SlideShare a Scribd company logo
Department of Computer Eng.
Sharif University of Technology
Discrete-time signal processing
Chapter 3:
THE Z-TRANSFORM
Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer and Buck, ©1999-2000 Prentice Hall Inc.
3.1 The Z-Transform
• Counterpart of the Laplace transform for discrete-time signals
• Generalization of the Fourier Transform
Fourier Transform does not exist for all signals
• Definition:
• Compare to DTFT definition:
• z is a complex variable that can be represented as z=r ej
• Substituting z=ej will reduce the z-transform to DTFT
Chapter 3: The Z-Transform 1
   






n
n
z
n
x
z
X
    n
j
n
j
e
n
x
e
X 
 





 
   
 
 

j
n
n
z
n
n
re
z
z
n
x
z
X
z
X
n
x
z
X
z
n
x
n
x
















0
)
(
)
(
)
(
r
:
‫اندازه‬
:
‫فاز‬ 
‫تبدیل‬
z
‫طرفه‬‫یک‬
‫تبدیل‬
z
‫طرفه‬‫دو‬
3.1 The Z-Transform
The z-transform and the DTFT
• Convenient to describe on the complex z-plane
• If we plot z=ej for =0 to 2 we get the unit circle
Chapter 3: The Z-Transform 3
Re
Im
Unit Circle

r=1
0
2 0 2
 

j
e
X
Convergence of the z-Transform
• DTFT does not always converge
Example: x[n] = anu[n] for |a|>1 does not have a DTFT
• Complex variable z can be written as r ej so the z-
transform
convert to the DTFT of x[n] multiplied with exponential
sequence r –n
• For certain choices of r the sum
maybe made finite
Chapter 3: The Z-Transform 4
      
 














n
n
j
n
n
n
j
j
e
n
x
e
n
x
re
X 


r
r
    n
j
n
j
e
n
x
e
X 
 





  





n
n
x r n
-
Region of Convergence (ROC)
• ROC: The set of values of z for which the z-transform converges
• The region of convergence is made of circles
Chapter 3: The Z-Transform 5
Re
Im
• Example: z-transform converges for
values of 0.5<r<2
ROC is shown on the left
In this example the ROC includes the unit circle,
so DTFT exists
• Example:
Doesn't converge for any r.
DTFT exists.
It has finite energy.
DTFT converges in a mean square sense.
• Example:
Doesn't converge for any r.
It doesn’t have even finite energy.
But we define a useful DTFT with
impulse function.
   
n
n
x o

cos

 
sin c n
x n
n



Region of Convergence (ROC)
Example 1: Right-Sided Exponential Sequence
• For Convergence we require
• Hence the ROC is defined as
• Inside the ROC series converges to
Chapter 3: The Z-Transform 7
         













0
n
n
1
n
n
n
n
az
z
n
u
a
z
X
n
u
a
n
x






0
n
n
1
az
a
z
1
az
n
1




    a
z
z
az
1
1
az
z
X
0
n
1
n
1




 




Re
Im
a 1
o x
• Region outside the circle of
radius a is the ROC
• Right-sided sequence ROCs
extend outside a circle
(
‫ا‬‫ر‬‫چپگ‬‫دنباله‬
)
   
   
 
a
z
z
az
z
a
z
X
a
z
z
a
z
a
ROC
z
a
z
a
z
a
z
n
u
a
z
X
n
n
n n
n
n
n
n
n
n
n
n












































 


1
1
1
0
1
1 0
1
1
1
1
1
1
1
1
1
:
1
1
   
1



 n
u
a
n
x n
Example 2: Left-Sided Exponential Sequence
Example 3: Two-Sided Exponential Sequence
Chapter 3: The Z-Transform 9
     
1
-
n
-
u
2
1
-
n
u
3
1
n
x
n
n














1
1
1
0
1
0
1
3
1
1
1
3
1
1
3
1
3
1
3
1



































z
z
z
z
z
n
n
1
1
0
1
1
1
n
n
1
z
2
1
1
1
z
2
1
1
z
2
1
z
2
1
z
2
1


































z
3
1
1
z
3
1
:
ROC 1


 
z
2
1
1
z
2
1
:
ROC 1



 




























2
1
z
3
1
z
12
1
z
z
2
z
2
1
1
1
z
3
1
1
1
z
X
1
1
Im
2
1
oo
12
1
x
x
3
1

Example 4: Finite Length Sequence
Chapter 3: The Z-Transform 10
 


 



otherwise
0
1
0 N
n
a
n
x
n
N=16
Pole-zero plot
     
 
N
n
u
n
u
a
n
x n



   
0
:
1
1
1
)
(
1
0
1
1
1
1
1
1
0
1
1
0
































z
az
az
ROC
a
z
a
z
z
az
az
az
z
a
z
X
N
n
n
N
N
N
N
N
n
n
N
n
n
n
Some common Z-transform pairs
Chapter 3: The Z-Transform 11
SEQUENCE TRANSFORM ROC
1

z
 
 
0
m
if
or
0
m
if
0
except
z
All



1

z
1
1
1

 z
1
1
1

 z
m
z
 
 
 
 
m
n
n
u
n
u
n






1
1 z
ALL
Some common Z-transform pairs
 
 
 
 
 
 
     
 
1
:
cos
2
1
cos
1
cos
:
1
1
:
1
:
1
1
1
:
1
1
2
1
0
1
0
0
2
1
1
2
1
1
1
1




































z
ROC
z
z
z
n
u
n
a
z
ROC
az
az
n
u
na
a
z
ROC
az
az
n
u
na
a
z
ROC
az
n
u
a
a
z
ROC
az
n
u
a
Z
Z
n
Z
n
Z
n
Z
n



Some common Z-transform pairs
     
 
0
:
1
1
0
1
0
:
cos
2
1
sin
sin
1
2
2
1
0
1
0
0







 












z
ROC
az
z
a
otherwise
N
n
a
r
z
ROC
z
r
z
r
z
r
n
u
n
r
N
N
Z
n
Z
n



     
 
     
 
r
z
ROC
z
r
z
r
z
r
n
u
n
r
z
ROC
z
z
z
n
u
n
Z
n
Z

















:
cos
2
1
cos
1
cos
1
:
cos
2
1
sin
sin
2
2
1
0
1
0
0
2
1
0
1
0
0






Some common Z-transform pairs
3.2 Properties of The ROC of Z-Transform
• The ROC is a ring or disk centered at the origin
• DTFT exists if and only if the ROC includes the unit circle
• The ROC cannot contain any poles
• The ROC for finite-length sequence is the entire z-plane
except possibly z=0 and z=
• The ROC for a right-handed sequence extends outward from the
outermost pole possibly including z= 
• The ROC for a left-handed sequence extends inward from the
innermost pole possibly including z=0
• The ROC of a two-sided sequence is a ring bounded by poles
• The ROC must be a connected region
• A z-transform does not uniquely determine a sequence without
specifying the ROC
Chapter 3: The Z-Transform 15
Stability, Causality, and the ROC
• Consider a system with impulse response h[n]
• The z-transform H(z) and the pole-zero plot shown below
• Without any other information h[n] is not uniquely determined
|z|>2 or |z|<½ or ½<|z|<2
• If system stable ROC must include unit-circle: ½<|z|<2
• If system is causal must be right sided: |z|>2
Chapter 3: The Z-Transform 16
3.4 Z-Transform Properties: Linearity
• Notation
• Linearity
– Note that the ROC of combined sequence may be larger than either ROC
– This would happen if some pole/zero cancellation occurs
– Example:
•Both sequences are right-sided
•Both sequences have a pole z=a
•Both have a ROC defined as |z|>|a|
•In the combined sequence the pole at z=a cancels with a zero at z=a
•The combined ROC is the entire z plane except z=0
Chapter 3: The Z-Transform 17
    x
Z
R
ROC
z
X
n
x 

 

        2
1 x
x
2
1
Z
2
1 R
R
ROC
z
bX
z
aX
n
bx
n
ax 



 


     
N
-
n
u
a
-
n
u
a
n
x n
n

Z-Transform Properties: Time Shifting
• Here no is an integer
– If positive the sequence is shifted right
– If negative the sequence is shifted left
• The ROC can change
– The new term may add or remove poles at z=0 or z=
• Example
Chapter 3: The Z-Transform 18
    x
n
Z
o R
ROC
z
X
z
n
n
x o


 

 
 
4
1
z
z
4
1
1
1
z
z
X
1
1

















   
1
-
n
u
4
1
n
x
1
-
n







Z-Transform Properties: Multiplication by
Exponential
• ROC is scaled by |zo|
• All pole/zero locations are scaled
• If zo is a positive real number: z-plane shrinks or expands
• If zo is a complex number with unit magnitude it rotates
• Example: We know the z-transform pair
• Let’s find the z-transform of
Chapter 3: The Z-Transform 19
    x
o
o
Z
n
o R
z
ROC
z
/
z
X
n
x
z 

 

  1
z
:
ROC
z
-
1
1
n
u 1
-
Z


 

             
n
u
re
2
1
n
u
re
2
1
n
u
n
cos
r
n
x
n
j
n
j
o
n o
o 






  r
z
z
re
1
2
/
1
z
re
1
2
/
1
z
X 1
j
1
j o
o




 




Z-Transform Properties: Differentiation
• Example: We want the inverse z-transform of
• Let’s differentiate to obtain rational expression
• Making use of z-transform properties and ROC
Chapter 3: The Z-Transform 20
   
x
Z
R
ROC
dz
z
dX
z
n
nx 


 

    a
z
az
1
log
z
X 1


 
   
1
1
1
2
az
1
1
az
dz
z
dX
z
az
1
az
dz
z
dX











     
1
n
u
a
a
n
nx
1
n




     
1
n
u
n
a
1
n
x
n
1
n




Z-Transform Properties: Conjugation
Chapter 3: The Z-Transform 21
    x
*
*
Z
*
R
ROC
z
X
n
x 

 

   
     
         
 
n
n
n n
n n
n n
n n
X z x n z
X z x n z x n z
X z x n z x n z Z x n




 
  
 
 

     
 

 
 
 
 
  

 
 
Z-Transform Properties: Time Reversal
• ROC is inverted
• Example:
• Time reversed version of
Chapter 3: The Z-Transform 22
   
x
Z
R
1
ROC
z
/
1
X
n
x 

 


   
n
u
a
n
x n

 
 
n
u
an
  1
1
1
-
1
-1
a
z
z
a
-
1
z
a
-
az
1
1
z
X 






Z-Transform Properties: Convolution
• Convolution in time domain is multiplication in z-domain
• Example: Let’s calculate the convolution of
• Multiplications of z-transforms is
• ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a|
• Partial fractional expansion of Y(z)
Chapter 3: The Z-Transform 23
        2
x
1
x
2
1
Z
2
1 R
R
:
ROC
z
X
z
X
n
x
n
x 

 


       
n
u
n
x
and
n
u
a
n
x 2
n
1 

  a
z
:
ROC
az
1
1
z
X 1
1 

 
  1
z
:
ROC
z
1
1
z
X 1
2 

 
     
  
1
1
2
1
z
1
az
1
1
z
X
z
X
z
Y 





  1
z
:
ROC
assume
1
1
1
1
1
1
1











 

az
a
z
a
z
Y      
 
n
u
a
n
u
a
1
1
n
y 1
n



Some Z-transform properties
Chapter 3: The Z-Transform 24
3.3 The Inverse Z-Transform
• Formal inverse z-transform is based on a Cauchy integral
• Less formal ways sufficient most of the time
– Inspection method
– Partial fraction expansion
– Power series expansion
• Inspection Method
Make use of known z-transform pairs such as
Example: The inverse z-transform of
Chapter 3: The Z-Transform 25
  a
z
az
1
1
n
u
a 1
Z
n



 
 
     
n
u
2
1
n
x
2
1
z
z
2
1
1
1
z
X
n
1












Inverse Z-Transform by Partial Fraction
Expansion
• Assume that a given z-transform can be expressed as
• Apply partial fractional expansion
• First term exist only if M>N
– Br is obtained by long division
• Second term represents all first order poles
• Third term represents an order s pole
– There will be a similar term for every high-order pole
• Each term can be inverse transformed by inspection
Chapter 3: The Z-Transform 26
 






 N
0
k
k
k
M
0
k
k
k
z
a
z
b
z
X
 
 


 












s
1
m
m
1
i
m
N
i
k
,
1
k
1
k
k
N
M
0
r
r
r
z
d
1
C
z
d
1
A
z
B
z
X
Inverse Z-Transform by Partial Fraction
Expansion
• Coefficients are given as
• Easier to understand with examples
Chapter 3: The Z-Transform 27
 
 


 












s
1
m
m
1
i
m
N
i
k
,
1
k
1
k
k
N
M
0
r
r
r
z
d
1
C
z
d
1
A
z
B
z
X
    k
d
z
1
k
k z
X
z
d
1
A 



   
   
  1
i
d
w
1
s
i
m
s
m
s
m
s
i
m w
X
w
d
1
dw
d
d
!
m
s
1
C
















Example 5: 2nd Order Z-Transform
Chapter 3: The Z-Transform 28
 
2
1
z
:
ROC
z
2
1
1
z
4
1
1
1
z
X
1
1


















 

















 1
2
1
1
z
2
1
1
A
z
4
1
1
A
z
X
  1
4
1
2
1
1
1
z
X
z
4
1
1
A 1
4
1
z
1
1 
























 


  2
2
1
4
1
1
1
z
X
z
2
1
1
A 1
2
1
z
1
2 























 


Example 5 Continued
• ROC extends to infinity
– Indicates right sided sequence
Chapter 3: The Z-Transform 29
 
2
1
z
z
2
1
1
2
z
4
1
1
1
z
X
1
1




















     
n
u
4
1
-
n
u
2
1
2
n
x
n
n













Example 6
• Long division to obtain Bo
Chapter 3: The Z-Transform 30
   
 
1
z
z
1
z
2
1
1
z
1
z
2
1
z
2
3
1
z
z
2
1
z
X
1
1
2
1
2
1
2
1























1
z
5
2
z
3
z
2
1
z
2
z
1
z
2
3
z
2
1
1
1
2
1
2
1
2














 
 
1
1
1
z
1
z
2
1
1
z
5
1
2
z
X















  1
2
1
1
z
1
A
z
2
1
1
A
2
z
X 
 




  9
z
X
z
2
1
1
A
2
1
z
1
1 











    8
z
X
z
1
A
1
z
1
2 




Example 5 Continued
• ROC extends to infinity
– Indicates right-sided sequence
Chapter 3: The Z-Transform 31
  1
z
z
1
8
z
2
1
1
9
2
z
X 1
1





 

       
n
8u
-
n
u
2
1
9
n
2
n
x
n









Inverse Z-Transform by Power Series
Expansion
• The z-transform is power series
• In expanded form
• Z-transforms of this form can generally be inversed easily
• Especially useful for finite-length series
Chapter 3: The Z-Transform 32
   






n
n
z
n
x
z
X
            
 







 
 2
1
1
2
2
1
0
1
2 z
x
z
x
x
z
x
z
x
z
X
    
1
2
1
1
1
2
z
2
1
1
z
2
1
z
z
1
z
1
z
2
1
1
z
z
X


















         
1
n
2
1
n
1
n
2
1
2
n
n
x 










 



















2
n
0
1
n
2
1
0
n
1
1
n
2
1
2
n
1
n
x
Example 6

More Related Content

PPTX
"Z" TRANSFORM TOPIC REVIEW
PPT
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
PPTX
Applications of Z transform
PPTX
Digital control systems (dcs) lecture 18-19-20
PDF
LAPLACE TRANSFORM (Differential Equation)
PDF
DSP_FOEHU - MATLAB 03 - The z-Transform
PDF
A Signal Processing Approach To Fair Surface Design
PPT
ADSP (17 Nov)week8.ppt
"Z" TRANSFORM TOPIC REVIEW
Z TRANSFORM PROPERTIES AND INVERSE Z TRANSFORM
Applications of Z transform
Digital control systems (dcs) lecture 18-19-20
LAPLACE TRANSFORM (Differential Equation)
DSP_FOEHU - MATLAB 03 - The z-Transform
A Signal Processing Approach To Fair Surface Design
ADSP (17 Nov)week8.ppt

Similar to Signals and systems3 ppt (20)

PPT
ADSP (17 Nov).ppt
PDF
Z transform
PDF
DSP_2018_FOEHU - Lec 04 - The z-Transform
PPT
lecture8.ppt
PDF
PPTX
Z TRRANSFORM
PPT
Z transform
PPT
Z transform
PDF
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
PPT
Z transform
PPTX
Region of Convergence (ROC) in the z-plane
PPT
Digital Signal Processing and the z-transform
PPT
dsp dsp by Dr. k Udaya kumar power point
PPT
Z transfrm ppt
PPTX
Z trasnform & Inverse Z-transform in matlab
PPTX
z transform.pptx
PPTX
Z Transform
PDF
Unit 7 &amp; 8 z-transform
PPTX
Lecture 3 Fourier series coefficients .pptx
PPT
Z Transform
ADSP (17 Nov).ppt
Z transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
lecture8.ppt
Z TRRANSFORM
Z transform
Z transform
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z transform
Region of Convergence (ROC) in the z-plane
Digital Signal Processing and the z-transform
dsp dsp by Dr. k Udaya kumar power point
Z transfrm ppt
Z trasnform & Inverse Z-transform in matlab
z transform.pptx
Z Transform
Unit 7 &amp; 8 z-transform
Lecture 3 Fourier series coefficients .pptx
Z Transform
Ad

More from Engr umar (20)

PPTX
RES Lecture 18 Hydro.pptx
PDF
renewable-energy-resources-by-john-twidell-tony-weir.pdf
PPTX
Chapter 06_Pdu.pptx
PPT
Electric Welding 7.ppt
PDF
Ps all examples
PDF
Probability chap 1 note.
PPTX
Linear algebra (summer) lec 12 (1)
PPTX
Linear algebra (summer) lec 11
PPTX
Linear algebra (summer) lec 9
PPTX
Linear algebra (summer) lec 7
PPTX
Linear algebra (summer) lec 6
PPTX
Linear algebra (summer) lec 5
PPTX
Linear algebra (summer) lec 4
PPTX
Linear algebra (summer) lec 3
PPTX
Linear algebra (summer) lec 1
DOCX
Ems project
PPTX
Cs project ppt
PPTX
Project presentation of engineering subject
PDF
Amperes law and_it_application
PPTX
Lecture week 5
RES Lecture 18 Hydro.pptx
renewable-energy-resources-by-john-twidell-tony-weir.pdf
Chapter 06_Pdu.pptx
Electric Welding 7.ppt
Ps all examples
Probability chap 1 note.
Linear algebra (summer) lec 12 (1)
Linear algebra (summer) lec 11
Linear algebra (summer) lec 9
Linear algebra (summer) lec 7
Linear algebra (summer) lec 6
Linear algebra (summer) lec 5
Linear algebra (summer) lec 4
Linear algebra (summer) lec 3
Linear algebra (summer) lec 1
Ems project
Cs project ppt
Project presentation of engineering subject
Amperes law and_it_application
Lecture week 5
Ad

Recently uploaded (20)

PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
web development for engineering and engineering
PPT
Project quality management in manufacturing
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
DOCX
573137875-Attendance-Management-System-original
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
additive manufacturing of ss316l using mig welding
PPTX
Geodesy 1.pptx...............................................
PDF
Well-logging-methods_new................
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
bas. eng. economics group 4 presentation 1.pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
web development for engineering and engineering
Project quality management in manufacturing
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
573137875-Attendance-Management-System-original
UNIT 4 Total Quality Management .pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
R24 SURVEYING LAB MANUAL for civil enggi
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
additive manufacturing of ss316l using mig welding
Geodesy 1.pptx...............................................
Well-logging-methods_new................

Signals and systems3 ppt

  • 1. Department of Computer Eng. Sharif University of Technology Discrete-time signal processing Chapter 3: THE Z-TRANSFORM Content and Figures are from Discrete-Time Signal Processing, 2e by Oppenheim, Shafer and Buck, ©1999-2000 Prentice Hall Inc.
  • 2. 3.1 The Z-Transform • Counterpart of the Laplace transform for discrete-time signals • Generalization of the Fourier Transform Fourier Transform does not exist for all signals • Definition: • Compare to DTFT definition: • z is a complex variable that can be represented as z=r ej • Substituting z=ej will reduce the z-transform to DTFT Chapter 3: The Z-Transform 1           n n z n x z X     n j n j e n x e X        
  • 3.            j n n z n n re z z n x z X z X n x z X z n x n x                 0 ) ( ) ( ) ( r : ‫اندازه‬ : ‫فاز‬  ‫تبدیل‬ z ‫طرفه‬‫یک‬ ‫تبدیل‬ z ‫طرفه‬‫دو‬ 3.1 The Z-Transform
  • 4. The z-transform and the DTFT • Convenient to describe on the complex z-plane • If we plot z=ej for =0 to 2 we get the unit circle Chapter 3: The Z-Transform 3 Re Im Unit Circle  r=1 0 2 0 2    j e X
  • 5. Convergence of the z-Transform • DTFT does not always converge Example: x[n] = anu[n] for |a|>1 does not have a DTFT • Complex variable z can be written as r ej so the z- transform convert to the DTFT of x[n] multiplied with exponential sequence r –n • For certain choices of r the sum maybe made finite Chapter 3: The Z-Transform 4                        n n j n n n j j e n x e n x re X    r r     n j n j e n x e X                 n n x r n -
  • 6. Region of Convergence (ROC) • ROC: The set of values of z for which the z-transform converges • The region of convergence is made of circles Chapter 3: The Z-Transform 5 Re Im • Example: z-transform converges for values of 0.5<r<2 ROC is shown on the left In this example the ROC includes the unit circle, so DTFT exists
  • 7. • Example: Doesn't converge for any r. DTFT exists. It has finite energy. DTFT converges in a mean square sense. • Example: Doesn't converge for any r. It doesn’t have even finite energy. But we define a useful DTFT with impulse function.     n n x o  cos    sin c n x n n    Region of Convergence (ROC)
  • 8. Example 1: Right-Sided Exponential Sequence • For Convergence we require • Hence the ROC is defined as • Inside the ROC series converges to Chapter 3: The Z-Transform 7                        0 n n 1 n n n n az z n u a z X n u a n x       0 n n 1 az a z 1 az n 1         a z z az 1 1 az z X 0 n 1 n 1           Re Im a 1 o x • Region outside the circle of radius a is the ROC • Right-sided sequence ROCs extend outside a circle
  • 9. ( ‫ا‬‫ر‬‫چپگ‬‫دنباله‬ )           a z z az z a z X a z z a z a ROC z a z a z a z n u a z X n n n n n n n n n n n n                                                 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 : 1 1     1     n u a n x n Example 2: Left-Sided Exponential Sequence
  • 10. Example 3: Two-Sided Exponential Sequence Chapter 3: The Z-Transform 9       1 - n - u 2 1 - n u 3 1 n x n n               1 1 1 0 1 0 1 3 1 1 1 3 1 1 3 1 3 1 3 1                                    z z z z z n n 1 1 0 1 1 1 n n 1 z 2 1 1 1 z 2 1 1 z 2 1 z 2 1 z 2 1                                   z 3 1 1 z 3 1 : ROC 1     z 2 1 1 z 2 1 : ROC 1                                  2 1 z 3 1 z 12 1 z z 2 z 2 1 1 1 z 3 1 1 1 z X 1 1 Im 2 1 oo 12 1 x x 3 1 
  • 11. Example 4: Finite Length Sequence Chapter 3: The Z-Transform 10          otherwise 0 1 0 N n a n x n N=16 Pole-zero plot         N n u n u a n x n        0 : 1 1 1 ) ( 1 0 1 1 1 1 1 1 0 1 1 0                                 z az az ROC a z a z z az az az z a z X N n n N N N N N n n N n n n
  • 12. Some common Z-transform pairs Chapter 3: The Z-Transform 11
  • 13. SEQUENCE TRANSFORM ROC 1  z     0 m if or 0 m if 0 except z All    1  z 1 1 1   z 1 1 1   z m z         m n n u n u n       1 1 z ALL Some common Z-transform pairs
  • 14.                     1 : cos 2 1 cos 1 cos : 1 1 : 1 : 1 1 1 : 1 1 2 1 0 1 0 0 2 1 1 2 1 1 1 1                                     z ROC z z z n u n a z ROC az az n u na a z ROC az az n u na a z ROC az n u a a z ROC az n u a Z Z n Z n Z n Z n    Some common Z-transform pairs
  • 15.         0 : 1 1 0 1 0 : cos 2 1 sin sin 1 2 2 1 0 1 0 0                      z ROC az z a otherwise N n a r z ROC z r z r z r n u n r N N Z n Z n                    r z ROC z r z r z r n u n r z ROC z z z n u n Z n Z                  : cos 2 1 cos 1 cos 1 : cos 2 1 sin sin 2 2 1 0 1 0 0 2 1 0 1 0 0       Some common Z-transform pairs
  • 16. 3.2 Properties of The ROC of Z-Transform • The ROC is a ring or disk centered at the origin • DTFT exists if and only if the ROC includes the unit circle • The ROC cannot contain any poles • The ROC for finite-length sequence is the entire z-plane except possibly z=0 and z= • The ROC for a right-handed sequence extends outward from the outermost pole possibly including z=  • The ROC for a left-handed sequence extends inward from the innermost pole possibly including z=0 • The ROC of a two-sided sequence is a ring bounded by poles • The ROC must be a connected region • A z-transform does not uniquely determine a sequence without specifying the ROC Chapter 3: The Z-Transform 15
  • 17. Stability, Causality, and the ROC • Consider a system with impulse response h[n] • The z-transform H(z) and the pole-zero plot shown below • Without any other information h[n] is not uniquely determined |z|>2 or |z|<½ or ½<|z|<2 • If system stable ROC must include unit-circle: ½<|z|<2 • If system is causal must be right sided: |z|>2 Chapter 3: The Z-Transform 16
  • 18. 3.4 Z-Transform Properties: Linearity • Notation • Linearity – Note that the ROC of combined sequence may be larger than either ROC – This would happen if some pole/zero cancellation occurs – Example: •Both sequences are right-sided •Both sequences have a pole z=a •Both have a ROC defined as |z|>|a| •In the combined sequence the pole at z=a cancels with a zero at z=a •The combined ROC is the entire z plane except z=0 Chapter 3: The Z-Transform 17     x Z R ROC z X n x              2 1 x x 2 1 Z 2 1 R R ROC z bX z aX n bx n ax               N - n u a - n u a n x n n 
  • 19. Z-Transform Properties: Time Shifting • Here no is an integer – If positive the sequence is shifted right – If negative the sequence is shifted left • The ROC can change – The new term may add or remove poles at z=0 or z= • Example Chapter 3: The Z-Transform 18     x n Z o R ROC z X z n n x o          4 1 z z 4 1 1 1 z z X 1 1                      1 - n u 4 1 n x 1 - n       
  • 20. Z-Transform Properties: Multiplication by Exponential • ROC is scaled by |zo| • All pole/zero locations are scaled • If zo is a positive real number: z-plane shrinks or expands • If zo is a complex number with unit magnitude it rotates • Example: We know the z-transform pair • Let’s find the z-transform of Chapter 3: The Z-Transform 19     x o o Z n o R z ROC z / z X n x z        1 z : ROC z - 1 1 n u 1 - Z                    n u re 2 1 n u re 2 1 n u n cos r n x n j n j o n o o          r z z re 1 2 / 1 z re 1 2 / 1 z X 1 j 1 j o o          
  • 21. Z-Transform Properties: Differentiation • Example: We want the inverse z-transform of • Let’s differentiate to obtain rational expression • Making use of z-transform properties and ROC Chapter 3: The Z-Transform 20     x Z R ROC dz z dX z n nx           a z az 1 log z X 1         1 1 1 2 az 1 1 az dz z dX z az 1 az dz z dX                  1 n u a a n nx 1 n           1 n u n a 1 n x n 1 n    
  • 22. Z-Transform Properties: Conjugation Chapter 3: The Z-Transform 21     x * * Z * R ROC z X n x                            n n n n n n n n n n X z x n z X z x n z x n z X z x n z x n z Z x n                                       
  • 23. Z-Transform Properties: Time Reversal • ROC is inverted • Example: • Time reversed version of Chapter 3: The Z-Transform 22     x Z R 1 ROC z / 1 X n x           n u a n x n      n u an   1 1 1 - 1 -1 a z z a - 1 z a - az 1 1 z X       
  • 24. Z-Transform Properties: Convolution • Convolution in time domain is multiplication in z-domain • Example: Let’s calculate the convolution of • Multiplications of z-transforms is • ROC: if |a|<1 ROC is |z|>1 if |a|>1 ROC is |z|>|a| • Partial fractional expansion of Y(z) Chapter 3: The Z-Transform 23         2 x 1 x 2 1 Z 2 1 R R : ROC z X z X n x n x               n u n x and n u a n x 2 n 1     a z : ROC az 1 1 z X 1 1       1 z : ROC z 1 1 z X 1 2              1 1 2 1 z 1 az 1 1 z X z X z Y         1 z : ROC assume 1 1 1 1 1 1 1               az a z a z Y         n u a n u a 1 1 n y 1 n   
  • 25. Some Z-transform properties Chapter 3: The Z-Transform 24
  • 26. 3.3 The Inverse Z-Transform • Formal inverse z-transform is based on a Cauchy integral • Less formal ways sufficient most of the time – Inspection method – Partial fraction expansion – Power series expansion • Inspection Method Make use of known z-transform pairs such as Example: The inverse z-transform of Chapter 3: The Z-Transform 25   a z az 1 1 n u a 1 Z n              n u 2 1 n x 2 1 z z 2 1 1 1 z X n 1            
  • 27. Inverse Z-Transform by Partial Fraction Expansion • Assume that a given z-transform can be expressed as • Apply partial fractional expansion • First term exist only if M>N – Br is obtained by long division • Second term represents all first order poles • Third term represents an order s pole – There will be a similar term for every high-order pole • Each term can be inverse transformed by inspection Chapter 3: The Z-Transform 26          N 0 k k k M 0 k k k z a z b z X                     s 1 m m 1 i m N i k , 1 k 1 k k N M 0 r r r z d 1 C z d 1 A z B z X
  • 28. Inverse Z-Transform by Partial Fraction Expansion • Coefficients are given as • Easier to understand with examples Chapter 3: The Z-Transform 27                     s 1 m m 1 i m N i k , 1 k 1 k k N M 0 r r r z d 1 C z d 1 A z B z X     k d z 1 k k z X z d 1 A               1 i d w 1 s i m s m s m s i m w X w d 1 dw d d ! m s 1 C                
  • 29. Example 5: 2nd Order Z-Transform Chapter 3: The Z-Transform 28   2 1 z : ROC z 2 1 1 z 4 1 1 1 z X 1 1                                       1 2 1 1 z 2 1 1 A z 4 1 1 A z X   1 4 1 2 1 1 1 z X z 4 1 1 A 1 4 1 z 1 1                                2 2 1 4 1 1 1 z X z 2 1 1 A 1 2 1 z 1 2                            
  • 30. Example 5 Continued • ROC extends to infinity – Indicates right sided sequence Chapter 3: The Z-Transform 29   2 1 z z 2 1 1 2 z 4 1 1 1 z X 1 1                           n u 4 1 - n u 2 1 2 n x n n             
  • 31. Example 6 • Long division to obtain Bo Chapter 3: The Z-Transform 30       1 z z 1 z 2 1 1 z 1 z 2 1 z 2 3 1 z z 2 1 z X 1 1 2 1 2 1 2 1                        1 z 5 2 z 3 z 2 1 z 2 z 1 z 2 3 z 2 1 1 1 2 1 2 1 2                   1 1 1 z 1 z 2 1 1 z 5 1 2 z X                  1 2 1 1 z 1 A z 2 1 1 A 2 z X          9 z X z 2 1 1 A 2 1 z 1 1                 8 z X z 1 A 1 z 1 2     
  • 32. Example 5 Continued • ROC extends to infinity – Indicates right-sided sequence Chapter 3: The Z-Transform 31   1 z z 1 8 z 2 1 1 9 2 z X 1 1                 n 8u - n u 2 1 9 n 2 n x n         
  • 33. Inverse Z-Transform by Power Series Expansion • The z-transform is power series • In expanded form • Z-transforms of this form can generally be inversed easily • Especially useful for finite-length series Chapter 3: The Z-Transform 32           n n z n x z X                          2 1 1 2 2 1 0 1 2 z x z x x z x z x z X
  • 34.      1 2 1 1 1 2 z 2 1 1 z 2 1 z z 1 z 1 z 2 1 1 z z X                             1 n 2 1 n 1 n 2 1 2 n n x                                 2 n 0 1 n 2 1 0 n 1 1 n 2 1 2 n 1 n x Example 6