SlideShare a Scribd company logo
Preparing Presentation using Beamer Class in L
A
TEX
Dinesh Chauhan
Msc(maths), M.Phil, NET, MH-SET
dineshmsc@eng.rizvi.edu.in
Department of Humanity and Science,
Rizvi College of Engineering,
Bandra Mumbai 400076, India
November 20, 2022
1/15
Objectives
1) To develop the basic Mathematical skills of engineering students that
are imperative for effective understanding of engineering subjects.
The topics introduced will serve as basic tools for specialized studies
in many fields of engineering and technology.
2) To provide hands on experience using SCILAB software to handle real
life problems.
1/15
1/15
2/15
Outcomes: Learners will be able to?
1) Illustrate the basic concepts of Complex numbers.
2) Apply the knowledge of complex numbers to solve problems in
hyperbolic functions and logarithmic function.
3) Illustrate the basic principles of Partial differentiation.
4) Illustrate the knowledge of Maxima, Minima and Successive
differentiation.
5) Apply principles of basic operations of matrices, rank and echelon
form of matrices to solve simultaneous equations.
6) Illustrate SCILAB programming techniques to the solution of linear
and simultaneous algebraic equations.
2/15
3/15
Rubrics set for assessment of tutorial
3/15
4/15
Books References
1) Higher Engineering Mathematics, Dr. B.S.Grewal, Khanna
Publication
2) Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern
Limited, 9th Ed.
3) Engineering Mathematics by Srimanta Pal and Subodh,C.Bhunia,
Oxford University Press
4) Matrices, Shanti Narayan, S.Chand publication.
5) Applied Numerical Methods with MATLAB for Engineers and
Scientists by Steven Chapra, McGraw Hill
6) Elementary Linear Algebra with Application by Howard Anton and
Christ Rorres. 6th edition.John Wiley and Sons, INC.
4/15
My Suggestion for Book
Engineering Mathematics-I By G.V.Kumbhojkar
5/15
Google Classroom link
mgdrju3
6/15
Engineering Mathematics-I
Prerequisite
7/15
Trigonometric Formula I
sin2
θ + cos2
θ = 1
Divide equation 1 by sin2
θ
1 + cot2
θ = cosec2
θ
Divide equation 1 by cos2
θ
tan2
θ + 1 = sec2
θ
8/15
Trigonometric Formula II
sin (A + B) = sin (A) cos (B) + cos (A) sin (B)
sin (A − B) = sin (A) cos (B) − cos (A) sin (B)
cos (A + B) = cos (A) cos (B) − sin (A) sin (B)
cos (A − B) = cos (A) cos (B) + sin (A) sin (B)
tan (A + B) =
tan (A) + tan (B)
1 − tan (A) tan (B)
tan (A − B) =
tan (A) − tan (B)
1 + tan (A) tan (B)
Defactorisation Formula
2 sin (A) cos (B) = sin (A + B) + sin (A − B)
2 cos (A) sin (B) = sin (A + B) − sin (A − B)
2 cos (A) cos (B) = cos (A + B) + cos (A − B)
2 sin (A) sin (B) = cos (A − B) − cos (A + B)
9/15
Trigonometric Formula III
Double Angle Formula
sin (2A) = 2 sin (A) cos (A)
cos (2A) = cos2
(A) − sin2
(A)
= 2 cos2
(A) − 1
= 1 − 2 sin2
(A)
1 − cos (2A) = 2 sin2
(A)
1 + cos (2A) = 2 cos2
(A)
tan (2A) =
2tan (A)
1 − tan2 (A)
10/15
Trigonometric Formula IV
Half Angle Formula
sin (A) = 2 sin

A
2

cos

A
2

cos (A) = cos2

A
2

− sin2

A
2

= 2 cos2

(A)
2

− 1
= 1 − 2 sin2

A
2

1 − cos (A) = 2 sin2

A
2

1 + cos (A) = 2 cos2

A
2

11/15
Trigonometric Formula I
Triple Angle formula
sin (3A) = 3 sin (A) − 4 sin3
(A)
cos (3A) = 4 cos3
(A) − 3 cos (A)
Power of sin or cosine into linear power of sin or cosine
sin2
(A) =
1 − cos (2A)
2
cos2
(A) =
1 + cos (2A)
2
sin3
(A) =
3 sin (A) − sin (3A)
4
cos3
(A) =
cos (3A) + 3 cos (A)
4
12/15
Trigonometric Formula II
Relation betweern Circular and Exponential Function
sin (t) =
eit − e−it
2i
cos (t) =
eit + e−it
2
tan (t) =
eit − e−it
i (eit + e−it )
13/15
Logarithmic Formula
Note : log means Natural logarithm to base e
log (ab) = log (a) + log (b)
log
a
b

= log (a) − log (b)
log (mn
) = n log (m)
log (e) = 1
(log (m))n
̸= n log (m)
There is no formula for
log (a + b) , log (a − b) , (log (a)) · (log (b)) ,

log(a)
log(b)

14/15
Geometric Series
1 + x + x2
+ x3
+ x4
+ · · · + xn−1
=
1 − xn
1 − x
, if |x|  1. (1)
1 + x + x2
+ x3
+ x4
+ · · · =
1
1 − x
, if |x|  1. (2)
1 − x + x2
− x3
+ x4
− · · · =
1
1 + x
, if |x|  1. (3)
Binomial Theorem
(a + b)n
=
n
0

an
b0
+
n
1

an−1
b1
+
n
2

an−2
b2
+ · · · +
 n
n − 1

a1
bn−1
+
n
n

a0
bn
.
15/15

More Related Content

DOC
mathematics formulas
PPSX
Mathematics Formulae
DOCX
TRIGONOMETRY
PPTX
Math ppt.pptx ,
PDF
Formular
PDF
Pre-calculus 1, 2 and Calculus I (exam notes)
DOC
Formulas 2nd year to 4th year
PDF
Correlation: Powerpoint 2- Trigonometry (1).pdf
mathematics formulas
Mathematics Formulae
TRIGONOMETRY
Math ppt.pptx ,
Formular
Pre-calculus 1, 2 and Calculus I (exam notes)
Formulas 2nd year to 4th year
Correlation: Powerpoint 2- Trigonometry (1).pdf

Similar to SYLLABUS_COMPLEX NUMBER.pdf (20)

PDF
PDF
PDF
K to 12 math
PPT
Advanced Trigonometry
DOC
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
PDF
Module 5 circular functions
DOC
Math34 Trigonometric Formulas
PDF
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
PPSX
Mathematics Basic Formulae
PPT
Solution 1
PPT
Trigonometry
PPT
Trigonometry and its basic rules and regulation
DOC
Math34 Trigonometric Formulas
PDF
Math resources trigonometric_formulas
PDF
Math resources trigonometric_formulas class 11th and 12th
PDF
economics
PPTX
Lec 1.0.pptx
PPT
Pre Calculus Math.. Proving
PPTX
Last+minute+revision(+Final)+(1) (1).pptx
DOC
Bowen prelim a maths p1 2011 with answer key
K to 12 math
Advanced Trigonometry
Shahjahan notes:Mathematicsinphysicstheorysampleproblematc
Module 5 circular functions
Math34 Trigonometric Formulas
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
Mathematics Basic Formulae
Solution 1
Trigonometry
Trigonometry and its basic rules and regulation
Math34 Trigonometric Formulas
Math resources trigonometric_formulas
Math resources trigonometric_formulas class 11th and 12th
economics
Lec 1.0.pptx
Pre Calculus Math.. Proving
Last+minute+revision(+Final)+(1) (1).pptx
Bowen prelim a maths p1 2011 with answer key
Ad

Recently uploaded (20)

PPTX
Lecture (1)-Introduction.pptx business communication
PPT
340036916-American-Literature-Literary-Period-Overview.ppt
PDF
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
PDF
Business model innovation report 2022.pdf
PDF
Nidhal Samdaie CV - International Business Consultant
PPTX
5 Stages of group development guide.pptx
DOCX
Business Management - unit 1 and 2
PDF
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
PPTX
New Microsoft PowerPoint Presentation - Copy.pptx
PPTX
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
PPTX
HR Introduction Slide (1).pptx on hr intro
PDF
MSPs in 10 Words - Created by US MSP Network
PDF
Ôn tập tiếng anh trong kinh doanh nâng cao
PDF
IFRS Notes in your pocket for study all the time
PPTX
Amazon (Business Studies) management studies
PDF
Unit 1 Cost Accounting - Cost sheet
PDF
A Brief Introduction About Julia Allison
DOCX
unit 2 cost accounting- Tender and Quotation & Reconciliation Statement
PDF
DOC-20250806-WA0002._20250806_112011_0000.pdf
PPTX
Principles of Marketing, Industrial, Consumers,
Lecture (1)-Introduction.pptx business communication
340036916-American-Literature-Literary-Period-Overview.ppt
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
Business model innovation report 2022.pdf
Nidhal Samdaie CV - International Business Consultant
5 Stages of group development guide.pptx
Business Management - unit 1 and 2
Katrina Stoneking: Shaking Up the Alcohol Beverage Industry
New Microsoft PowerPoint Presentation - Copy.pptx
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
HR Introduction Slide (1).pptx on hr intro
MSPs in 10 Words - Created by US MSP Network
Ôn tập tiếng anh trong kinh doanh nâng cao
IFRS Notes in your pocket for study all the time
Amazon (Business Studies) management studies
Unit 1 Cost Accounting - Cost sheet
A Brief Introduction About Julia Allison
unit 2 cost accounting- Tender and Quotation & Reconciliation Statement
DOC-20250806-WA0002._20250806_112011_0000.pdf
Principles of Marketing, Industrial, Consumers,
Ad

SYLLABUS_COMPLEX NUMBER.pdf

  • 1. Preparing Presentation using Beamer Class in L A TEX Dinesh Chauhan Msc(maths), M.Phil, NET, MH-SET dineshmsc@eng.rizvi.edu.in Department of Humanity and Science, Rizvi College of Engineering, Bandra Mumbai 400076, India November 20, 2022
  • 3. Objectives 1) To develop the basic Mathematical skills of engineering students that are imperative for effective understanding of engineering subjects. The topics introduced will serve as basic tools for specialized studies in many fields of engineering and technology. 2) To provide hands on experience using SCILAB software to handle real life problems. 1/15
  • 6. Outcomes: Learners will be able to? 1) Illustrate the basic concepts of Complex numbers. 2) Apply the knowledge of complex numbers to solve problems in hyperbolic functions and logarithmic function. 3) Illustrate the basic principles of Partial differentiation. 4) Illustrate the knowledge of Maxima, Minima and Successive differentiation. 5) Apply principles of basic operations of matrices, rank and echelon form of matrices to solve simultaneous equations. 6) Illustrate SCILAB programming techniques to the solution of linear and simultaneous algebraic equations. 2/15
  • 8. Rubrics set for assessment of tutorial 3/15
  • 10. Books References 1) Higher Engineering Mathematics, Dr. B.S.Grewal, Khanna Publication 2) Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern Limited, 9th Ed. 3) Engineering Mathematics by Srimanta Pal and Subodh,C.Bhunia, Oxford University Press 4) Matrices, Shanti Narayan, S.Chand publication. 5) Applied Numerical Methods with MATLAB for Engineers and Scientists by Steven Chapra, McGraw Hill 6) Elementary Linear Algebra with Application by Howard Anton and Christ Rorres. 6th edition.John Wiley and Sons, INC. 4/15
  • 11. My Suggestion for Book Engineering Mathematics-I By G.V.Kumbhojkar 5/15
  • 14. Trigonometric Formula I sin2 θ + cos2 θ = 1 Divide equation 1 by sin2 θ 1 + cot2 θ = cosec2 θ Divide equation 1 by cos2 θ tan2 θ + 1 = sec2 θ 8/15
  • 15. Trigonometric Formula II sin (A + B) = sin (A) cos (B) + cos (A) sin (B) sin (A − B) = sin (A) cos (B) − cos (A) sin (B) cos (A + B) = cos (A) cos (B) − sin (A) sin (B) cos (A − B) = cos (A) cos (B) + sin (A) sin (B) tan (A + B) = tan (A) + tan (B) 1 − tan (A) tan (B) tan (A − B) = tan (A) − tan (B) 1 + tan (A) tan (B) Defactorisation Formula 2 sin (A) cos (B) = sin (A + B) + sin (A − B) 2 cos (A) sin (B) = sin (A + B) − sin (A − B) 2 cos (A) cos (B) = cos (A + B) + cos (A − B) 2 sin (A) sin (B) = cos (A − B) − cos (A + B) 9/15
  • 16. Trigonometric Formula III Double Angle Formula sin (2A) = 2 sin (A) cos (A) cos (2A) = cos2 (A) − sin2 (A) = 2 cos2 (A) − 1 = 1 − 2 sin2 (A) 1 − cos (2A) = 2 sin2 (A) 1 + cos (2A) = 2 cos2 (A) tan (2A) = 2tan (A) 1 − tan2 (A) 10/15
  • 17. Trigonometric Formula IV Half Angle Formula sin (A) = 2 sin A 2 cos A 2 cos (A) = cos2 A 2 − sin2 A 2 = 2 cos2 (A) 2 − 1 = 1 − 2 sin2 A 2 1 − cos (A) = 2 sin2 A 2 1 + cos (A) = 2 cos2 A 2 11/15
  • 18. Trigonometric Formula I Triple Angle formula sin (3A) = 3 sin (A) − 4 sin3 (A) cos (3A) = 4 cos3 (A) − 3 cos (A) Power of sin or cosine into linear power of sin or cosine sin2 (A) = 1 − cos (2A) 2 cos2 (A) = 1 + cos (2A) 2 sin3 (A) = 3 sin (A) − sin (3A) 4 cos3 (A) = cos (3A) + 3 cos (A) 4 12/15
  • 19. Trigonometric Formula II Relation betweern Circular and Exponential Function sin (t) = eit − e−it 2i cos (t) = eit + e−it 2 tan (t) = eit − e−it i (eit + e−it ) 13/15
  • 20. Logarithmic Formula Note : log means Natural logarithm to base e log (ab) = log (a) + log (b) log a b = log (a) − log (b) log (mn ) = n log (m) log (e) = 1 (log (m))n ̸= n log (m) There is no formula for log (a + b) , log (a − b) , (log (a)) · (log (b)) , log(a) log(b) 14/15
  • 21. Geometric Series 1 + x + x2 + x3 + x4 + · · · + xn−1 = 1 − xn 1 − x , if |x| 1. (1) 1 + x + x2 + x3 + x4 + · · · = 1 1 − x , if |x| 1. (2) 1 − x + x2 − x3 + x4 − · · · = 1 1 + x , if |x| 1. (3) Binomial Theorem (a + b)n = n 0 an b0 + n 1 an−1 b1 + n 2 an−2 b2 + · · · + n n − 1 a1 bn−1 + n n a0 bn . 15/15