SlideShare a Scribd company logo
Diploma Programme 
Mathematics SL formula booklet 
For use during the course and in the examinations 
First examinations 2014 
Published March 2012 
© International Baccalaureate Organization 2012 5045 
Mathematical studies SL: Formula booklet 1
SL Formulabooklet
Contents 
Prior learning 2 
Topics 3 
Topic 1—Algebra 3 
Topic 2—Functions and equations 4 
Topic 3—Circular functions and trigonometry 4 
Topic 4—Vectors 5 
Topic 5—Statistics and probability 5 
Topic 6—Calculus 6 
Mathematics SL formula booklet 1
Formulae 
Prior learning 
Area of a parallelogram A = b× h 
Area of a triangle A = 1( b× h 
) 
2 
Area of a trapezium 1( ) 
A = a + b h 
2 
Area of a circle A = πr2 
Circumference of a circle C = 2πr 
Volume of a pyramid V = 1 (area of base × 
vertical height) 
3 
Volume of a cuboid (rectangular prism) V = l × w× h 
Volume of a cylinder V = πr2h 
Area of the curved surface of a cylinder A = 2πrh 
Volume of a sphere 4 3 
V = πr 
3 
Volume of a cone 1 2 
V = πr h 
3 
Distance between two points 1 1 1 (x , y , z ) and 
2 2 2 (x , y , z ) 
2 2 2 
1 2 1 2 1 2 d = (x − x ) + ( y − y ) + (z − z ) 
Coordinates of the midpoint of a line segment 
x x , y y , z z 
with endpoints (x , y z 1 2 1 2 1 2 
, ) and (x , y , z ) 1 1 1 2 2 2  + + +  
  2 2 2 
 
 
Mathematics SL formula booklet 2
Topics 
Topic 1—Algebra 
1.1 The nth term of an 
u = u + ( n −1) d 
arithmetic sequence n 1 The sum of n terms of an 
arithmetic sequence S = n (2 u + ( n − 1) d ) = n ( u + u 
) 
n 1 1 n 
2 2 
The nth term of a 
geometric sequence 
= n− 
n u u r 
1 
1 
The sum of n terms of a 
S = u ( r n − 1) − 
n 
finite geometric sequence 1 = 
u (1 r 
) 
1 r − 1 1 
− 
r 
n 
, r ≠1 
The sum of an infinite 
S u 
geometric sequence 1 
= 
∞ 1 
− 
r , r <1 
1.2 Exponents and logarithms x log 
a a = b ⇔ x = b 
Laws of logarithms log log log c c c a + b = ab 
a b a 
log log log c c c 
b 
− = 
log r log 
c c a = r a 
Change of base log log 
a a 
log 
c 
b 
c 
b 
= 
1.3 Binomial coefficient 
! 
n 
! ( )! 
r n r 
n 
r 
− 
 
=   
 
 
  
 
Binomial theorem ( ) 1 
 n   n 
 
n n n −  n − r r  n a b a a b a b b 
+ = +   + +   + + 
1 
r 
    
Mathematics SL formula booklet 3
Topic 2—Functions and equations 
2.4 Axis of symmetry of 
graph of a quadratic 
function 
f ( x ) ax 2 bx c axis of symmetry 
x b 
2 
a 
= + + ⇒ =− 
2.6 Relationships between 
logarithmic and 
exponential functions 
ax = ex ln a 
log x loga x 
aa = x = a 
2.7 Solutions of a quadratic 
equation 
2 
ax bx c x b b ac a 
2 − ± − 
+ + = 0 ⇒ = 4 , ≠ 
0 
2 
a 
Discriminant Δ = b2 − 4ac 
Topic 3—Circular functions and trigonometry 
3.1 Length of an arc l =θ r 
Area of a sector 1 2 
A = θ r 
2 
3.2 Trigonometric identity sin tan 
θ 
cos 
θ 
θ 
= 
3.3 Pythagorean identity cos2θ + sin2θ =1 
Double angle formulae sin 2θ = 2sinθ cosθ 
cos 2θ = cos2θ − sin2θ = 2cos2θ −1=1− 2sin2θ 
3.6 Cosine rule c2 = a2 + b2 − 2abcosC ; 
2 2 2 
cos 
+ − 
C a b c 
2 
ab 
= 
Sine rule 
a = b = 
c 
A B C 
sin sin sin 
Area of a triangle 1 sin 
A = ab C 
2 
Mathematics SL formula booklet 4
Topic 4—Vectors 
4.1 Magnitude of a vector 2 2 2 
v = v1 + v2 + v3 
4.2 Scalar product v ⋅w = v w cosθ 
1 1 2 2 3 3 v ⋅w = v w + v w + v w 
Angle between two 
vectors cosθ 
⋅ 
= v w 
v w 
4.3 Vector equation of a line r = a + tb 
Topic 5—Statistics and probability 
5.2 Mean of a set of data 
n 
Σ 
i 
1 
Σ 
n 
1 
f x 
i i 
i 
= 
i 
x 
f 
= 
= 
5.5 Probability of an event A P( A ) 
= n ( A 
) n U 
( ) 
Complementary events P(A) + P(A′) =1 
5.6 Combined events P(A∪ B) = P(A) + P(B) − P(A∩ B) 
Mutually exclusive events P(A∪ B) = P(A) + P(B) 
Conditional probability P(A∩ B) = P(A)P(B | A) 
Independent events P(A∩ B) = P(A) P(B) 
5.7 Expected value of a discrete 
random variable X 
E( X ) = μ Σx 
= x P( X = x 
) 5.8 Binomial distribution 
 n 
 
X ~ B( np , ) P( X r ) p r (1 p )n − r , r 0,1, , n 
⇒ = =   − = 
r 
  
 
Mean E(X ) = np 
Variance Var(X ) = np(1− p) 
5.9 Standardized normal 
variable 
− 
μ 
σ 
z = x 
Mathematics SL formula booklet 5
Topic 6—Calculus 
6.1 Derivative of f (x) 
y f x y f x f x h f x 
( ) d ( ) lim ( ) ( ) 
′  + −  = ⇒ = =   
x → 0 
h 
d h 
  
6.2 Derivative of xn f (x) = xn ⇒ f ′(x) = nxn−1 
Derivative of sin x f (x) = sin x ⇒ f ′(x) = cos x 
Derivative of cos x f (x) = cos x ⇒ f ′(x) = −sin x 
Derivative of tan x 
( ) tan ( ) 1 
2 
cos 
= ⇒ ′ = 
f x x f x 
x 
Derivative of ex f (x) = ex ⇒ f ′(x) = ex 
Derivative of ln x 1 f (x) ln x f (x) 
x 
= ⇒ ′ = 
Chain rule 
u f x y y u 
y = g(u) , = ( ) ⇒ d = d × 
d 
x u x 
d d d 
Product rule d d d 
y = uv ⇒ y = u v + 
v u 
x x x 
d d d 
Quotient rule 
u y v d u − 
u d 
v y x x 
d d d 
d 
2 
= ⇒ = 
v x v 
6.4 Standard integrals n 
+ 
1 
xn x x C n 
+ ∫ 
1 dx ln x C, x 0 
x 
d = + , ≠ − 
1 
1 
n 
∫ = + > 
∫sin xdx = −cos x + C 
∫cos xdx = sin x + C 
∫e d = e + x x x C 
6.5 Area under a curve 
between x = a and x = b d b 
A = ∫ y x 
a 
Volume of revolution 
about the x-axis from x = a 
to x = b 
π 2 d b 
a 
V = ∫ y x 
6.6 Total distance travelled 
from 1 t to 2 t 
( ) d t 
t 
= ∫ v t t 
distance 2 
1 
Mathematics SL formula booklet 6
Mathematics SL formula booklet 7

More Related Content

DOCX
Smart home automation system
PDF
Home automation system using arduino with android
PDF
Math studies formula booklet
DOCX
10000 general knowledge questions and answers
PDF
Mathematics HL and Further mathematics HL Formula Booklet Zimsec Cambridge Zi...
PDF
Form 5 Additional Maths Note
DOC
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
PDF
K to 12 math
Smart home automation system
Home automation system using arduino with android
Math studies formula booklet
10000 general knowledge questions and answers
Mathematics HL and Further mathematics HL Formula Booklet Zimsec Cambridge Zi...
Form 5 Additional Maths Note
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
K to 12 math

Similar to SL Formulabooklet (20)

DOCX
Ib mathematics hl
PPSX
Mathematics Formulae
DOC
F5 add maths year plan 2013
PDF
Formular
PPTX
1.02.Mathematical_background.pptx
PDF
Core 2 revision notes
PPTX
Last+minute+revision(+Final)+(1) (1).pptx
PDF
Notes and formulae mathematics
PPTX
Revised math 1
PDF
add math form 4/5
PDF
Monfort Emath Paper1_printed
PPTX
Mathematical toolls of Physics.pptx jdjdj
PDF
Mathematics compendium for class ix
PDF
Mathematical formula handbook (1)
PDF
Rumus matematik examonline spa
PDF
SYLLABUS_COMPLEX NUMBER.pdf
PDF
maths-class-ix-question-bank class 9th.pdf
PDF
Maths class-ix-question-bank
PPTX
REAL AND COMPLEX NUMBERS​ And INDICES, SURD & LOGARITHM​
PPT
Chpt 2-functions-seqs v.5
Ib mathematics hl
Mathematics Formulae
F5 add maths year plan 2013
Formular
1.02.Mathematical_background.pptx
Core 2 revision notes
Last+minute+revision(+Final)+(1) (1).pptx
Notes and formulae mathematics
Revised math 1
add math form 4/5
Monfort Emath Paper1_printed
Mathematical toolls of Physics.pptx jdjdj
Mathematics compendium for class ix
Mathematical formula handbook (1)
Rumus matematik examonline spa
SYLLABUS_COMPLEX NUMBER.pdf
maths-class-ix-question-bank class 9th.pdf
Maths class-ix-question-bank
REAL AND COMPLEX NUMBERS​ And INDICES, SURD & LOGARITHM​
Chpt 2-functions-seqs v.5
Ad

SL Formulabooklet

  • 1. Diploma Programme Mathematics SL formula booklet For use during the course and in the examinations First examinations 2014 Published March 2012 © International Baccalaureate Organization 2012 5045 Mathematical studies SL: Formula booklet 1
  • 3. Contents Prior learning 2 Topics 3 Topic 1—Algebra 3 Topic 2—Functions and equations 4 Topic 3—Circular functions and trigonometry 4 Topic 4—Vectors 5 Topic 5—Statistics and probability 5 Topic 6—Calculus 6 Mathematics SL formula booklet 1
  • 4. Formulae Prior learning Area of a parallelogram A = b× h Area of a triangle A = 1( b× h ) 2 Area of a trapezium 1( ) A = a + b h 2 Area of a circle A = πr2 Circumference of a circle C = 2πr Volume of a pyramid V = 1 (area of base × vertical height) 3 Volume of a cuboid (rectangular prism) V = l × w× h Volume of a cylinder V = πr2h Area of the curved surface of a cylinder A = 2πrh Volume of a sphere 4 3 V = πr 3 Volume of a cone 1 2 V = πr h 3 Distance between two points 1 1 1 (x , y , z ) and 2 2 2 (x , y , z ) 2 2 2 1 2 1 2 1 2 d = (x − x ) + ( y − y ) + (z − z ) Coordinates of the midpoint of a line segment x x , y y , z z with endpoints (x , y z 1 2 1 2 1 2 , ) and (x , y , z ) 1 1 1 2 2 2  + + +    2 2 2   Mathematics SL formula booklet 2
  • 5. Topics Topic 1—Algebra 1.1 The nth term of an u = u + ( n −1) d arithmetic sequence n 1 The sum of n terms of an arithmetic sequence S = n (2 u + ( n − 1) d ) = n ( u + u ) n 1 1 n 2 2 The nth term of a geometric sequence = n− n u u r 1 1 The sum of n terms of a S = u ( r n − 1) − n finite geometric sequence 1 = u (1 r ) 1 r − 1 1 − r n , r ≠1 The sum of an infinite S u geometric sequence 1 = ∞ 1 − r , r <1 1.2 Exponents and logarithms x log a a = b ⇔ x = b Laws of logarithms log log log c c c a + b = ab a b a log log log c c c b − = log r log c c a = r a Change of base log log a a log c b c b = 1.3 Binomial coefficient ! n ! ( )! r n r n r −  =        Binomial theorem ( ) 1  n   n  n n n −  n − r r  n a b a a b a b b + = +   + +   + + 1 r     Mathematics SL formula booklet 3
  • 6. Topic 2—Functions and equations 2.4 Axis of symmetry of graph of a quadratic function f ( x ) ax 2 bx c axis of symmetry x b 2 a = + + ⇒ =− 2.6 Relationships between logarithmic and exponential functions ax = ex ln a log x loga x aa = x = a 2.7 Solutions of a quadratic equation 2 ax bx c x b b ac a 2 − ± − + + = 0 ⇒ = 4 , ≠ 0 2 a Discriminant Δ = b2 − 4ac Topic 3—Circular functions and trigonometry 3.1 Length of an arc l =θ r Area of a sector 1 2 A = θ r 2 3.2 Trigonometric identity sin tan θ cos θ θ = 3.3 Pythagorean identity cos2θ + sin2θ =1 Double angle formulae sin 2θ = 2sinθ cosθ cos 2θ = cos2θ − sin2θ = 2cos2θ −1=1− 2sin2θ 3.6 Cosine rule c2 = a2 + b2 − 2abcosC ; 2 2 2 cos + − C a b c 2 ab = Sine rule a = b = c A B C sin sin sin Area of a triangle 1 sin A = ab C 2 Mathematics SL formula booklet 4
  • 7. Topic 4—Vectors 4.1 Magnitude of a vector 2 2 2 v = v1 + v2 + v3 4.2 Scalar product v ⋅w = v w cosθ 1 1 2 2 3 3 v ⋅w = v w + v w + v w Angle between two vectors cosθ ⋅ = v w v w 4.3 Vector equation of a line r = a + tb Topic 5—Statistics and probability 5.2 Mean of a set of data n Σ i 1 Σ n 1 f x i i i = i x f = = 5.5 Probability of an event A P( A ) = n ( A ) n U ( ) Complementary events P(A) + P(A′) =1 5.6 Combined events P(A∪ B) = P(A) + P(B) − P(A∩ B) Mutually exclusive events P(A∪ B) = P(A) + P(B) Conditional probability P(A∩ B) = P(A)P(B | A) Independent events P(A∩ B) = P(A) P(B) 5.7 Expected value of a discrete random variable X E( X ) = μ Σx = x P( X = x ) 5.8 Binomial distribution  n  X ~ B( np , ) P( X r ) p r (1 p )n − r , r 0,1, , n ⇒ = =   − = r    Mean E(X ) = np Variance Var(X ) = np(1− p) 5.9 Standardized normal variable − μ σ z = x Mathematics SL formula booklet 5
  • 8. Topic 6—Calculus 6.1 Derivative of f (x) y f x y f x f x h f x ( ) d ( ) lim ( ) ( ) ′  + −  = ⇒ = =   x → 0 h d h   6.2 Derivative of xn f (x) = xn ⇒ f ′(x) = nxn−1 Derivative of sin x f (x) = sin x ⇒ f ′(x) = cos x Derivative of cos x f (x) = cos x ⇒ f ′(x) = −sin x Derivative of tan x ( ) tan ( ) 1 2 cos = ⇒ ′ = f x x f x x Derivative of ex f (x) = ex ⇒ f ′(x) = ex Derivative of ln x 1 f (x) ln x f (x) x = ⇒ ′ = Chain rule u f x y y u y = g(u) , = ( ) ⇒ d = d × d x u x d d d Product rule d d d y = uv ⇒ y = u v + v u x x x d d d Quotient rule u y v d u − u d v y x x d d d d 2 = ⇒ = v x v 6.4 Standard integrals n + 1 xn x x C n + ∫ 1 dx ln x C, x 0 x d = + , ≠ − 1 1 n ∫ = + > ∫sin xdx = −cos x + C ∫cos xdx = sin x + C ∫e d = e + x x x C 6.5 Area under a curve between x = a and x = b d b A = ∫ y x a Volume of revolution about the x-axis from x = a to x = b π 2 d b a V = ∫ y x 6.6 Total distance travelled from 1 t to 2 t ( ) d t t = ∫ v t t distance 2 1 Mathematics SL formula booklet 6