ = ෍ 2௞ ଴ ௞ୀିஶ Prof: Sarun Soman, M.I.T, Manipal
  • 43. Example Let ݈ = −݇ ‫ݕ‬ ݊ = ෍ 2ି௟ ஶ ௟ୀ଴ ‫ݕ‬ ݊ = ෍( 1 2 )௟ ஶ ௟ୀ଴ ‫ݕ‬ ݊ = 1 1 − 1 2 = 2 ‫ݕ‬ ݊ = ൜ 2௡ାଵ, ݊ < 0 2, ݊ ≥ 0 Prof: Sarun Soman, M.I.T, Manipal
  • 44. Example ‫ݕ‬ ݊ = (‫ݑ‬ ݊ + 10 − 2‫ݑ‬ ݊ + ‫ݑ‬ ݊ − 4 ) ∗ ‫݊[ݑ‬ − 2] Ans: ℎ ݇ = ‫݇[ݑ‬ − 2] ℎ −݇ = ‫ݑ‬ −݇ − 2 ℎ ݊ − ݇ = ‫݇−[ݑ‬ − 2 + ݊] = ‫݇−[ݑ‬ + ݊ − 2] -2 2 40 -2u[k] k _ _ _ _ 1 ●●● 6 84 u[k-4] k _ _ _ _ ● 20 -4 0 1 -8 -6-10 u[k+10] k _ _ _ _ -2 ● 42 4 -4 0 1 -8 -6-10 x[k] k-2 ● 2 ● ● -1 -4 0 1 -6 h[-k+n] k-2 n-2 ● ● _ _ _ _ Prof: Sarun Soman, M.I.T, Manipal
  • 45. Example Let k+10=m ‫ݕ‬ ݊ = ∑ 1௡ା଼ ௠ୀ଴ = ݊ + 9 For 0 ≤ ݊ − 2 < 4, 2 ≤ ݊ < 6 ‫ݕ‬ ݊ = ෍ 1 ିଵ ௞ୀିଵ଴ + ෍ −1 ௡ିଶ ௞ୀ଴ = ෍ 1 ଽ ௠ୀ଴ + ෍ −1 ௡ିଶ ௞ୀ଴ = 10 − ݊ − 1 = 11 − ݊ For ݊ − 2 ≥ 4, ݊ ≥ 6 ‫ݕ‬ ݊ = ෍ 1 ିଵ ௞ୀିଵ଴ + ෍ −1 ଷ ௞ୀ଴ = 10 + −4 = 6 For ݊ − 2 < −10 , ݊ < −8 ‫ݕ‬ ݊ = 0 For −10 ≤ ݊ − 2 < 0, −8 ≤ ݊ < 2 ‫ݕ‬ ݊ = ෍ 1 ௡ିଶ ௞ୀିଵ଴ 4 -4 0 1 -8 -6-10 x[k] k-2 ● 2 ● ● -1 -4 0 k-2 n-2 ● ● _ _ _ _ 0 k-2 n-2 ● ● _ _ _ _ -4 0-6 k-2 n-2 ● ● _ _ _ Prof: Sarun Soman, M.I.T, Manipal
  • 46. Example Find the convolution sum of two sequences. ‫ݔ‬ ݊ = 1, 2, 3 ℎ ݊ = 2, 1, 4 ‫ݕ‬ ݊ = {2, 5, 12, 11, 12} x[n] h[n] 1 2 3 2 2 4 6 1 1 2 3 4 4 8 12 Prof: Sarun Soman, M.I.T, Manipal
  • 47. Additional example For the two signals shown in Fig.Q5. obtain the expression for (a)y(t) in terms of x(t) (a) ‫ݕ‬ ‫ݐ‬ = ‫ݔ‬ ܽ‫ݐ‬ − ܾ (1) a and b are the two unknowns From Fig. ‫ݕ‬ ଷ ଶ = ‫ݔ‬ − ଵ଼ ହ Using eq.(1) ଷ ଶ = −ܽ ଵ଼ ହ − ܾ (2) Similarly ‫ݕ‬ 2 = ‫−(ݔ‬ ଵ଺ ହ ) 2 = −ܽ ଵ଺ ହ − ܾ (3) Solve (2)& (3) ܽ = 5 4 , ܾ = −6 ‫ݕ‬ ‫ݐ‬ = ‫ݔ‬ 5 4 ‫ݐ‬ + 6 Prof: Sarun Soman, M.I.T, Manipal
  • 48. Additional Example The o/p y[n] of an LTI system is given as Where x[n] is the i/p and ݃ ݊ = ‫ݑ‬ ݊ − ‫݊[ݑ‬ − 3]. Determine y[n] when ‫ݔ‬ ݊ = ߜ[݊ − 2]. Ans: Change of variable ‫ݔ‬ ݇ = ߜ[݇ − 2] ߜ ݇ − 2 exist only at k=2 ‫ݕ‬ ݊ = ݃[݊ + 4] ݃ ݊ + 4 = ‫ݑ‬ ݊ + 4 − ‫݊[ݑ‬ + 1] ‫ݕ‬ ݊ = ෍ ‫]݇[ݔ‬ ஶ ௞ୀିஶ ݃[݊ + 2݇] ‫ݕ‬ ݊ = ෍ ߜ[݇ − 2] ஶ ௞ୀିஶ ݃[݊ + 2݇] Prof: Sarun Soman, M.I.T, Manipal
  • 49. Convolution Integral Consider an LTI system with impulse response ℎ(‫)ݐ‬ ߜ ‫ݐ‬ → ℎ(‫)ݐ‬ ߜ ‫ݐ‬ − ߬ → ℎ(‫ݐ‬ − ߬) time invariance ‫ߜ)߬(ݔ‬ ‫ݐ‬ − ߬ → ‫)߬(ݔ‬ℎ(‫ݐ‬ − ߬) homogeneity super position Convolution integral න ‫ߜ)߬(ݔ‬ ‫ݐ‬ − ߬ ݀ ஶ ିஶ ߬ → න ‫)߬(ݔ‬ℎ(‫ݐ‬ − ߬) ஶ ିஶ ݀߬ ‫ݕ‬ ‫ݐ‬ = න ‫)߬(ݔ‬ℎ(‫ݐ‬ − ߬) ஶ ିஶ ݀߬ Prof: Sarun Soman, M.I.T, Manipal
  • 50. Example ‫ݕ‬ ‫ݐ‬ = ‫ݑ‬ ‫ݐ‬ + 1 ∗ ‫ݐ(ݑ‬ − 2) Ans: Change of variable ‫ݔ‬ ߬ = ‫ݑ‬ ߬ + 1 , ℎ ߬ = ‫߬(ݑ‬ − 2) ℎ −߬ = ‫߬−(ݑ‬ − 2) ℎ ‫ݐ‬ − ߬ = ‫ݑ‬ −߬ + ‫ݐ‬ − 2 For ‫ݐ‬ − 2 < −1, ‫ݐ‬ < 1 ‫ݕ‬ ‫ݐ‬ = 0 For ‫ݐ‬ − 2 ≥ −1, ‫ݐ‬ ≥ 1 = ‫ݐ‬ − 2 + 1 = ‫ݐ‬ − 1 ‫ݕ‬ ‫ݐ‬ = ൜ 0, ‫ݐ‬ < 1 ‫ݐ‬ − 1, ‫ݐ‬ ≥ 1 10 ߬ x(߬) 1 -1 10 ߬ h(t-߬) 1 -1 ‫ݐ‬ − 2 ‫ݕ‬ ‫ݐ‬ = න ‫)߬(ݔ‬ℎ(‫ݐ‬ − ߬) ஶ ିஶ ݀߬ ‫ݕ‬ ‫ݐ‬ = න 1 ௧ିଶ ିଵ ݀߬ Prof: Sarun Soman, M.I.T, Manipal
  • 51. Example ‫ݕ‬ ‫ݐ‬ = ‫ݑ‬ ‫ݐ‬ + 2 − ‫ݑ‬ ‫ݐ‬ − 1 ∗ ‫ݐ−(ݑ‬ + 2) Ans: Change of variable ‫ݔ‬ ߬ = ‫ݑ‬ ߬ + 2 − ‫߬(ݑ‬ − 1) ℎ ߬ = ‫߬−(ݑ‬ + 2) ℎ −߬ = ‫߬(ݑ‬ + 2) ℎ ‫ݐ‬ − ߬ = ‫߬(ݑ‬ + ‫ݐ‬ + 2) For ‫ݐ‬ + 2 < −2 , ‫ݐ‬ < −4 ‫ݕ‬ ‫ݐ‬ = 3 For−2 ≤ ‫ݐ‬ + 2 < 1, −4 ≤ ‫ݐ‬ < −1 = 1 − (‫ݐ‬ + 2) = −‫ݐ‬ − 1 For ‫ݐ‬ + 2 ≥ 1, ‫ݐ‬ ≥ −1 ‫ݕ‬ ‫ݐ‬ = 0 10 ߬ x(߬) 1 -1-2 10 ߬ h(t-߬) 1 t+2 ‫ݕ‬ ‫ݐ‬ = න 1݀߬ ଵ ௧ାଶ ‫ݕ‬ ‫ݐ‬ = න 1݀ ଵ ିଶ ߬ Prof: Sarun Soman, M.I.T, Manipal
  • 52. Example Exponential Function ‫ݔ‬ ‫ݐ‬ = ݁ି௧‫)ݐ(ݑ‬ ‫ݔ‬ ‫ݐ‬ − 1 = ݁ି ௧ିଵ ‫ݐ(ݑ‬ − 1) = ݁ି௧ାଵ‫ݐ(ݑ‬ − 1) ℎ ߬ = ݁ିఛ‫)߬(ݑ‬ Plot ℎ(‫ݐ‬ − ߬) Ans: ℎ ‫ݐ‬ − ߬ = ݁ି ௧ିఛ ‫ݐ(ݑ‬ − ߬) = ݁ఛି௧‫߬−(ݑ‬ + ‫)ݐ‬ 10 ‫ݐ‬ x(t) 1 10 ‫ݐ‬ x(t-1) 1 10 ߬ h(-߬) 1 t0 ߬ h(t-߬) 1 Prof: Sarun Soman, M.I.T, Manipal
  • 53. Example ‫ݔ‬ ‫ݐ‬ = ݁ିଷ௧[‫ݑ‬ ‫ݐ‬ − ‫ݐ(ݑ‬ − 2)] ℎ ‫ݐ‬ = ݁ି௧‫)ݐ(ݑ‬ Ans: Change of variable For‫ݐ‬ < 0, ‫ݕ‬ ‫ݐ‬ = 0 For 0≤ ‫ݐ‬ < 2 = −݁ି௧ ݁ିଶ௧ − 1 −2 = ݁ି௧ − ݁ିଷ௧ 2 For ‫ݐ‬ > 2 210 ߬ x(߬) 1 t0 ߬ h(t-߬) 1 ‫ݕ‬ ‫ݐ‬ = න ݁ିଷఛ ݁ି(௧ିఛ) ݀߬ ௧ ଴ = ݁ି௧ න ݁ିଶఛ ݀߬ ௧ ଴ ‫ݕ‬ ‫ݐ‬ = ݁ି௧ න ݁ିଶఛ ݀߬ ଶ ଴ = ௘ష೟ ଶ 1 − ݁ିସ Prof: Sarun Soman, M.I.T, Manipal
  • 54. Example The input signal ‫ݔ‬ ‫ݐ‬ = ݁ି௧ ‫ݑ‬ ‫ݐ‬ to an LTI system whose impulse response is given by ℎ ‫ݐ‬ = ൜ 1 − ‫,ݐ‬ 0 ≤ ‫ݐ‬ ≤ 1 0, ‫ݐ݋‬ℎ݁‫݁ݏ݅ݓݎ‬ Calculate the o/p. Ans: 0 ߬ x(߬) 1 0 ߬ h(߬) 1 1 0 ߬ h(−߬) -1 1 t ߬ h(−߬+t) t-1 1 0 Prof: Sarun Soman, M.I.T, Manipal
  • 55. Example For ‫ݐ‬ < 0 ‫ݕ‬ ‫ݐ‬ = 0 For ‫ݐ‬ ≥ 0 and ‫ݐ‬ − 1 ≤ 0 0 ≤ ‫ݐ‬ ≤ 1 ‫ݕ‬ ‫ݐ‬ = න ‫ݔ‬ ߬ ℎ ‫ݐ‬ − ߬ ݀߬ ௧ ଴ = න ݁ିఛ ‫߬()߬(ݑ‬ + 1 − ‫߬݀)ݐ‬ ௧ ଴ = න ߬݁ିఛ ݀߬ + (1 − ‫)ݐ‬ න ݁ିఛ ݀߬ ௧ ଴ ௧ ଴ Indefinite integral න ‫݁ݐ‬௔௧݀‫ݐ‬ = ݁௔௧ ܽଶ (ܽ‫ݐ‬ − 1) = −߬݁ିఛ − ݁ିఛ | + 1 − ‫ݐ‬ −݁ିఛ | = 1 − ‫݁ݐ‬ି௧ − ݁ି௧ + 1 − ‫ݐ‬ −݁ି௧ ‫ݕ‬ ‫ݐ‬ = 2 − ‫ݐ‬ − 2݁ି௧ 0 ߬ x(߬) 1 t-1 t Prof: Sarun Soman, M.I.T, Manipal
  • 56. Example For ‫ݐ‬ − 1 > 0 ‫ݐ‬ > 1 ‫ݕ‬ ‫ݐ‬ = න ‫ݔ‬ ߬ ℎ ‫ݐ‬ − ߬ ݀߬ ௧ ௧ିଵ = න ݁ିఛ (߬ + 1 − ‫߬݀)ݐ‬ ௧ ௧ିଵ = න ߬݁ିఛ ݀߬ + (1 − ‫)ݐ‬ න ݁ିఛ ݀߬ ௧ ௧ିଵ ௧ ௧ିଵ = −߬݁ିఛ − ݁ିఛ | + 1 − ‫ݐ‬ −݁ିఛ | ‫ݕ‬ ‫ݐ‬ = ݁ି(௧ିଵ) − 2݁ି௧ 0 ߬ x(߬) 1 t-1 t Prof: Sarun Soman, M.I.T, Manipal
  • 57. Example Calculate the o/p for the following i/p signal & impulse ‫ݔ‬ ‫ݐ‬ = ൜ 1.5, −2 ≤ ‫ݐ‬ ≤ 3 0, ‫ݐ݋‬ℎ݁‫݁ݏ݅ݓݎ‬ ℎ ‫ݐ‬ = ൜ 2, −1 ≤ ‫ݐ‬ ≤ 2 0, ‫ݐ݋‬ℎ݁‫݁ݏ݅ݓݎ‬ Ans: 10 ߬ x(߬) 1.5 -1-2 3 10 ߬ h(߬) 2 -1-2 2 0-1 ߬ h(−߬) 2 -2 1 0 ߬ h(−߬+t) 2 -2+t 1+t Prof: Sarun Soman, M.I.T, Manipal
  • 58. Example For 1 + ‫ݐ‬ > −2 ‫ݐ‬ < −3 ‫ݕ‬ ‫ݐ‬ = 0 For ‫ݐ‬ + 1 ≥ −2 & ‫ݐ‬ + 1 < 0 −3 ≤ ‫ݐ‬ < −1 For ‫ݐ‬ + 1 ≥ 0 & − 2 + ‫ݐ‬ < 0 −1 ≤ ‫ݐ‬ < 2 t+1 0 ߬ 1.5 t-2 -2 3 ‫ݕ‬ ‫ݐ‬ = න ‫ݔ‬ ߬ ℎ ‫ݐ‬ − ߬ ݀߬ ௧ାଵ ିଶ = න 3݀߬ ௧ାଵ ିଶ = 3(‫ݐ‬ + 3) ‫)ݐ(ݕ‬ = න 3݀߬ ௧ାଵ ௧ିଶ = 9 t+10 ߬ 1.5 t-2-2 3 Prof: Sarun Soman, M.I.T, Manipal
  • 59. Example For‫ݐ‬ + 1 ≥ 3 and ‫ݐ‬ − 2 ≤ 3 2 ≤ ‫ݐ‬ ≤ 5 for‫ݐ‬ ≥ 5 ‫ݕ‬ ‫ݐ‬ = 0 ‫)ݐ(ݕ‬ = න 3݀߬ ଷ ௧ିଶ = 3(5 − ‫)ݐ‬ t+10 ߬ 1.5 t-2-2 3 Prof: Sarun Soman, M.I.T, Manipal