- The speaker proposes a framework called "higher-order link prediction" to evaluate models of higher-order network data. This extends classical link prediction to predict new groups of nodes that will form simplices.
- Analysis of datasets shows that many have many "open triangles" of nodes connected by edges but not in a simplex. A simple probabilistic model can account for variation in open triangles.
- Simplicial closure probability depends on edge density and tie strength between nodes, both for 3 and 4-node groups.
- For higher-order link prediction, the speaker evaluates score functions based on edge weights, structural properties, whole-network similarities, and machine learning to predict which open triangles will close.