SlideShare a Scribd company logo
2
Most read
3
Most read
4
Most read
Trigonometric Formula Sheet
Definition of the Trig Functions
Right Triangle Definition
Assume that:
0 < θ < π
2
or 0◦
< θ < 90◦
hypotenuse
adjacent
opposite
θ
sin θ =
opp
hyp
csc θ =
hyp
opp
cos θ =
adj
hyp
sec θ =
hyp
adj
tan θ =
opp
adj
cot θ =
adj
opp
Unit Circle Definition
Assume θ can be any angle.
x
y
y
x
1
(x, y)
θ
sin θ =
y
1
csc θ =
1
y
cos θ =
x
1
sec θ =
1
x
tan θ =
y
x
cot θ =
x
y
Domains of the Trig Functions
sin θ, ∀ θ ∈ (−∞, ∞)
cos θ, ∀ θ ∈ (−∞, ∞)
tan θ, ∀ θ = n +
1
2
π, where n ∈ Z
csc θ, ∀ θ = nπ, where n ∈ Z
sec θ, ∀ θ = n +
1
2
π, where n ∈ Z
cot θ, ∀ θ = nπ, where n ∈ Z
Ranges of the Trig Functions
−1 ≤ sin θ ≤ 1
−1 ≤ cos θ ≤ 1
−∞ ≤ tan θ ≤ ∞
csc θ ≥ 1 and csc θ ≤ −1
sec θ ≥ 1 and sec θ ≤ −1
−∞ ≤ cot θ ≤ ∞
Periods of the Trig Functions
The period of a function is the number, T, such that f (θ +T ) = f (θ ) .
So, if ω is a fixed number and θ is any angle we have the following periods.
sin(ωθ) ⇒ T =
2π
ω
cos(ωθ) ⇒ T =
2π
ω
tan(ωθ) ⇒ T =
π
ω
csc(ωθ) ⇒ T =
2π
ω
sec(ωθ) ⇒ T =
2π
ω
cot(ωθ) ⇒ T =
π
ω
1
Identities and Formulas
Tangent and Cotangent Identities
tan θ =
sin θ
cos θ
cot θ =
cos θ
sin θ
Reciprocal Identities
sin θ =
1
csc θ
csc θ =
1
sin θ
cos θ =
1
sec θ
sec θ =
1
cos θ
tan θ =
1
cot θ
cot θ =
1
tan θ
Pythagorean Identities
sin2
θ + cos2
θ = 1
tan2
θ + 1 = sec2
θ
1 + cot2
θ = csc2
θ
Even and Odd Formulas
sin(−θ) = − sin θ
cos(−θ) = cos θ
tan(−θ) = − tan θ
csc(−θ) = − csc θ
sec(−θ) = sec θ
cot(−θ) = − cot θ
Periodic Formulas
If n is an integer
sin(θ + 2πn) = sin θ
cos(θ + 2πn) = cos θ
tan(θ + πn) = tan θ
csc(θ + 2πn) = csc θ
sec(θ + 2πn) = sec θ
cot(θ + πn) = cot θ
Double Angle Formulas
sin(2θ) = 2 sin θ cos θ
cos(2θ) = cos2
θ − sin2
θ
= 2 cos2
θ − 1
= 1 − 2 sin2
θ
tan(2θ) =
2 tan θ
1 − tan2
θ
Degrees to Radians Formulas
If x is an angle in degrees and t is an angle in
radians then:
π
180◦
=
t
x
⇒ t =
πx
180◦
and x =
180◦
t
π
Half Angle Formulas
sin θ = ±
1 − cos(2θ)
2
cos θ = ±
1 + cos(2θ)
2
tan θ = ±
1 − cos(2θ)
1 + cos(2θ)
Sum and Difference Formulas
sin(α ± β) = sin α cos β ± cos α sin β
cos(α ± β) = cos α cos β sin α sin β
tan(α ± β) =
tan α ± tan β
1 tan α tan β
Product to Sum Formulas
sin α sin β =
1
2
[cos(α − β) − cos(α + β)]
cos α cos β =
1
2
[cos(α − β) + cos(α + β)]
sin α cos β =
1
2
[sin(α + β) + sin(α − β)]
cos α sin β =
1
2
[sin(α + β) − sin(α − β)]
Sum to Product Formulas
sin α + sin β = 2 sin
α + β
2
cos
α − β
2
sin α − sin β = 2 cos
α + β
2
sin
α − β
2
cos α + cos β = 2 cos
α + β
2
cos
α − β
2
cos α − cos β = −2 sin
α + β
2
sin
α − β
2
Cofunction Formulas
sin
π
2
− θ = cos θ
csc
π
2
− θ = sec θ
tan
π
2
− θ = cot θ
cos
π
2
− θ = sin θ
sec
π
2
− θ = csc θ
cot
π
2
− θ = tan θ
2
Unit Circle
0◦
, 2π
(1, 0)
180◦
, π
(−1, 0)
(0, 1)
90◦
, π
2
(0, −1)
270◦
, 3π
2
30◦
, π
6
(
√
3
2
, 1
2
)45◦
, π
4
(
√
2
2
,
√
2
2
)
60◦
, π
3
(1
2
,
√
3
2
)
120◦
, 2π
3
(−1
2
,
√
3
2
)
135◦
, 3π
4
(−
√
2
2
,
√
2
2
)
150◦
, 5π
6
(−
√
3
2
, 1
2
)
210◦
, 7π
6
(−
√
3
2
, −1
2
) 225◦
, 5π
4
(−
√
2
2
, −
√
2
2
)
240◦
, 4π
3
(−1
2
, −
√
3
2
)
300◦
, 5π
3
(1
2
, −
√
3
2
)
315◦
, 7π
4
(
√
2
2
, −
√
2
2
)
330◦
, 11π
6
(
√
3
2
, −1
2
)
For any ordered pair on the unit circle (x, y) : cos θ = x and sin θ = y
Example
cos (7π
6 ) = −
√
3
2 sin (7π
6 ) = −1
2
3
Inverse Trig Functions
Definition
θ = sin−1
(x) is equivalent to x = sin θ
θ = cos−1
(x) is equivalent to x = cos θ
θ = tan−1
(x) is equivalent to x = tan θ
Domain and Range
Function
θ = sin−1
(x)
θ = cos−1
(x)
θ = tan−1
(x)
Domain
−1 ≤ x ≤ 1
−1 ≤ x ≤ 1
−∞ ≤ x ≤ ∞
Range
−
π
2
≤ θ ≤
π
2
0 ≤ θ ≤ π
−
π
2
< θ <
π
2
Inverse Properties
These properties hold for x in the domain and θ in
the range
sin(sin−1
(x)) = x
cos(cos−1
(x)) = x
tan(tan−1
(x)) = x
sin−1
(sin(θ)) = θ
cos−1
(cos(θ)) = θ
tan−1
(tan(θ)) = θ
Other Notations
sin−1
(x) = arcsin(x)
cos−1
(x) = arccos(x)
tan−1
(x) = arctan(x)
Law of Sines, Cosines, and Tangents
a
b
c
α
β
γ
Law of Sines
sin α
a
=
sin β
b
=
sin γ
c
Law of Cosines
a2
= b2
+ c2
− 2bc cos α
b2
= a2
+ c2
− 2ac cos β
c2
= a2
+ b2
− 2ab cos γ
Law of Tangents
a − b
a + b
=
tan 1
2
(α − β)
tan 1
2
(α + β)
b − c
b + c
=
tan 1
2
(β − γ)
tan 1
2
(β + γ)
a − c
a + c
=
tan 1
2
(α − γ)
tan 1
2
(α + γ)
4
Complex Numbers
i =
√
−1 i2
= −1 i3
= −i i4
= 1
√
−a = i
√
a, a ≥ 0
(a + bi) + (c + di) = a + c + (b + d)i
(a + bi) − (c + di) = a − c + (b − d)i
(a + bi)(c + di) = ac − bd + (ad + bc)i
(a + bi)(a − bi) = a2
+ b2
|a + bi| =
√
a2 + b2 Complex Modulus
(a + bi) = a − bi Complex Conjugate
(a + bi)(a + bi) = |a + bi|2
DeMoivre’s Theorem
Let z = r(cos θ + i sin θ), and let n be a positive integer.
Then:
zn
= rn
(cos nθ + i sin nθ).
Example: Let z = 1 − i, find z6
.
Solution: First write z in polar form.
r = (1)2 + (−1)2 =
√
2
θ = arg(z) = tan−1 −1
1
= −
π
4
Polar Form: z =
√
2 cos −
π
4
+ i sin −
π
4
Applying DeMoivre’s Theorem gives :
z6
=
√
2
6
cos 6 · −
π
4
+ i sin 6 · −
π
4
= 23
cos −
3π
2
+ i sin −
3π
2
= 8(0 + i(1))
= 8i
5
Finding the nth roots of a number using DeMoivre’s Theorem
Example: Find all the complex fourth roots of 4. That is, find all the complex solutions of
x4
= 4.
We are asked to find all complex fourth roots of 4.
These are all the solutions (including the complex values) of the equation x4
= 4.
For any positive integer n , a nonzero complex number z has exactly n distinct nth roots.
More specifically, if z is written in the trigonometric form r(cos θ + i sin θ), the nth roots of
z are given by the following formula.
(∗) r
1
n cos
θ
n
+
360◦
k
n
+ i sin
θ
n
+
360◦
k
n
, for k = 0, 1, 2, ..., n − 1.
Remember from the previous example we need to write 4 in trigonometric form by using:
r = (a)2 + (b)2 and θ = arg(z) = tan−1 b
a
.
So we have the complex number a + ib = 4 + i0.
Therefore a = 4 and b = 0
So r = (4)2 + (0)2 = 4 and
θ = arg(z) = tan−1 0
4
= 0
Finally our trigonometric form is 4 = 4(cos 0◦
+ i sin 0◦
)
Using the formula (∗) above with n = 4, we can find the fourth roots of 4(cos 0◦
+ i sin 0◦
)
• For k = 0, 4
1
4 cos
0◦
4
+
360◦
∗ 0
4
+ i sin
0◦
4
+
360◦
∗ 0
4
=
√
2 (cos(0◦
) + i sin(0◦
)) =
√
2
• For k = 1, 4
1
4 cos
0◦
4
+
360◦
∗ 1
4
+ i sin
0◦
4
+
360◦
∗ 1
4
=
√
2 (cos(90◦
) + i sin(90◦
)) =
√
2i
• For k = 2, 4
1
4 cos
0◦
4
+
360◦
∗ 2
4
+ i sin
0◦
4
+
360◦
∗ 2
4
=
√
2 (cos(180◦
) + i sin(180◦
)) = −
√
2
• For k = 3, 4
1
4 cos
0◦
4
+
360◦
∗ 3
4
+ i sin
0◦
4
+
360◦
∗ 3
4
=
√
2 (cos(270◦
) + i sin(270◦
)) = −
√
2i
Thus all of the complex roots of x4
= 4 are:
√
2,
√
2i, −
√
2, −
√
2i .
6
Formulas for the Conic Sections
Circle
StandardForm : (x − h)2
+ (y − k)2
= r2
Where (h, k) = center and r = radius
Ellipse
Standard Form for Horizontal Major Axis :
(x − h)2
a2
+
(y − k)2
b2
= 1
Standard Form for V ertical Major Axis :
(x − h)2
b2
+
(y − k)2
a2
= 1
Where (h, k)= center
2a=length of major axis
2b=length of minor axis
(0 < b < a)
Foci can be found by using c2
= a2
− b2
Where c= foci length
7
More Conic Sections
Hyperbola
Standard Form for Horizontal Transverse Axis :
(x − h)2
a2
−
(y − k)2
b2
= 1
Standard Form for V ertical Transverse Axis :
(y − k)2
a2
−
(x − h)2
b2
= 1
Where (h, k)= center
a=distance between center and either vertex
Foci can be found by using b2
= c2
− a2
Where c is the distance between
center and either focus. (b > 0)
Parabola
Vertical axis: y = a(x − h)2
+ k
Horizontal axis: x = a(y − k)2
+ h
Where (h, k)= vertex
a=scaling factor
8
x
Example : sin


5π
4

 = −
√
2
2
f(x)
f(x) = sin(x)
0 π
6
π
4
π
3
π
2
2π
3
3π
4
5π
6
π 7π
6
5π
4
4π
3
3π
2
5π
3
7π
4
11π
6 2π
1
-1
1
2
√
2
2
√
3
2
−1
2
−
√
2
2
−
√
3
2
x
Example : cos


7π
6

 = −
√
3
2
f(x)
f(x) = cos(x)
0 π
6
π
4
π
3
π
2
2π
3
3π
4
5π
6
π 7π
6
5π
4
4π
3
3π
2
5π
3
7π
4
11π
6 2π
1
-1
1
2
√
2
2
√
3
2
−1
2
−
√
2
2
−
√
3
2
9
x
f(x)
f(x) = tan x
π
2−π
2
√
3
3
1
√
3
−
√
3
3
−1
−
√
3
π
4−π
4
0 π
6−π
6
π
3−π
3
2π
3−2π
3
3π
4−3π
4
5π
6−5π
6
π−π
10

More Related Content

PPTX
A Study of customer satisfaction towards Uber cabs.pptx
PPT
4.Pension Rules.ppt
PDF
Urban planning 01 the scope for urban planning in society
PDF
Tds online return filing
PDF
Hsc maths formulae for board exam
PDF
Hsc maths formulae for board exam
A Study of customer satisfaction towards Uber cabs.pptx
4.Pension Rules.ppt
Urban planning 01 the scope for urban planning in society
Tds online return filing
Hsc maths formulae for board exam
Hsc maths formulae for board exam

Similar to Math resources trigonometric_formulas (20)

PDF
economics
PDF
Trigo Sheet Cheat :D
PPT
Trigonometric ratios and identities 1
PDF
Questions and Solutions Basic Trigonometry.pdf
PDF
Formulario Trigonometria
PDF
Trigonometry cheat sheet
PDF
Trig cheat sheet
PDF
Maths04
PDF
Mathematical formula tables
PDF
Trig cheat sheet
PDF
Correlation: Powerpoint 2- Trigonometry (1).pdf
PPT
Mathematics
DOCX
TRIGONOMETRY
PDF
University of manchester mathematical formula tables
PDF
Trigonometry cheat sheet
DOCX
Assessments for class xi
PDF
Neet class 11 12 basic mathematics notes
PDF
Trigonometry.pdf
PDF
Review of Trigonometry for Calculus “Trigon” =triangle +“metry”=measurement =...
PDF
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
economics
Trigo Sheet Cheat :D
Trigonometric ratios and identities 1
Questions and Solutions Basic Trigonometry.pdf
Formulario Trigonometria
Trigonometry cheat sheet
Trig cheat sheet
Maths04
Mathematical formula tables
Trig cheat sheet
Correlation: Powerpoint 2- Trigonometry (1).pdf
Mathematics
TRIGONOMETRY
University of manchester mathematical formula tables
Trigonometry cheat sheet
Assessments for class xi
Neet class 11 12 basic mathematics notes
Trigonometry.pdf
Review of Trigonometry for Calculus “Trigon” =triangle +“metry”=measurement =...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
Ad

More from Er Deepak Sharma (15)

PDF
an-overview-enterprise-resource-planning erp-
PDF
Sap mm tutorial
PPT
plastic_fabrication processes
PDF
Adding and subtracting decimals word problems
PDF
design and analysis of composite leaf spring for light weight vehicle
PDF
Nstse class-9-solved-paper-2014
PDF
Multiplication word-problems-1 r-gr4
PDF
UPSC 2016 EXAM CALENDER
PDF
Me gate-15 paper-03 new2
PDF
Me gate-15-paper-02
PDF
Me gate-15-paper-01
PDF
Catia -installation guide
PDF
07 cube and cube roots
PDF
Metal forming processes
PDF
p-k-nag-solution thermodynamics by sk mondal
an-overview-enterprise-resource-planning erp-
Sap mm tutorial
plastic_fabrication processes
Adding and subtracting decimals word problems
design and analysis of composite leaf spring for light weight vehicle
Nstse class-9-solved-paper-2014
Multiplication word-problems-1 r-gr4
UPSC 2016 EXAM CALENDER
Me gate-15 paper-03 new2
Me gate-15-paper-02
Me gate-15-paper-01
Catia -installation guide
07 cube and cube roots
Metal forming processes
p-k-nag-solution thermodynamics by sk mondal
Ad

Recently uploaded (20)

PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
Institutional Correction lecture only . . .
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Sports Quiz easy sports quiz sports quiz
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Pharma ospi slides which help in ospi learning
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Institutional Correction lecture only . . .
Pharmacology of Heart Failure /Pharmacotherapy of CHF
Microbial diseases, their pathogenesis and prophylaxis
102 student loan defaulters named and shamed – Is someone you know on the list?
2.FourierTransform-ShortQuestionswithAnswers.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Renaissance Architecture: A Journey from Faith to Humanism
TR - Agricultural Crops Production NC III.pdf
Sports Quiz easy sports quiz sports quiz
human mycosis Human fungal infections are called human mycosis..pptx
VCE English Exam - Section C Student Revision Booklet
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Module 4: Burden of Disease Tutorial Slides S2 2025
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Cell Structure & Organelles in detailed.
Abdominal Access Techniques with Prof. Dr. R K Mishra
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Pharma ospi slides which help in ospi learning

Math resources trigonometric_formulas

  • 1. Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < π 2 or 0◦ < θ < 90◦ hypotenuse adjacent opposite θ sin θ = opp hyp csc θ = hyp opp cos θ = adj hyp sec θ = hyp adj tan θ = opp adj cot θ = adj opp Unit Circle Definition Assume θ can be any angle. x y y x 1 (x, y) θ sin θ = y 1 csc θ = 1 y cos θ = x 1 sec θ = 1 x tan θ = y x cot θ = x y Domains of the Trig Functions sin θ, ∀ θ ∈ (−∞, ∞) cos θ, ∀ θ ∈ (−∞, ∞) tan θ, ∀ θ = n + 1 2 π, where n ∈ Z csc θ, ∀ θ = nπ, where n ∈ Z sec θ, ∀ θ = n + 1 2 π, where n ∈ Z cot θ, ∀ θ = nπ, where n ∈ Z Ranges of the Trig Functions −1 ≤ sin θ ≤ 1 −1 ≤ cos θ ≤ 1 −∞ ≤ tan θ ≤ ∞ csc θ ≥ 1 and csc θ ≤ −1 sec θ ≥ 1 and sec θ ≤ −1 −∞ ≤ cot θ ≤ ∞ Periods of the Trig Functions The period of a function is the number, T, such that f (θ +T ) = f (θ ) . So, if ω is a fixed number and θ is any angle we have the following periods. sin(ωθ) ⇒ T = 2π ω cos(ωθ) ⇒ T = 2π ω tan(ωθ) ⇒ T = π ω csc(ωθ) ⇒ T = 2π ω sec(ωθ) ⇒ T = 2π ω cot(ωθ) ⇒ T = π ω 1
  • 2. Identities and Formulas Tangent and Cotangent Identities tan θ = sin θ cos θ cot θ = cos θ sin θ Reciprocal Identities sin θ = 1 csc θ csc θ = 1 sin θ cos θ = 1 sec θ sec θ = 1 cos θ tan θ = 1 cot θ cot θ = 1 tan θ Pythagorean Identities sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ Even and Odd Formulas sin(−θ) = − sin θ cos(−θ) = cos θ tan(−θ) = − tan θ csc(−θ) = − csc θ sec(−θ) = sec θ cot(−θ) = − cot θ Periodic Formulas If n is an integer sin(θ + 2πn) = sin θ cos(θ + 2πn) = cos θ tan(θ + πn) = tan θ csc(θ + 2πn) = csc θ sec(θ + 2πn) = sec θ cot(θ + πn) = cot θ Double Angle Formulas sin(2θ) = 2 sin θ cos θ cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1 − 2 sin2 θ tan(2θ) = 2 tan θ 1 − tan2 θ Degrees to Radians Formulas If x is an angle in degrees and t is an angle in radians then: π 180◦ = t x ⇒ t = πx 180◦ and x = 180◦ t π Half Angle Formulas sin θ = ± 1 − cos(2θ) 2 cos θ = ± 1 + cos(2θ) 2 tan θ = ± 1 − cos(2θ) 1 + cos(2θ) Sum and Difference Formulas sin(α ± β) = sin α cos β ± cos α sin β cos(α ± β) = cos α cos β sin α sin β tan(α ± β) = tan α ± tan β 1 tan α tan β Product to Sum Formulas sin α sin β = 1 2 [cos(α − β) − cos(α + β)] cos α cos β = 1 2 [cos(α − β) + cos(α + β)] sin α cos β = 1 2 [sin(α + β) + sin(α − β)] cos α sin β = 1 2 [sin(α + β) − sin(α − β)] Sum to Product Formulas sin α + sin β = 2 sin α + β 2 cos α − β 2 sin α − sin β = 2 cos α + β 2 sin α − β 2 cos α + cos β = 2 cos α + β 2 cos α − β 2 cos α − cos β = −2 sin α + β 2 sin α − β 2 Cofunction Formulas sin π 2 − θ = cos θ csc π 2 − θ = sec θ tan π 2 − θ = cot θ cos π 2 − θ = sin θ sec π 2 − θ = csc θ cot π 2 − θ = tan θ 2
  • 3. Unit Circle 0◦ , 2π (1, 0) 180◦ , π (−1, 0) (0, 1) 90◦ , π 2 (0, −1) 270◦ , 3π 2 30◦ , π 6 ( √ 3 2 , 1 2 )45◦ , π 4 ( √ 2 2 , √ 2 2 ) 60◦ , π 3 (1 2 , √ 3 2 ) 120◦ , 2π 3 (−1 2 , √ 3 2 ) 135◦ , 3π 4 (− √ 2 2 , √ 2 2 ) 150◦ , 5π 6 (− √ 3 2 , 1 2 ) 210◦ , 7π 6 (− √ 3 2 , −1 2 ) 225◦ , 5π 4 (− √ 2 2 , − √ 2 2 ) 240◦ , 4π 3 (−1 2 , − √ 3 2 ) 300◦ , 5π 3 (1 2 , − √ 3 2 ) 315◦ , 7π 4 ( √ 2 2 , − √ 2 2 ) 330◦ , 11π 6 ( √ 3 2 , −1 2 ) For any ordered pair on the unit circle (x, y) : cos θ = x and sin θ = y Example cos (7π 6 ) = − √ 3 2 sin (7π 6 ) = −1 2 3
  • 4. Inverse Trig Functions Definition θ = sin−1 (x) is equivalent to x = sin θ θ = cos−1 (x) is equivalent to x = cos θ θ = tan−1 (x) is equivalent to x = tan θ Domain and Range Function θ = sin−1 (x) θ = cos−1 (x) θ = tan−1 (x) Domain −1 ≤ x ≤ 1 −1 ≤ x ≤ 1 −∞ ≤ x ≤ ∞ Range − π 2 ≤ θ ≤ π 2 0 ≤ θ ≤ π − π 2 < θ < π 2 Inverse Properties These properties hold for x in the domain and θ in the range sin(sin−1 (x)) = x cos(cos−1 (x)) = x tan(tan−1 (x)) = x sin−1 (sin(θ)) = θ cos−1 (cos(θ)) = θ tan−1 (tan(θ)) = θ Other Notations sin−1 (x) = arcsin(x) cos−1 (x) = arccos(x) tan−1 (x) = arctan(x) Law of Sines, Cosines, and Tangents a b c α β γ Law of Sines sin α a = sin β b = sin γ c Law of Cosines a2 = b2 + c2 − 2bc cos α b2 = a2 + c2 − 2ac cos β c2 = a2 + b2 − 2ab cos γ Law of Tangents a − b a + b = tan 1 2 (α − β) tan 1 2 (α + β) b − c b + c = tan 1 2 (β − γ) tan 1 2 (β + γ) a − c a + c = tan 1 2 (α − γ) tan 1 2 (α + γ) 4
  • 5. Complex Numbers i = √ −1 i2 = −1 i3 = −i i4 = 1 √ −a = i √ a, a ≥ 0 (a + bi) + (c + di) = a + c + (b + d)i (a + bi) − (c + di) = a − c + (b − d)i (a + bi)(c + di) = ac − bd + (ad + bc)i (a + bi)(a − bi) = a2 + b2 |a + bi| = √ a2 + b2 Complex Modulus (a + bi) = a − bi Complex Conjugate (a + bi)(a + bi) = |a + bi|2 DeMoivre’s Theorem Let z = r(cos θ + i sin θ), and let n be a positive integer. Then: zn = rn (cos nθ + i sin nθ). Example: Let z = 1 − i, find z6 . Solution: First write z in polar form. r = (1)2 + (−1)2 = √ 2 θ = arg(z) = tan−1 −1 1 = − π 4 Polar Form: z = √ 2 cos − π 4 + i sin − π 4 Applying DeMoivre’s Theorem gives : z6 = √ 2 6 cos 6 · − π 4 + i sin 6 · − π 4 = 23 cos − 3π 2 + i sin − 3π 2 = 8(0 + i(1)) = 8i 5
  • 6. Finding the nth roots of a number using DeMoivre’s Theorem Example: Find all the complex fourth roots of 4. That is, find all the complex solutions of x4 = 4. We are asked to find all complex fourth roots of 4. These are all the solutions (including the complex values) of the equation x4 = 4. For any positive integer n , a nonzero complex number z has exactly n distinct nth roots. More specifically, if z is written in the trigonometric form r(cos θ + i sin θ), the nth roots of z are given by the following formula. (∗) r 1 n cos θ n + 360◦ k n + i sin θ n + 360◦ k n , for k = 0, 1, 2, ..., n − 1. Remember from the previous example we need to write 4 in trigonometric form by using: r = (a)2 + (b)2 and θ = arg(z) = tan−1 b a . So we have the complex number a + ib = 4 + i0. Therefore a = 4 and b = 0 So r = (4)2 + (0)2 = 4 and θ = arg(z) = tan−1 0 4 = 0 Finally our trigonometric form is 4 = 4(cos 0◦ + i sin 0◦ ) Using the formula (∗) above with n = 4, we can find the fourth roots of 4(cos 0◦ + i sin 0◦ ) • For k = 0, 4 1 4 cos 0◦ 4 + 360◦ ∗ 0 4 + i sin 0◦ 4 + 360◦ ∗ 0 4 = √ 2 (cos(0◦ ) + i sin(0◦ )) = √ 2 • For k = 1, 4 1 4 cos 0◦ 4 + 360◦ ∗ 1 4 + i sin 0◦ 4 + 360◦ ∗ 1 4 = √ 2 (cos(90◦ ) + i sin(90◦ )) = √ 2i • For k = 2, 4 1 4 cos 0◦ 4 + 360◦ ∗ 2 4 + i sin 0◦ 4 + 360◦ ∗ 2 4 = √ 2 (cos(180◦ ) + i sin(180◦ )) = − √ 2 • For k = 3, 4 1 4 cos 0◦ 4 + 360◦ ∗ 3 4 + i sin 0◦ 4 + 360◦ ∗ 3 4 = √ 2 (cos(270◦ ) + i sin(270◦ )) = − √ 2i Thus all of the complex roots of x4 = 4 are: √ 2, √ 2i, − √ 2, − √ 2i . 6
  • 7. Formulas for the Conic Sections Circle StandardForm : (x − h)2 + (y − k)2 = r2 Where (h, k) = center and r = radius Ellipse Standard Form for Horizontal Major Axis : (x − h)2 a2 + (y − k)2 b2 = 1 Standard Form for V ertical Major Axis : (x − h)2 b2 + (y − k)2 a2 = 1 Where (h, k)= center 2a=length of major axis 2b=length of minor axis (0 < b < a) Foci can be found by using c2 = a2 − b2 Where c= foci length 7
  • 8. More Conic Sections Hyperbola Standard Form for Horizontal Transverse Axis : (x − h)2 a2 − (y − k)2 b2 = 1 Standard Form for V ertical Transverse Axis : (y − k)2 a2 − (x − h)2 b2 = 1 Where (h, k)= center a=distance between center and either vertex Foci can be found by using b2 = c2 − a2 Where c is the distance between center and either focus. (b > 0) Parabola Vertical axis: y = a(x − h)2 + k Horizontal axis: x = a(y − k)2 + h Where (h, k)= vertex a=scaling factor 8
  • 9. x Example : sin   5π 4   = − √ 2 2 f(x) f(x) = sin(x) 0 π 6 π 4 π 3 π 2 2π 3 3π 4 5π 6 π 7π 6 5π 4 4π 3 3π 2 5π 3 7π 4 11π 6 2π 1 -1 1 2 √ 2 2 √ 3 2 −1 2 − √ 2 2 − √ 3 2 x Example : cos   7π 6   = − √ 3 2 f(x) f(x) = cos(x) 0 π 6 π 4 π 3 π 2 2π 3 3π 4 5π 6 π 7π 6 5π 4 4π 3 3π 2 5π 3 7π 4 11π 6 2π 1 -1 1 2 √ 2 2 √ 3 2 −1 2 − √ 2 2 − √ 3 2 9
  • 10. x f(x) f(x) = tan x π 2−π 2 √ 3 3 1 √ 3 − √ 3 3 −1 − √ 3 π 4−π 4 0 π 6−π 6 π 3−π 3 2π 3−2π 3 3π 4−3π 4 5π 6−5π 6 π−π 10