SlideShare a Scribd company logo
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 2, April 2020, pp. 830~838
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i2.14838  830
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Single object detection to support requirements
modeling using faster R-CNN
Nathanael Gilbert, Andre Rusli
Department of Informatics, Universitas Multimedia Nusantara, Indonesia
Article Info ABSTRACT
Article history:
Received Jul 5, 2019
Revised Jan 7, 2020
Accepted Feb 19, 2020
Requirements engineering (RE) is one of the most important phases of
a software engineering project in which the foundation of a software product
is laid, objectives and assumptions, functional and non-functional needs are
analyzed and consolidated. Many modeling notations and tools are developed
to model the information gathered in the RE process, one popular framework
is the iStar 2.0. Despite the frameworks and notations that are introduced,
many engineers still find that drawing the diagrams is easier done manually
by hand. Problem arises when the corresponding diagram needs to be
updated as requirements evolve. This research aims to kickstart
the development of a modeling tool using Faster Region-based Convolutional
Neural Network for single object detection and recognition of hand-drawn
iStar 2.0 objects, Gleam grayscale, and Salt and Pepper noise to digitalize
hand-drawn diagrams. The single object detection and recognition tool
is evaluated and displays promising results of an overall accuracy and
precision of 95%, 100% for recall, and 97.2% for the F-1 score.
Keywords:
Faster R-CNN
iStar 2.0
Object detection and
recognition
Requirements modeling tool
This is an open access article under the CC BY-SA license.
Corresponding Author:
Andre Rusli,
Department of Informatics,
Universitas Multimedia Nusantara,
Kampus UMN, Scientia Garden, Jl. Boulevard Gading Serpong, Tangerang, Banten, 15810, Indonesia.
Email: andre.rusli@umn.ac.id
1. INTRODUCTION
Broadly speaking, software systems requirements engineering (RE) is the process of discovering that
purpose, by identifying stakeholders and their needs and documenting these in a form that is amenable
to analysis, communication, and subsequent implementation [1]. The importance of RE is emphasized
to develop effective software and reduce software mistakes in the early stage of software development [2].
Requirements modeling uses a combination of text and diagrammatic forms to depict requirements in a way
that is relatively easy to understand, and more important, straightforward to review for correctness,
completeness, and consistency [3]. In analyzing software requirements, after the domain is understood and
elicited, requirements are evaluated and negotiated, then the consolidated requirements are specification
specified and documented [4]. This requirements specification and documentation is where requirements
modeling commonly occurs. Throughout requirements modeling, the primary focus is on what, not how,
on iStar 2.0’s strategic dependency model, the focus is on describing the dependency relationship between
each actor in the system, along with the intentional elements. In the requirements engineering community,
iStar 2.0 is gaining traction both in the academical and industrial fields and is used by many players in
the community [5]. The framework is applied and implemented in various sectors, such as healthcare,
security analysis, and eCommerce [6].
TELKOMNIKA Telecommun Comput El Control 
Single object detection to support requirements … (Nathanael Gilbert)
831
When modeling requirements and designing software products, many engineers still resort to
drawing the diagrams manually by hand instead of using software tools. One reason could be that
hand-drawing the diagrams could lead to more focused work and less distraction [7]. However,
in a sustainable project with continuous revisions caused by requirements evolution, it gradually became
apparent that the digitalization of the hand-drawn diagram is essential in an ever-evolving requirements
engineering activities. One of the first steps in diagram digitalization is object detection and recognition.
Object detection and recognition aim to detect and recognize every object belonging to a known class in an
image [8]. Several pieces of research have shown the ability of the advanced neural networks in image/object
recognition [9, 10, 11]; henceforth, this research meant to utilize neural network architecture to implement
machine learning techniques to detect and recognize objects in the requirements diagram. In the machine
learning field, the Region-based Convolutional Neural Network (R-CNN) architecture is a popular method
with promising performance. The rapid growth has proposed the currently known Faster R-CNN
(from its predecessors, the R-CNN, and the Fast R-CNN) with better accuracy and processing [12].
Other research also displays the potential of Faster R-CNN to detect an object in an image with high accuracy
with the correct dataset [13].
Furthermore, image pre-processing also holds a vital role in processing datasets in object
detection [14]. One standard process is the color-to-grayscale technique. Grayscale images are images with
only have a single value for its every pixel, resulting in a grey image, which tends to be black on pixels with
weak intensity and white on pixels with high intensity [15]. This research uses Gleam as the greyscaling
method, as it is argued that compared to other techniques, Gleam performs better [16].
Furthermore, to perform upsampling of the dataset towards a high-performing model, Salt and Pepper noise
is utilized for its ability to replicate image data with differences by inserting wrong bit transmission
and analog to digital conversion [17].
This paper reports the result of the early study which aims to implement and evaluate
the performance of Faster R-CNN, Gleam, and Salt and Pepper technique for single object detection
and recognition in a hand-drawn iStar 2.0 strategic dependency model for requirements modeling. The
model’s performance is measured by calculating the precision, accuracy, recall, and F-measure when
classifying the notation of iStar 2.0 symbols.
2. RESEARCH METHOD
In conducting the research to implement and evaluate the performance of Faster R-CNN, Gleam,
and Salt and Pepper technique to for single object detection and recognition in a hand-drawn iStar 2.0
strategic dependency model for requirements modeling, the research methodologies are as follows.
- Literature review and requirements analysis,
- Experiment and system design,
- System construction and coding,
- Testing and evaluation, and
- Research documentation.
Firstly, literature review and requirements analysis activities are conducted to define the problem,
then propose a solution, in this case, deciding the most suitable methods and practices. Secondly, after works
of literature are reviewed, and problems are defined the architecture and system design is done using
flowcharts to design the flow of the steps conducted in the object detection and recognition program and UI
mockups for testing purposes. Then the designed system is constructed, and testing is conducted to evaluate
the performance of the machine learning model. Lastly, all the activities conducted in the research
is documented.
2.1. iStar 2.0
The i* language was presented in the mid-nineties [18] as a goal- and actor-oriented modeling and
reasoning framework. It consists of a modeling language along with reasoning techniques for analyzing
created models. i* was quickly adopted by the research community in fields such as requirements
engineering and business mod- eling. Benefiting from its intentionally open nature, multiple extensions of
the i* language have been proposed (see [19, 20] for useful reviews), either by slightly redefining some
existing constructs, by detailing some semantic issues not completely defined in the seminal proposal,
or by proposing new constructs for specific domains. As a response to the need of balancing the framework’s
open nature and a possible solution to the aforementioned adoption problems, the i* research community
started an initiative to identify a widely agreed upon set of core concepts in the i* language. The main goal
is to keep open the ability to tailor the framework while agreeing on the fundamental constructs, thus began
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 830 - 838
832
the work to propose an update to the framework, and to clearly distinguish this core language from its
predecessors, it is named iStar 2.0.
2.1.1. iStar 2.0 elements
Actors are central to the social modeling nature of the language [6]. Actors are active, autonomous
entities that aim at achieving their goals by exercising their know-how, in collaboration with other actors.
Whenever distinguishing the type of actor is not relevant, either because of the scenario-at-hand
or the modeling stage, the notion of generic actor-without specialization-can be used in the model. Actors are
represented graphically as circles.
Intentional elements are the things actors want. As such, they model different kinds of requirements
and are central to the iStar 2.0 language. An intentional element appearing inside the boundary of an actor
denotes something that is desired or wanted by that actor. The following elements are included in
the language [6], with examples shown in Figure 1:
- Goal: a state of affairs that the actor wants to achieve and that has clear-cut criteria of achievement.
- Quality: an attribute for which an actor desires some level of achievement. Qualities can guide the search
for ways of achieving goals, and also serve as criteria for evaluating alternative ways of achieving goals.
- Task: represents actions that an actor wants to be executed, usually with the purpose of achieving
some goal.
- Resource: A physical or informational entity that the actor requires in order to perform a task.
Figure 1. iStar 2.0 intentional elements [6]
2.2. Faster R-CNN, Gleam, and Salt and Pepper Noise
Faster Region-based Convolutional Neural Network is an upgraded version of R-CNN with a better
performance for object detection. Figure 2 shows the architecture of Faster R-CNN, with steps
as follows [21].
- Region Proposal Network: The very fast task is to search in the given input image the spaces where there
is a probability of location of object.The position of the object in an image can be located [22].
These regions where there is possibility of object is bounded by a region known as region of
interest(ROI).
- Classification: The stage is to classify the regions of interest identified in the above steps into
corresponding classes.The technique deployed here is Convolution Neural Networks(CNN).
In the proposed approach there is rigrous process of identifying all spaces of object location in
image.However if no regions are identified in the first stage of algorithm then there is no need to further
go to the second step of approach [23].
Figure 2. Faster R-CNN Architecture [21]
TELKOMNIKA Telecommun Comput El Control 
Single object detection to support requirements … (Nathanael Gilbert)
833
Color-to-grayscale is the transformation of RGB channel to an grayscaled image. Grayscale is
the condition in which an image consist only a single value for each of its pixel. Grayscaled image generally
consists of grey, black (in pixels with weak intensity), and white (in pixels with strong intensity) [15].
Formula (1) is the formula to convert the RGB channel in a pixel into a single value ranging from 0-255
(grayscale) [16], where the R’, G’, and B’ are get from the RGB channels which are gamma corrected using
Formula (2). Figure 3 shows the result of a grayscaling process using Gleam.
𝐺𝑙𝑒𝑎𝑚 =
1
3
(𝑅′
+ 𝐺′
+ 𝐵′
) (1)
(2)
Figure 3. Example of grayscaling using Gleam
Salt and Pepper noise is used for replicating images in the dataset for training the model by applying
noise in the original image. It does so by changing pixel value into the minimum or maximum value
accepted [24, 25]. Figure 4 below shows the result of when we apply the noise into an image.
Figure 4. Application of Salt and Pepper Noise on a Hand-Drawn Task Object in iStar 2.0s
2.3. Requirements modeling tools
Several researches have already emphasized the importance i* framework [18] for modeling
and documenting requirements, including the newly-standardized iStar 2.0 [6, 19, 20]. On previous
researches, the proposal of integrating several requirements modeling framework and notation, including the
early i* framework is conducted and showed the potential of using i* as a tool to model stakeholder
dependency in analyzing early-phase requirements [26, 27]. Another research recognized the need of a tool
for drawing and editing iStar 2.0 diagrams, then developed the piStar tool for supporting the creation of the
requirements model [28]. Other researches proposed extensions to the iStar 2.0 [29] and prototype for
generating meaningful layout [30]. However, the topic on digitalization and the use of machine learning
architecture for object detection on iStar diagrams is still rare to be found. This research aims to address the
missing topic by reviewing its importance and kickstarting the development of such tool.
2.4. Single object detection and recognition for iStar 2.0
Using the architecture provided by the Faster R-CNN technique, grayscaling using Gleam,
and upsampling the dataset by replicating the image using Salt and Pepper, the program is then designed.
Figure 5 shows the flow in which the training activity is done to built the machine learning model which will
be used to detect and recognize objects. At the beginning, 600 image data are collected as the dataset,
consisting of the drawings of 5 objects in the iStar 2.0 notation, goal, quality, actor, task, and resource.
After the dataset is collected, labelling is done for each object, resulting in an XML file containing all
the images and their labels. The generated XML is then converted to a CSV fille which then is used to train
the machine learning model by running the export inference graph. These actions are done by utilizing
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 830 - 838
834
the TensorFlow Object Detection API. The resulting model is then tested and measured to find out
the performance, based on a confusion matrix to calculate accuracy, recall, precision and the F-1 score
of the model. Several configurations are tested to find the best scenario. The results are described in the next
section of this paper.
Moreover, besides designing the training activity along with all its processes, the flow
of the program feature which will detect and recognize submitted and unlabeled image data is also designed,
as shown in Figure 6. The flow starts by getting the submitted image file of a hand-drawn iStar 2.0 object,
then its pixels are converted and grayscaled (using Gleam). Furthermore, path initialization is done so that
the developed object detection API knows the exact path of the file. NUM_CLASSES describes the number
of existing classes in which an object will be classified to. An object is considered belonging to a class when
it achieves a score bigger than 0.9, if there are more than one class that achieves 0.9, then the first identified
class is considered as the correct class.
Figure 5. Flowchart training model
Figure 6. Flowchart iStar 2.0 object detection and recognition
TELKOMNIKA Telecommun Comput El Control 
Single object detection to support requirements … (Nathanael Gilbert)
835
3. RESULTS AND ANALYSIS
In order to measure the model’s performance and evaluate its potential to be further developed as
a support tool for requirements modeling, seven test scenarios were designed and experiments are conducted
to find the best condition from all scenarios to build a high-performing model.
3.1. Test Scenarios
Various test scenarios are prepared by using various learning rate, feature extractor, initial crop size,
maxpool kernel, and maxpool stride. The details of the seven test scenarios experimented can be seen in
Table 1. From those seven scenarios, the model’s ability to detect and recognize objects is then measured
based on the confusion matrix result, calculating their accuracy, precision, recall, and F-1 Score.
Table 1. Test scenarios
Scenario
Learning
Rate
Feature Extractor
Initial
crop
size
Maxpool
Kernel
Maxpool
Stride
Anchor Generator
Type
First
stage
features
stride
Height
Stride
Width
Stride
1 0.0003 faster_rcnn_inception_resnet_v2 8 17 1 1 8 8
2 0.0002 faster_rcnn_inception _v2 16 14 2 2 16 16
3 0.0002 faster_rcnn_inception_resnet_v2 16 14 2 2 16 16
4 0.0001 faster_rcnn_inception_v2 16 14 2 2 16 16
5 0.0003 faster_rcnn_inception_v2 8 17 1 1 8 8
6 0.0003 faster_rcnn_inception_resnet_v2 8 14 2 2 8 8
7 0.0002 faster_rcnn_inception _v2 16 17 1 1 16 16
3.2. Result
After experiments are conducted based on the various configuration described in the previous
section, test results are as described in Table 2. The highest performing scenario is found on the fourth
scenario, using learning rate 0.0001, feature extractor type faster_rcnn_inception_v2 with 16 first stage
features stride, 14 initial crop size, 2 maxpool kernel and stride, and 16 height and width stride, resulting in
an average of 94% accuracy, 95% precision, 100% recall, and 97.2% F1-Score for each class.
Table 2. Test results
Scenario
Average
Accuracy Precision Recall F1-score
1 57% 63% 97% 75,05%
2 94% 94% 100% 96,87%
3 42% 52% 95% 65,51%
4 95% 95% 100% 97,20%
5 94% 95% 97% 95,91%
6 39% 48% 96% 60,92%
7 88% 91% 99% 94,36%
From the results, it can be seen that the role of feature extractor, especially if we examine
Scenario 1, 2, and 3, where feature extractor of type faster_rcnn_extractor_v2 performs much better than
the other. Furthermore, initial crop size also proves to be quite impactful looking at Scenario 2 and 7.
The learning rate can also be seen to be a determining factor even though it might not result in a big gap,
between Scenario 4 and 2, for example.
In addition to the machine learning model as described above, our research also developed a simple
web-based tool as the interface for users to demonstrate the model’s ability to detect and recognize uploaded
hand-drawn iStar 2.0 notions. Figure 7 shows the sample image that will be detected and recognized.
The notion depicted in Figure 7 is the Task in the iStar 2.0 strategic dependency model.
Figure 8 displays the home page in which the Choose File feature can be clicked to upload the sample image,
then when the Check Result button is clicked, the software will pre-process the image, detect the object,
and determine if it is Task, Resource, Quality, Goal, or Actors, along with its match rate. Figure 9 shows
the result, where the software is seen to be able to guess correctly what notion the uploaded image
depicted, Task.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 830 - 838
836
Figure 7. Sample Image for Object Detection
Figure 8. User interface of the web-based testing application
Figure 9. User interface when the application displays the object detection result
TELKOMNIKA Telecommun Comput El Control 
Single object detection to support requirements … (Nathanael Gilbert)
837
4. CONCLUSION
This research utilized Faster R-CNN using a dataset comprising of hand-drawn iStar 2.0 objects
such as Generic Actor, Task, Resource, Quality, and Goal. Images are first pre-processed and replicated
using Gleam for its color-to-grayscale technique and Salt and Pepper noise to give noise to the original
dataset and duplicate the number of images in the dataset. The resulting program is best performing using
0.0001 learning rate, feature extractor type faster_rcnn_inception_v2 with 16 first stage features stride,
14 initial crop size, 2 maxpool kernel and stride, and 16 height and width stride, resulting in an average
of 94% accuracy, 95% precision, 100% recall, and 97.2% F1-Score for each class. The conducted research
displays the potential of Faster-RCNN, Gleam, and Salt and Pepper to build a model for detecting
and recognizing objects drawn using the iStar 2.0 to enable the digitalization requirements diagram to support
the requirements modeling activity in software development. Future works include improving the dataset and
machine learning model to be able to digitalize a whole iStar 2.0 diagram, enabling the multi-object
detection, and developing tools for editing and creating the whole diagram using the iStar 2.0 and other
notation for requirements modeling. Optical character recognition techniques can also be integrated
to be able to read texts inside the drawn objects.
ACKNOWLEDGEMENTS
This research was supported by the Mobile Development Laboratory in Universitas Multimedia
Nusantara. We also thank our colleagues from the Faculty of Engineering and Informatics who provided
insight and expertise that greatly assisted the research, although they may not agree with all
of the interpretations/conclusions of this paper.
REFERENCES
[1] Nuseibeh, B., Easterbrook, S., “Requirements Engineering: A Roadmap,” Proceedings of the Conference on the
Future of Software Engineering. Limerick, pp. 35-46, 2000.
[2] Chakraborty, A., Baowaly, M.K., Arefin, A., Bahar, A.N., “The Role of Requirements Engineering in Software
Development Life Cycle,” Journal of Emerging Trends in Computing and information Sciences, vol 3, no. 5,
pp. 723-729. 2012
[3] Pressman, R.S., Maxim, B., “Software Engineering: A Practitioner's Approach,” 8th Edition. New York:
McGraw-Hill Education. 2014.
[4] Van Lamsweerde, A., “Requirements Engineering: From System Goals to UML Models to Software
Specification,” John Wiley & Sons Ltd: Chichester. 2009.
[5] X. Franch, A. Maté, J. C. Trujillo and C. Cares, "On the joint use of i∗ with other modelling frameworks: A vision
paper," 2011 IEEE 19th International Requirements Engineering Conference, pp. 133-142, Trento, 2011.
[6] Dalpiaz, F., Franch, X., Horkoff, J., “iStar 2.0 Language Guide,”, arXiv preprint arXiv:1605.07767v3, 2016.
[7] Meltzer, L., “Executive Function in Education: From Theory to Practice,” New York: The Guilford Press, 2007.
[8] Amit Y., Felzenszwalb P., “Object Detection”. In: Ikeuchi K. (eds) Computer Vision. Springer, Boston, MA, 2014.
[9] Rahmat, R.F., Dennis, Sitompul, O.S., Purnamawati, S., Budiarto, R. “Advertisement billboard detection and
geotagging system with inductive transfer learning” TELKOMNIKA Telecommun Comput El Control, vol. 17,
no. 5, pp.2659-2666, 2019.
[10] Sudiatmika, I.B.K, Rahman, F., Trisno, Suyoto, “Image forgery detection using error level analysis and deep
learning,” TELKOMNIKA, vol. 17, no. 2, pp.653-659, 2019.
[11] Sugiarti, Yuhandri, Na’am, J., Indra, D., Santony, J., “An artificial neural network approach for detecting skin
cancer,” TELKOMNIKA, vol. 17, no. 2, pp.788-793, 2019.
[12] Jiang, H., Learned-Miller, E., “Face Detection with the Faster R-CNN,” 12th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2017), pp. 650-657, Washington, 2017.
[13] Kafedziski, V., Pecov, S., Tanevski, D., “Detection and Classification of Land Mines from Ground Penetrating
Radar Data Using Faster R-CNN,” 26th Telecommunications Forum (TELFOR), Belgrade. 2018.
[14] Pal, K.K., Sudeep, S., “Preprocessing for image classification by convolutional neural networks,” IEEE
International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT),
pp. 1778-1781, Bangalore. 2016.
[15] Fatta, H.A. “Konversi Format Citra Rgb Ke Format Grayscale Menggunakan Visual Basic,” Seminar Nasional
Teknolog, Yogyakarta 2007.
[16] Kanan C, Cottrell GW., “Color-to-Grayscale: Does the Method Matter in Image Recognition?,” PLoS ONE, 2012.
[17] Nazaré T.S., da Costa G.B.P., Contato W.A., Ponti M., “Deep Convolutional Neural Networks and Noisy Images,”
In: Mendoza M., Velastín S. (eds), “Progress in Pattern Recognition, Image Analysis,” Computer Vision, and
Applications. CIARP 2017. Lecture Notes in Computer Science, vol 10657. Springer, Cham. 2018.
[18] Yu, E.S.K., “Modelling strategic relationships for process reengineering,” PhD thesis, University of Toronto. 1996.
[19] J. Horkoff et al., "Taking goal models downstream: A systematic roadmap," IEEE Eighth International Conference
on Research Challenges in Information Science (RCIS), pp. 1-12, Marrakech, 2014.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 830 - 838
838
[20] Horkoff, J., Yu, E., “Comparison and evaluation of goal-oriented satisfaction analysis techniques,” Requirements
Engineering, vol. 18, no. 3, pp. 199-222, 2013.
[21] Abbas, S.M., Singh, S.N., “Region-based Object Detection and Classification using Faster R-CNN,” 4th
International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, 2018.
[22] Ren, S., He, K., Girshick, R., Zhang, X., and Sun, J., “Object detection networks on convolutional feature maps,”
Coronell Universty, arXiv:1504.06066, 2016.
[23] Szegedy, C., A. Toshev, and D. Erhan, “Deep neural networks for object detection,” in Neural Information
Processing Systems (NIPS), 2013.
[24] Esakkirajan, S., Veerakumar, T., Subramanyam, A. N., Premchand, C. H., “Removal of High-Density Salt and
Pepper Noise Through Modified Decision Based Unsymmetric Trimmed Median Filter,” IEEE Signal Processing
Letters, vol. 18, no. 5, pp. 287-290, 2011.
[25] Chan, R.H., Ho, C., Nikolova, M., “Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail-
Preserving Regularization,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1479–1485, 2005.
[26] Rusli, A., Shigo, O., “An Integrated Tool to Support Early-Phase Requirements Analysis,” 4th International
Conference on New Media Studies (CONMEDIA 2017), Yogyakarta, 2017.
[27] Rusli, A. Shigo, O., “Integrated Framework for Software Requirements Analysis and Its Support Tool,”
In: Requirements Engineering Toward Sustainable World: Third Asia-Pacific Symposium, APRES 2016,
Nagoya, 2016.
[28] Pimentel, J., Castro, J., “piStar Tool – A Pluggable Online Tool for Goal Modeling,” IEEE 26th International
Requirements Engineering Conference (RE), Banff, 2018.
[29] Goncalves, E., Araujo, J., Castro, J. Towards Extension Mechanisms in iStar 2.0. iSTAR@CAiSE. Tallinn. 2018
[30] Wang Y., Li T., Zhang H., Sun J., Ni Y., Geng C. A Prototype for Generating Meaningful Layout of iStar Models.
In: Woo C., Lu J., Li Z., Ling T., Li G., Lee M. (eds) Advances in Conceptual Modeling. ER 2018. Lecture Notes
in Computer Science, vol. 11158. Springer, Cham. 2018.
BIOGRAPHIES OF AUTHORS
Nathanael Gilbert graduated from the Department of Informatics in Universitas Multimedia
Nusantara, Indonesia, in November 2019. He has a background in research in applied machine
learning for image processing and holds keen interests in the area of Android-based mobile
application development.
Andre Rusli received his Master’s of Science degree in Information Environment from Tokyo
Denki University, Japan, in 2017, focusing in the Software Requirements Engineering field.
He is currently a lecturer and researcher in Universitas Multimedia Nusantara and also serving as
the head coordinator of the Mobile Development Laboratory. His research interests include
requirements engineering in software application development, natural language processing, and
human computer interaction.

More Related Content

PDF
Lq3620002008
PDF
Novel character segmentation reconstruction approach for license plate recogn...
PDF
IRJET- Automatic Database Schema Generator
PDF
International Journal of Computational Engineering Research(IJCER)
PDF
IRJET - Mobile Chatbot for Information Search
PDF
SECURETI: Advanced SDLC and Project Management Tool for TI (Philippines)
PDF
IRJET- Intelligent Character Recognition of Handwritten Characters
PDF
IRJET- Semantic Retrieval of Trademarks based on Text and Images Conceptu...
Lq3620002008
Novel character segmentation reconstruction approach for license plate recogn...
IRJET- Automatic Database Schema Generator
International Journal of Computational Engineering Research(IJCER)
IRJET - Mobile Chatbot for Information Search
SECURETI: Advanced SDLC and Project Management Tool for TI (Philippines)
IRJET- Intelligent Character Recognition of Handwritten Characters
IRJET- Semantic Retrieval of Trademarks based on Text and Images Conceptu...

What's hot (20)

PDF
Deepcoder to Self-Code with Machine Learning
PDF
Bhadale group of companies cross- discipline engineering catalogue
PDF
IRJET- Recruitment Chatbot
PDF
IRJET - Chatbot for HR Department using AIML and LSA
PDF
Eliciting and Visualising Trust Expectations using Persona Trust Characterist...
PDF
IRJET- Photo Optical Character Recognition Model
PDF
Study and Comparison of Open Source and Licensed VLSI CAD Tools using CMOS De...
PDF
Can “Feature” be used to Model the Changing Access Control Policies?
PDF
Simulation of an Organization of Spatial Intelligent Agents in the Visual C#....
PDF
RECOMMENDATION GENERATION JUSTIFIED FOR INFORMATION ACCESS ASSISTANCE SERVICE...
PDF
Revanth Vemulapalli_pdf
PDF
AN ITERATIVE HYBRID AGILE METHODOLOGY FOR DEVELOPING ARCHIVING SYSTEMS
PDF
UML BASED MODELING OF ECDSA FOR SECURED AND SMART E-GOVERNANCE SYSTEM
PDF
IRJET- Visual Information Narrator using Neural Network
PDF
IRJET - Development of Chatbot Automation Application – DGCT CSE ALEXA
PPT
Software engg. pressman_ch-9
PDF
Bt0081 software engineering
DOCX
VTU final year project report Main
PDF
IRJET - Conversion of Unsupervised Data to Supervised Data using Topic Mo...
Deepcoder to Self-Code with Machine Learning
Bhadale group of companies cross- discipline engineering catalogue
IRJET- Recruitment Chatbot
IRJET - Chatbot for HR Department using AIML and LSA
Eliciting and Visualising Trust Expectations using Persona Trust Characterist...
IRJET- Photo Optical Character Recognition Model
Study and Comparison of Open Source and Licensed VLSI CAD Tools using CMOS De...
Can “Feature” be used to Model the Changing Access Control Policies?
Simulation of an Organization of Spatial Intelligent Agents in the Visual C#....
RECOMMENDATION GENERATION JUSTIFIED FOR INFORMATION ACCESS ASSISTANCE SERVICE...
Revanth Vemulapalli_pdf
AN ITERATIVE HYBRID AGILE METHODOLOGY FOR DEVELOPING ARCHIVING SYSTEMS
UML BASED MODELING OF ECDSA FOR SECURED AND SMART E-GOVERNANCE SYSTEM
IRJET- Visual Information Narrator using Neural Network
IRJET - Development of Chatbot Automation Application – DGCT CSE ALEXA
Software engg. pressman_ch-9
Bt0081 software engineering
VTU final year project report Main
IRJET - Conversion of Unsupervised Data to Supervised Data using Topic Mo...
Ad

Similar to Single object detection to support requirements modeling using faster R-CNN (20)

PDF
A SOFTWARE REQUIREMENT ENGINEERING TECHNIQUE USING OOADA-RE AND CSC FOR IOT B...
PDF
User stories collection via interactive chatbot to support requirements gathe...
PDF
IRJET- Face Recognition using Landmark Estimation and Convolution Neural Network
PDF
Effort Estimation Development Model for Web-based Mobile Application Using Fu...
PDF
Hand Gesture Identification
PDF
Currency Recognition using Machine Learning
PDF
IRJET- Detection and Recognition of Hypertexts in Imagery using Text Reco...
PDF
Project Report file 1.pdf;jhghjk[][jh;'';lkb
PDF
Extreme software estimation (xsoft estimation)
PDF
CRIME EXPLORATION AND FORECAST
PDF
H1803044651
PDF
Extreme software estimation (xsoft estimation)
PDF
IRJET - Virtual Mechanisms
PDF
IRJET- Offline Transcription using AI
PDF
Image Based Tool for Level 1 and Level 2 Autistic People
PDF
IRJET - Scrutinizing Attributes Influencing Role of Information Communication...
PDF
IMPLEMENTATION OF DYNAMIC COUPLING MEASUREMENT OF DISTRIBUTED OBJECT ORIENTED...
PDF
IMPLEMENTATION OF DYNAMIC COUPLING MEASUREMENT OF DISTRIBUTED OBJECT ORIENTED...
PDF
Development of Information Extraction for Data Analysis using NLP
PDF
STOCKSENTIX: A MACHINE LEARNING APPROACH TO STOCKMARKET
A SOFTWARE REQUIREMENT ENGINEERING TECHNIQUE USING OOADA-RE AND CSC FOR IOT B...
User stories collection via interactive chatbot to support requirements gathe...
IRJET- Face Recognition using Landmark Estimation and Convolution Neural Network
Effort Estimation Development Model for Web-based Mobile Application Using Fu...
Hand Gesture Identification
Currency Recognition using Machine Learning
IRJET- Detection and Recognition of Hypertexts in Imagery using Text Reco...
Project Report file 1.pdf;jhghjk[][jh;'';lkb
Extreme software estimation (xsoft estimation)
CRIME EXPLORATION AND FORECAST
H1803044651
Extreme software estimation (xsoft estimation)
IRJET - Virtual Mechanisms
IRJET- Offline Transcription using AI
Image Based Tool for Level 1 and Level 2 Autistic People
IRJET - Scrutinizing Attributes Influencing Role of Information Communication...
IMPLEMENTATION OF DYNAMIC COUPLING MEASUREMENT OF DISTRIBUTED OBJECT ORIENTED...
IMPLEMENTATION OF DYNAMIC COUPLING MEASUREMENT OF DISTRIBUTED OBJECT ORIENTED...
Development of Information Extraction for Data Analysis using NLP
STOCKSENTIX: A MACHINE LEARNING APPROACH TO STOCKMARKET
Ad

More from TELKOMNIKA JOURNAL (20)

PDF
Earthquake magnitude prediction based on radon cloud data near Grindulu fault...
PDF
Implementation of ICMP flood detection and mitigation system based on softwar...
PDF
Indonesian continuous speech recognition optimization with convolution bidir...
PDF
Recognition and understanding of construction safety signs by final year engi...
PDF
The use of dolomite to overcome grounding resistance in acidic swamp land
PDF
Clustering of swamp land types against soil resistivity and grounding resistance
PDF
Hybrid methodology for parameter algebraic identification in spatial/time dom...
PDF
Integration of image processing with 6-degrees-of-freedom robotic arm for adv...
PDF
Deep learning approaches for accurate wood species recognition
PDF
Neuromarketing case study: recognition of sweet and sour taste in beverage pr...
PDF
Reversible data hiding with selective bits difference expansion and modulus f...
PDF
Website-based: smart goat farm monitoring cages
PDF
Novel internet of things-spectroscopy methods for targeted water pollutants i...
PDF
XGBoost optimization using hybrid Bayesian optimization and nested cross vali...
PDF
Convolutional neural network-based real-time drowsy driver detection for acci...
PDF
Addressing overfitting in comparative study for deep learningbased classifica...
PDF
Integrating artificial intelligence into accounting systems: a qualitative st...
PDF
Leveraging technology to improve tuberculosis patient adherence: a comprehens...
PDF
Adulterated beef detection with redundant gas sensor using optimized convolut...
PDF
A 6G THz MIMO antenna with high gain and wide bandwidth for high-speed wirele...
Earthquake magnitude prediction based on radon cloud data near Grindulu fault...
Implementation of ICMP flood detection and mitigation system based on softwar...
Indonesian continuous speech recognition optimization with convolution bidir...
Recognition and understanding of construction safety signs by final year engi...
The use of dolomite to overcome grounding resistance in acidic swamp land
Clustering of swamp land types against soil resistivity and grounding resistance
Hybrid methodology for parameter algebraic identification in spatial/time dom...
Integration of image processing with 6-degrees-of-freedom robotic arm for adv...
Deep learning approaches for accurate wood species recognition
Neuromarketing case study: recognition of sweet and sour taste in beverage pr...
Reversible data hiding with selective bits difference expansion and modulus f...
Website-based: smart goat farm monitoring cages
Novel internet of things-spectroscopy methods for targeted water pollutants i...
XGBoost optimization using hybrid Bayesian optimization and nested cross vali...
Convolutional neural network-based real-time drowsy driver detection for acci...
Addressing overfitting in comparative study for deep learningbased classifica...
Integrating artificial intelligence into accounting systems: a qualitative st...
Leveraging technology to improve tuberculosis patient adherence: a comprehens...
Adulterated beef detection with redundant gas sensor using optimized convolut...
A 6G THz MIMO antenna with high gain and wide bandwidth for high-speed wirele...

Recently uploaded (20)

PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPTX
additive manufacturing of ss316l using mig welding
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
DOCX
573137875-Attendance-Management-System-original
PPTX
Construction Project Organization Group 2.pptx
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PPTX
Sustainable Sites - Green Building Construction
PPT
Total quality management ppt for engineering students
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PDF
737-MAX_SRG.pdf student reference guides
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPTX
Artificial Intelligence
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
additive manufacturing of ss316l using mig welding
Internet of Things (IOT) - A guide to understanding
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
573137875-Attendance-Management-System-original
Construction Project Organization Group 2.pptx
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Automation-in-Manufacturing-Chapter-Introduction.pdf
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Categorization of Factors Affecting Classification Algorithms Selection
Sustainable Sites - Green Building Construction
Total quality management ppt for engineering students
R24 SURVEYING LAB MANUAL for civil enggi
737-MAX_SRG.pdf student reference guides
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Artificial Intelligence
Fundamentals of safety and accident prevention -final (1).pptx

Single object detection to support requirements modeling using faster R-CNN

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 2, April 2020, pp. 830~838 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i2.14838  830 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Single object detection to support requirements modeling using faster R-CNN Nathanael Gilbert, Andre Rusli Department of Informatics, Universitas Multimedia Nusantara, Indonesia Article Info ABSTRACT Article history: Received Jul 5, 2019 Revised Jan 7, 2020 Accepted Feb 19, 2020 Requirements engineering (RE) is one of the most important phases of a software engineering project in which the foundation of a software product is laid, objectives and assumptions, functional and non-functional needs are analyzed and consolidated. Many modeling notations and tools are developed to model the information gathered in the RE process, one popular framework is the iStar 2.0. Despite the frameworks and notations that are introduced, many engineers still find that drawing the diagrams is easier done manually by hand. Problem arises when the corresponding diagram needs to be updated as requirements evolve. This research aims to kickstart the development of a modeling tool using Faster Region-based Convolutional Neural Network for single object detection and recognition of hand-drawn iStar 2.0 objects, Gleam grayscale, and Salt and Pepper noise to digitalize hand-drawn diagrams. The single object detection and recognition tool is evaluated and displays promising results of an overall accuracy and precision of 95%, 100% for recall, and 97.2% for the F-1 score. Keywords: Faster R-CNN iStar 2.0 Object detection and recognition Requirements modeling tool This is an open access article under the CC BY-SA license. Corresponding Author: Andre Rusli, Department of Informatics, Universitas Multimedia Nusantara, Kampus UMN, Scientia Garden, Jl. Boulevard Gading Serpong, Tangerang, Banten, 15810, Indonesia. Email: andre.rusli@umn.ac.id 1. INTRODUCTION Broadly speaking, software systems requirements engineering (RE) is the process of discovering that purpose, by identifying stakeholders and their needs and documenting these in a form that is amenable to analysis, communication, and subsequent implementation [1]. The importance of RE is emphasized to develop effective software and reduce software mistakes in the early stage of software development [2]. Requirements modeling uses a combination of text and diagrammatic forms to depict requirements in a way that is relatively easy to understand, and more important, straightforward to review for correctness, completeness, and consistency [3]. In analyzing software requirements, after the domain is understood and elicited, requirements are evaluated and negotiated, then the consolidated requirements are specification specified and documented [4]. This requirements specification and documentation is where requirements modeling commonly occurs. Throughout requirements modeling, the primary focus is on what, not how, on iStar 2.0’s strategic dependency model, the focus is on describing the dependency relationship between each actor in the system, along with the intentional elements. In the requirements engineering community, iStar 2.0 is gaining traction both in the academical and industrial fields and is used by many players in the community [5]. The framework is applied and implemented in various sectors, such as healthcare, security analysis, and eCommerce [6].
  • 2. TELKOMNIKA Telecommun Comput El Control  Single object detection to support requirements … (Nathanael Gilbert) 831 When modeling requirements and designing software products, many engineers still resort to drawing the diagrams manually by hand instead of using software tools. One reason could be that hand-drawing the diagrams could lead to more focused work and less distraction [7]. However, in a sustainable project with continuous revisions caused by requirements evolution, it gradually became apparent that the digitalization of the hand-drawn diagram is essential in an ever-evolving requirements engineering activities. One of the first steps in diagram digitalization is object detection and recognition. Object detection and recognition aim to detect and recognize every object belonging to a known class in an image [8]. Several pieces of research have shown the ability of the advanced neural networks in image/object recognition [9, 10, 11]; henceforth, this research meant to utilize neural network architecture to implement machine learning techniques to detect and recognize objects in the requirements diagram. In the machine learning field, the Region-based Convolutional Neural Network (R-CNN) architecture is a popular method with promising performance. The rapid growth has proposed the currently known Faster R-CNN (from its predecessors, the R-CNN, and the Fast R-CNN) with better accuracy and processing [12]. Other research also displays the potential of Faster R-CNN to detect an object in an image with high accuracy with the correct dataset [13]. Furthermore, image pre-processing also holds a vital role in processing datasets in object detection [14]. One standard process is the color-to-grayscale technique. Grayscale images are images with only have a single value for its every pixel, resulting in a grey image, which tends to be black on pixels with weak intensity and white on pixels with high intensity [15]. This research uses Gleam as the greyscaling method, as it is argued that compared to other techniques, Gleam performs better [16]. Furthermore, to perform upsampling of the dataset towards a high-performing model, Salt and Pepper noise is utilized for its ability to replicate image data with differences by inserting wrong bit transmission and analog to digital conversion [17]. This paper reports the result of the early study which aims to implement and evaluate the performance of Faster R-CNN, Gleam, and Salt and Pepper technique for single object detection and recognition in a hand-drawn iStar 2.0 strategic dependency model for requirements modeling. The model’s performance is measured by calculating the precision, accuracy, recall, and F-measure when classifying the notation of iStar 2.0 symbols. 2. RESEARCH METHOD In conducting the research to implement and evaluate the performance of Faster R-CNN, Gleam, and Salt and Pepper technique to for single object detection and recognition in a hand-drawn iStar 2.0 strategic dependency model for requirements modeling, the research methodologies are as follows. - Literature review and requirements analysis, - Experiment and system design, - System construction and coding, - Testing and evaluation, and - Research documentation. Firstly, literature review and requirements analysis activities are conducted to define the problem, then propose a solution, in this case, deciding the most suitable methods and practices. Secondly, after works of literature are reviewed, and problems are defined the architecture and system design is done using flowcharts to design the flow of the steps conducted in the object detection and recognition program and UI mockups for testing purposes. Then the designed system is constructed, and testing is conducted to evaluate the performance of the machine learning model. Lastly, all the activities conducted in the research is documented. 2.1. iStar 2.0 The i* language was presented in the mid-nineties [18] as a goal- and actor-oriented modeling and reasoning framework. It consists of a modeling language along with reasoning techniques for analyzing created models. i* was quickly adopted by the research community in fields such as requirements engineering and business mod- eling. Benefiting from its intentionally open nature, multiple extensions of the i* language have been proposed (see [19, 20] for useful reviews), either by slightly redefining some existing constructs, by detailing some semantic issues not completely defined in the seminal proposal, or by proposing new constructs for specific domains. As a response to the need of balancing the framework’s open nature and a possible solution to the aforementioned adoption problems, the i* research community started an initiative to identify a widely agreed upon set of core concepts in the i* language. The main goal is to keep open the ability to tailor the framework while agreeing on the fundamental constructs, thus began
  • 3.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 830 - 838 832 the work to propose an update to the framework, and to clearly distinguish this core language from its predecessors, it is named iStar 2.0. 2.1.1. iStar 2.0 elements Actors are central to the social modeling nature of the language [6]. Actors are active, autonomous entities that aim at achieving their goals by exercising their know-how, in collaboration with other actors. Whenever distinguishing the type of actor is not relevant, either because of the scenario-at-hand or the modeling stage, the notion of generic actor-without specialization-can be used in the model. Actors are represented graphically as circles. Intentional elements are the things actors want. As such, they model different kinds of requirements and are central to the iStar 2.0 language. An intentional element appearing inside the boundary of an actor denotes something that is desired or wanted by that actor. The following elements are included in the language [6], with examples shown in Figure 1: - Goal: a state of affairs that the actor wants to achieve and that has clear-cut criteria of achievement. - Quality: an attribute for which an actor desires some level of achievement. Qualities can guide the search for ways of achieving goals, and also serve as criteria for evaluating alternative ways of achieving goals. - Task: represents actions that an actor wants to be executed, usually with the purpose of achieving some goal. - Resource: A physical or informational entity that the actor requires in order to perform a task. Figure 1. iStar 2.0 intentional elements [6] 2.2. Faster R-CNN, Gleam, and Salt and Pepper Noise Faster Region-based Convolutional Neural Network is an upgraded version of R-CNN with a better performance for object detection. Figure 2 shows the architecture of Faster R-CNN, with steps as follows [21]. - Region Proposal Network: The very fast task is to search in the given input image the spaces where there is a probability of location of object.The position of the object in an image can be located [22]. These regions where there is possibility of object is bounded by a region known as region of interest(ROI). - Classification: The stage is to classify the regions of interest identified in the above steps into corresponding classes.The technique deployed here is Convolution Neural Networks(CNN). In the proposed approach there is rigrous process of identifying all spaces of object location in image.However if no regions are identified in the first stage of algorithm then there is no need to further go to the second step of approach [23]. Figure 2. Faster R-CNN Architecture [21]
  • 4. TELKOMNIKA Telecommun Comput El Control  Single object detection to support requirements … (Nathanael Gilbert) 833 Color-to-grayscale is the transformation of RGB channel to an grayscaled image. Grayscale is the condition in which an image consist only a single value for each of its pixel. Grayscaled image generally consists of grey, black (in pixels with weak intensity), and white (in pixels with strong intensity) [15]. Formula (1) is the formula to convert the RGB channel in a pixel into a single value ranging from 0-255 (grayscale) [16], where the R’, G’, and B’ are get from the RGB channels which are gamma corrected using Formula (2). Figure 3 shows the result of a grayscaling process using Gleam. 𝐺𝑙𝑒𝑎𝑚 = 1 3 (𝑅′ + 𝐺′ + 𝐵′ ) (1) (2) Figure 3. Example of grayscaling using Gleam Salt and Pepper noise is used for replicating images in the dataset for training the model by applying noise in the original image. It does so by changing pixel value into the minimum or maximum value accepted [24, 25]. Figure 4 below shows the result of when we apply the noise into an image. Figure 4. Application of Salt and Pepper Noise on a Hand-Drawn Task Object in iStar 2.0s 2.3. Requirements modeling tools Several researches have already emphasized the importance i* framework [18] for modeling and documenting requirements, including the newly-standardized iStar 2.0 [6, 19, 20]. On previous researches, the proposal of integrating several requirements modeling framework and notation, including the early i* framework is conducted and showed the potential of using i* as a tool to model stakeholder dependency in analyzing early-phase requirements [26, 27]. Another research recognized the need of a tool for drawing and editing iStar 2.0 diagrams, then developed the piStar tool for supporting the creation of the requirements model [28]. Other researches proposed extensions to the iStar 2.0 [29] and prototype for generating meaningful layout [30]. However, the topic on digitalization and the use of machine learning architecture for object detection on iStar diagrams is still rare to be found. This research aims to address the missing topic by reviewing its importance and kickstarting the development of such tool. 2.4. Single object detection and recognition for iStar 2.0 Using the architecture provided by the Faster R-CNN technique, grayscaling using Gleam, and upsampling the dataset by replicating the image using Salt and Pepper, the program is then designed. Figure 5 shows the flow in which the training activity is done to built the machine learning model which will be used to detect and recognize objects. At the beginning, 600 image data are collected as the dataset, consisting of the drawings of 5 objects in the iStar 2.0 notation, goal, quality, actor, task, and resource. After the dataset is collected, labelling is done for each object, resulting in an XML file containing all the images and their labels. The generated XML is then converted to a CSV fille which then is used to train the machine learning model by running the export inference graph. These actions are done by utilizing
  • 5.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 830 - 838 834 the TensorFlow Object Detection API. The resulting model is then tested and measured to find out the performance, based on a confusion matrix to calculate accuracy, recall, precision and the F-1 score of the model. Several configurations are tested to find the best scenario. The results are described in the next section of this paper. Moreover, besides designing the training activity along with all its processes, the flow of the program feature which will detect and recognize submitted and unlabeled image data is also designed, as shown in Figure 6. The flow starts by getting the submitted image file of a hand-drawn iStar 2.0 object, then its pixels are converted and grayscaled (using Gleam). Furthermore, path initialization is done so that the developed object detection API knows the exact path of the file. NUM_CLASSES describes the number of existing classes in which an object will be classified to. An object is considered belonging to a class when it achieves a score bigger than 0.9, if there are more than one class that achieves 0.9, then the first identified class is considered as the correct class. Figure 5. Flowchart training model Figure 6. Flowchart iStar 2.0 object detection and recognition
  • 6. TELKOMNIKA Telecommun Comput El Control  Single object detection to support requirements … (Nathanael Gilbert) 835 3. RESULTS AND ANALYSIS In order to measure the model’s performance and evaluate its potential to be further developed as a support tool for requirements modeling, seven test scenarios were designed and experiments are conducted to find the best condition from all scenarios to build a high-performing model. 3.1. Test Scenarios Various test scenarios are prepared by using various learning rate, feature extractor, initial crop size, maxpool kernel, and maxpool stride. The details of the seven test scenarios experimented can be seen in Table 1. From those seven scenarios, the model’s ability to detect and recognize objects is then measured based on the confusion matrix result, calculating their accuracy, precision, recall, and F-1 Score. Table 1. Test scenarios Scenario Learning Rate Feature Extractor Initial crop size Maxpool Kernel Maxpool Stride Anchor Generator Type First stage features stride Height Stride Width Stride 1 0.0003 faster_rcnn_inception_resnet_v2 8 17 1 1 8 8 2 0.0002 faster_rcnn_inception _v2 16 14 2 2 16 16 3 0.0002 faster_rcnn_inception_resnet_v2 16 14 2 2 16 16 4 0.0001 faster_rcnn_inception_v2 16 14 2 2 16 16 5 0.0003 faster_rcnn_inception_v2 8 17 1 1 8 8 6 0.0003 faster_rcnn_inception_resnet_v2 8 14 2 2 8 8 7 0.0002 faster_rcnn_inception _v2 16 17 1 1 16 16 3.2. Result After experiments are conducted based on the various configuration described in the previous section, test results are as described in Table 2. The highest performing scenario is found on the fourth scenario, using learning rate 0.0001, feature extractor type faster_rcnn_inception_v2 with 16 first stage features stride, 14 initial crop size, 2 maxpool kernel and stride, and 16 height and width stride, resulting in an average of 94% accuracy, 95% precision, 100% recall, and 97.2% F1-Score for each class. Table 2. Test results Scenario Average Accuracy Precision Recall F1-score 1 57% 63% 97% 75,05% 2 94% 94% 100% 96,87% 3 42% 52% 95% 65,51% 4 95% 95% 100% 97,20% 5 94% 95% 97% 95,91% 6 39% 48% 96% 60,92% 7 88% 91% 99% 94,36% From the results, it can be seen that the role of feature extractor, especially if we examine Scenario 1, 2, and 3, where feature extractor of type faster_rcnn_extractor_v2 performs much better than the other. Furthermore, initial crop size also proves to be quite impactful looking at Scenario 2 and 7. The learning rate can also be seen to be a determining factor even though it might not result in a big gap, between Scenario 4 and 2, for example. In addition to the machine learning model as described above, our research also developed a simple web-based tool as the interface for users to demonstrate the model’s ability to detect and recognize uploaded hand-drawn iStar 2.0 notions. Figure 7 shows the sample image that will be detected and recognized. The notion depicted in Figure 7 is the Task in the iStar 2.0 strategic dependency model. Figure 8 displays the home page in which the Choose File feature can be clicked to upload the sample image, then when the Check Result button is clicked, the software will pre-process the image, detect the object, and determine if it is Task, Resource, Quality, Goal, or Actors, along with its match rate. Figure 9 shows the result, where the software is seen to be able to guess correctly what notion the uploaded image depicted, Task.
  • 7.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 830 - 838 836 Figure 7. Sample Image for Object Detection Figure 8. User interface of the web-based testing application Figure 9. User interface when the application displays the object detection result
  • 8. TELKOMNIKA Telecommun Comput El Control  Single object detection to support requirements … (Nathanael Gilbert) 837 4. CONCLUSION This research utilized Faster R-CNN using a dataset comprising of hand-drawn iStar 2.0 objects such as Generic Actor, Task, Resource, Quality, and Goal. Images are first pre-processed and replicated using Gleam for its color-to-grayscale technique and Salt and Pepper noise to give noise to the original dataset and duplicate the number of images in the dataset. The resulting program is best performing using 0.0001 learning rate, feature extractor type faster_rcnn_inception_v2 with 16 first stage features stride, 14 initial crop size, 2 maxpool kernel and stride, and 16 height and width stride, resulting in an average of 94% accuracy, 95% precision, 100% recall, and 97.2% F1-Score for each class. The conducted research displays the potential of Faster-RCNN, Gleam, and Salt and Pepper to build a model for detecting and recognizing objects drawn using the iStar 2.0 to enable the digitalization requirements diagram to support the requirements modeling activity in software development. Future works include improving the dataset and machine learning model to be able to digitalize a whole iStar 2.0 diagram, enabling the multi-object detection, and developing tools for editing and creating the whole diagram using the iStar 2.0 and other notation for requirements modeling. Optical character recognition techniques can also be integrated to be able to read texts inside the drawn objects. ACKNOWLEDGEMENTS This research was supported by the Mobile Development Laboratory in Universitas Multimedia Nusantara. We also thank our colleagues from the Faculty of Engineering and Informatics who provided insight and expertise that greatly assisted the research, although they may not agree with all of the interpretations/conclusions of this paper. REFERENCES [1] Nuseibeh, B., Easterbrook, S., “Requirements Engineering: A Roadmap,” Proceedings of the Conference on the Future of Software Engineering. Limerick, pp. 35-46, 2000. [2] Chakraborty, A., Baowaly, M.K., Arefin, A., Bahar, A.N., “The Role of Requirements Engineering in Software Development Life Cycle,” Journal of Emerging Trends in Computing and information Sciences, vol 3, no. 5, pp. 723-729. 2012 [3] Pressman, R.S., Maxim, B., “Software Engineering: A Practitioner's Approach,” 8th Edition. New York: McGraw-Hill Education. 2014. [4] Van Lamsweerde, A., “Requirements Engineering: From System Goals to UML Models to Software Specification,” John Wiley & Sons Ltd: Chichester. 2009. [5] X. Franch, A. Maté, J. C. Trujillo and C. Cares, "On the joint use of i∗ with other modelling frameworks: A vision paper," 2011 IEEE 19th International Requirements Engineering Conference, pp. 133-142, Trento, 2011. [6] Dalpiaz, F., Franch, X., Horkoff, J., “iStar 2.0 Language Guide,”, arXiv preprint arXiv:1605.07767v3, 2016. [7] Meltzer, L., “Executive Function in Education: From Theory to Practice,” New York: The Guilford Press, 2007. [8] Amit Y., Felzenszwalb P., “Object Detection”. In: Ikeuchi K. (eds) Computer Vision. Springer, Boston, MA, 2014. [9] Rahmat, R.F., Dennis, Sitompul, O.S., Purnamawati, S., Budiarto, R. “Advertisement billboard detection and geotagging system with inductive transfer learning” TELKOMNIKA Telecommun Comput El Control, vol. 17, no. 5, pp.2659-2666, 2019. [10] Sudiatmika, I.B.K, Rahman, F., Trisno, Suyoto, “Image forgery detection using error level analysis and deep learning,” TELKOMNIKA, vol. 17, no. 2, pp.653-659, 2019. [11] Sugiarti, Yuhandri, Na’am, J., Indra, D., Santony, J., “An artificial neural network approach for detecting skin cancer,” TELKOMNIKA, vol. 17, no. 2, pp.788-793, 2019. [12] Jiang, H., Learned-Miller, E., “Face Detection with the Faster R-CNN,” 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 650-657, Washington, 2017. [13] Kafedziski, V., Pecov, S., Tanevski, D., “Detection and Classification of Land Mines from Ground Penetrating Radar Data Using Faster R-CNN,” 26th Telecommunications Forum (TELFOR), Belgrade. 2018. [14] Pal, K.K., Sudeep, S., “Preprocessing for image classification by convolutional neural networks,” IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 1778-1781, Bangalore. 2016. [15] Fatta, H.A. “Konversi Format Citra Rgb Ke Format Grayscale Menggunakan Visual Basic,” Seminar Nasional Teknolog, Yogyakarta 2007. [16] Kanan C, Cottrell GW., “Color-to-Grayscale: Does the Method Matter in Image Recognition?,” PLoS ONE, 2012. [17] Nazaré T.S., da Costa G.B.P., Contato W.A., Ponti M., “Deep Convolutional Neural Networks and Noisy Images,” In: Mendoza M., Velastín S. (eds), “Progress in Pattern Recognition, Image Analysis,” Computer Vision, and Applications. CIARP 2017. Lecture Notes in Computer Science, vol 10657. Springer, Cham. 2018. [18] Yu, E.S.K., “Modelling strategic relationships for process reengineering,” PhD thesis, University of Toronto. 1996. [19] J. Horkoff et al., "Taking goal models downstream: A systematic roadmap," IEEE Eighth International Conference on Research Challenges in Information Science (RCIS), pp. 1-12, Marrakech, 2014.
  • 9.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 2, April 2020: 830 - 838 838 [20] Horkoff, J., Yu, E., “Comparison and evaluation of goal-oriented satisfaction analysis techniques,” Requirements Engineering, vol. 18, no. 3, pp. 199-222, 2013. [21] Abbas, S.M., Singh, S.N., “Region-based Object Detection and Classification using Faster R-CNN,” 4th International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, 2018. [22] Ren, S., He, K., Girshick, R., Zhang, X., and Sun, J., “Object detection networks on convolutional feature maps,” Coronell Universty, arXiv:1504.06066, 2016. [23] Szegedy, C., A. Toshev, and D. Erhan, “Deep neural networks for object detection,” in Neural Information Processing Systems (NIPS), 2013. [24] Esakkirajan, S., Veerakumar, T., Subramanyam, A. N., Premchand, C. H., “Removal of High-Density Salt and Pepper Noise Through Modified Decision Based Unsymmetric Trimmed Median Filter,” IEEE Signal Processing Letters, vol. 18, no. 5, pp. 287-290, 2011. [25] Chan, R.H., Ho, C., Nikolova, M., “Salt-and-Pepper Noise Removal by Median-Type Noise Detectors and Detail- Preserving Regularization,” IEEE Transactions on Image Processing, vol. 14, no. 10, pp. 1479–1485, 2005. [26] Rusli, A., Shigo, O., “An Integrated Tool to Support Early-Phase Requirements Analysis,” 4th International Conference on New Media Studies (CONMEDIA 2017), Yogyakarta, 2017. [27] Rusli, A. Shigo, O., “Integrated Framework for Software Requirements Analysis and Its Support Tool,” In: Requirements Engineering Toward Sustainable World: Third Asia-Pacific Symposium, APRES 2016, Nagoya, 2016. [28] Pimentel, J., Castro, J., “piStar Tool – A Pluggable Online Tool for Goal Modeling,” IEEE 26th International Requirements Engineering Conference (RE), Banff, 2018. [29] Goncalves, E., Araujo, J., Castro, J. Towards Extension Mechanisms in iStar 2.0. iSTAR@CAiSE. Tallinn. 2018 [30] Wang Y., Li T., Zhang H., Sun J., Ni Y., Geng C. A Prototype for Generating Meaningful Layout of iStar Models. In: Woo C., Lu J., Li Z., Ling T., Li G., Lee M. (eds) Advances in Conceptual Modeling. ER 2018. Lecture Notes in Computer Science, vol. 11158. Springer, Cham. 2018. BIOGRAPHIES OF AUTHORS Nathanael Gilbert graduated from the Department of Informatics in Universitas Multimedia Nusantara, Indonesia, in November 2019. He has a background in research in applied machine learning for image processing and holds keen interests in the area of Android-based mobile application development. Andre Rusli received his Master’s of Science degree in Information Environment from Tokyo Denki University, Japan, in 2017, focusing in the Software Requirements Engineering field. He is currently a lecturer and researcher in Universitas Multimedia Nusantara and also serving as the head coordinator of the Mobile Development Laboratory. His research interests include requirements engineering in software application development, natural language processing, and human computer interaction.